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We study the existence, regularity, and conditions for uniqueness of solutions of
a generalized Boussinesq model for thermally driven convection. The model allows
temperature dependent viscosity and thermal conductivity. � 1996 Academic Press, Inc.

1. Introduction

We study the stationary problem for the equations governing the
coupled mass and heat flow of a viscous incompressible fluid in a
generalized Boussinesq approximation by assuming that viscosity and heat
conductivity are temperature dependent. The equations are

&div(&(T ) {u)+u .{u&:Tg+{p=0,

div u=0 (1.1)

&div(k(T ) {T )+u .{T=0 in 0,

where 0 is a bounded domain in RN, N=2 or 3 throughout the paper.
Here u(x) # RN denotes the velocity of the fluid at a point x # 0; p(x) # R

is the hydrostatic pressure; T(x) # R is the temperature; g(x) is the external
force by unit of mass; &( } )>0 and k( } )>0 are kinematic viscosity and
thermal conductivity, respectively; and : is a positive constant associated
to the coefficient of volume expansion. Without loss of generality, we have
taken the reference temperature as zero. For a derivation of the above
equations, see, for instance, Drazin and Reid [6].

The expressions {, 2, and div denote the gradient, Laplace, and
divergence operators, respectively (we also denote the gradient by grad);
the i th component of u .{u is given by (u .{u) i=�N

j=1 uj (�ui��xj); u .{T=
�N

j=1 uj (�T��xj).
The boundary conditions are

u=0 and T=T0 on �0, (1.2)

where T0 is a given function on �0 (the boundary of 0).
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The classical Boussinesq equations correspond to the special case where
& and k are positive constants. This case has been much studied (see, for
instance, Morimoto [9, 10] and Rabinowitz [13] and the references
therein).

Equations (1.1) are much less studied, and they correspond to the
following physical situation. For certain fluids we cannot disregard the
variation of viscosity (and thermal conductivity) with temperature, this
being important in the determination of the details of the flow. It is found,
for example, that a liquid usually rises in the middle of a polygonal convec-
tion cell, while a gas falls. Graham [7] suggested that this is because the
viscosity of a typical liquid decreases with temperature whereas that of a
typical gas increases. This suggestion was subsequently confirmed by Tip-
pelkirch's experiments (see [15]) on convection of liquid sulphur, for
which the viscosity has a minimun near 153% C. He found that the direction
of the flow depended on whether the temperature was above or below
153% C. Palm [11] was the first to analyse the effect of the variation of
viscosity with temperature; other papers on the subject are, for instance,
Busse [4] and Palm et al. [12]. All these papers have the Theoretical
Fluid Dynamics flavour. A rigorous mathematical analysis is more difficult
in this case than in the case of the classical Boussinesq equations due to the
stronger nonlinear coupling between the equations.

As a step in this direction, in this paper we will study the existence and
regularity of solutions of (1.1) using a spectral Galerkin method combined
with fixed point arguments; we will need more estimates than the ones
required in the classical case in order to handle the nonlinearity in the
higher order terms of the equations.

We will show the existence of weak and strong solutions of problem
(1.1), (1.2) under certain conditions of the temperature dependency of the
viscosity and thermal conductivity; we allow more general external forces
than the usual one (constant gravitational field) because this could be use-
ful in certain geophysical models. Properties of regularity and uniqueness
are also studied. Questions concerning stability and bifurcation are left for
future work.

We observe that if we take u#0 in (1.1) and g=(0, 0, 1), the usual
approximation for the gravitational acceleration, we are left with grad p=
:Ty=(0, 0, :T ). Consequently, curl(0, 0, :T )=0 in 0, and so �T��x=
�T��y=0 in 0. Therefore, we see that an arbitrary temperature on the
boundary will in general require motion. That is, in general the solution of
(1.1), (1.2) is not trivial.

Finally, we would like to comment that analogous questions can be con-
sidered for the corresponding evolution problem. Results along these lines will
appear elsewhere. Also, concerning numerical results we would like to mention
the interesting paper by Bernardi et al. [3] that treats a related problem.
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This paper is organized as follows: in Section 2 we describe the notation
and the basic facts to be used later on: we also state the our main results.
In Section 3, we make a technical preparation by proving certain a priori
estimates that will be useful for the proofs of the main results. The proofs
of Theorem 2.1 (existence of a weak solution), Theorem 2.2 (existence of
strong solution), Theorem 2.3 (regularity), and Theorem 2.4 (uniqueness)
are done in Sections 4, 5, 6, and 7, respectively.

2. Preliminaries and Results

In this article the functions are either R or RN valued (N=2 or 3), and
we will not distinguish them in our notations; this being clear from the
context. The L2(0)-product and norm are denoted by ( , ) and | |, respec-
tively, the L p(0) norm by | |p , 1� p��; the Hm(0) norm is denoted by
& &m and the Wk, p(0) norm by | |k, p . Here Hm(0)=W m, 2(0) and
Wk, p(0) are the usual Sobolev spaces (see Adams [1] for their properties).

Let D(0)=[v # (C �
0 (0))N div v=0 in 0], H=completion of D(0) in

L2(0), and V=completion of D(0) in H 1(0). We note that, when 0 is
Lipschitz-continuous, the spaces H and V can be characterized as

H=[v # L2(0); div v=0 in 0, v .n=0 on �0],

V=[v # H 1
0(0); div v=0 in 0],

where n is the external orthonormal field to �0.
Let P be the orthogonal projection of L2(0) onto H obtained by the

usual Helmholtz decomposition. We shall denote by vk and :k respectively
the eigenfunctions and eigenvalues of the Stokes operator 2� =&P2 :
Dom(2� )/L2(0) � L2(0), where Dom(2� )=V & H2(0) is the domain of
2� . If 0 is Lipschitz continuous, it is known that vk are orthogonal in the
inner product ( } , } ) and ({ }, { }) and are complete in the spaces H and V;
when 0 is of class C2 then the eigenfunctions vk are also complete in
V & H2(0) and orthogonal with respect to the inner product (2� }, 2� }) (see,
for example, Temam [14].

Similar considerations are true for the Laplace operator 2; we will
denote by �k and *k respectively the eigenfunctions and eigenvalues of the
operator &2.

Let W1&1�p, p(�0) be the trace space obtained as the image of W 1, p(0)
by the boundary value mapping on �0, equipped with the norm
|#| 1&1�p, p, �0=inf[ |v| 1, p , v # W1, p(0), v=# on �0]. Similarly, when �0 is
sufficiently smooth, we can define the trace spaces Wk&1�p, p(�0) with norm
| | k&1�p, p, �0 . When p=2, we denote H k&1�2(�0)=Wk&1�2, 2(�0) and
& &k&1�2, �0=| | k&1�2, 2, �0 (see Adams [1]).
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We assume that we can find a function S defined in 0 satisfying S=T0

on �0; then we can transform Eqs. (1.1), (1.2) by introducing the new
variable .=T&S to obtain

&div(&(.+S) {u)+u .{u&:.g&:Sg+{p=0,

div u=0,
(2.1)

&div(k(.+S) {.)+u .{.&div(k(.+S) {S)+u .{S=0 in 0

u=0 and .=0 on �0.

Suppose that S # H1(0) (thus T0 # H1�2(�0)); then we can reformulate
(2.1) in weak form as follows: to find u # V and . # H 1

0(0) satisfying

(&(.+S) {u, {v)+B(u, u, v)&:(.g, v)&:(Sg, v)=0,

for all v in V
(2.2)

(k(.+S) {., {�)+b(u, ., �)+(k(.+S) {S, {�)+b(u, S, �)=0,

for all � in H 1
0(0).

where B(u, v, w)=(u .{v, w)=�0 �N
i, j=1 uj (x)(�vi ��xj)(x) wi (x) dx and

b(u, ., �)=(u .{., �)=�0 �N
j=1 uj (x)(�.��xj)(x) �(x) dx.

Definition. A pair of functions (u, T ) # V_H1(0) is called a weak
solution of (1.1), (1.2) if there exists a function S in H1(0) such that
.=T&S # H 1

0(0), S=T0 on �0, and, (u, .) is a solution of (2.2).

Based on physical assumptions, throughout the paper we will suppose
that

&({)>0; k({)>0 for all { # R. (A.1)

We observe that assumption (A.1) allows the cases lim infT � +� &(T )=0 or
lim supT � +� &(T )=+� (the same holds for k( } )).

Our first result concerns the existence of weak solutions.

Theorem 2.1. Let 0 be a bounded domain in RN (N=2 or 3) with
Lipschitz continuous boundary; let the functions &, k be continuous, g # L2(0)
and T0 # H1�2(�0) & L�(�0). Then there exists a weak solution of (1.1),
(1.2). In case that inf[&({), k({); { # R]>0 and sup[&({), k({); { # R]<�
the result is true under the weaker assumption T0 # H1�2(�0).

We remark that in the proof of this result we will obtain approximate
solutions by using the eigenfunctions of the Stokes and Laplace operators.
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Actually, for this is not necessary to obtain the result in Theorem 2.1, and
we could use any basis V and H 1

0(0).
If we have stronger assumptions, we are able to prove the following.

Theorem 2.2. Let 0 be a bounded domain in RN (N=2 or 3) with C 1, 1

boundary; we suppose that &, k are of class C1, g # L3(0) and T0 # H3�2(�0).
Then, if &T0&3�2, �0 is small enough, there exists a strong solution of (1.1),
(1.2), that is, there exists a pair (u, T ) # (V & H2(0))_H 2(0) such that

P(&div(&(T ) {u)+u .{u&:Tg)=0 in L2(0),

&div(k(T ) {T )+u .{T=0 in L2(0),

T=T0 a.e on �0.

We observe that there exists a unique function p (the pressure) in
H1(0) & L2

0(0), with L2
0(0)=[ f # L2(0)�( f, 1)=0], such that

&div(&(T ) {u)+u .{u&:Tg=&grad p. (2.3)

For this, see Temam [15]. We also observe that Theorem 2.2 is true if
we take : small instead of &T0&3�2, �0 small.

The next result is concerned with the regularity of (u, T, p).

Theorem 2.3. Let 0 be a bounded domain in RN (N=2 or 3) with a
Ck+1, 1 boundary; let the functions &, k be of class Ck+1, g # Wk, 3(0) and
T0 # Wk+7�4, 4(�0). Then a strong solution (u, T ) satisfies u # Hk+2(0) and
T # Wk+2, 4(0). Moreover, the associated pressure satisfies p # Hk+1(0) &

L2
0(0).

The following is a uniqueness result for ``small'' weak solutions.

Theorem 2.4. Let 0 be a bounded domain in RN (N=2 or 3), with a
Ck+1, 1 boundary and &, k, k$ Lipschitz continuous. There exists =>0 such
that, if there exists a weak solution (u, T ) of (1.1), (1.2) satisfying |{u|+
&T&2<=, then it is unique.

Finally we state two lemmas for convenience of reference.
By Ho� lder's inequality and Sobolev imbeddings, we have

Lemma 2.5. There exists a constant CB depending on 0 such that
|B(u, v, w)|�CB |{u| |{v| |{w| for \u # H 1

0(0), \v # H 1(0), \w # H 1
0(0),

and |b(u, ., �)|�CB |{u| |{.| |{�| for \u # H 1
0(0), \. # H 1(0), \� #

H 1
0(0).

By density arguments and integration by parts (see Temam [14]), we
have

393generalized boussinesq models
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Lemma 2.6. (i) B(u, v, w)=&B(u, w, v) for \u # V, and \v, w # H1(0);
b(u, ., �)=&b(u, �, .) for \u # V, and \�, . # H1(0)

(ii) B(u, v, v)=0 for \u # V, and \v # H1(0); b(u, ., .)=0 for \u # V,
and \. # H1(0).

In what follows we will use C as a generic positive constant which
depends only on 0, through constants appearing in the Poincare� inequality
and Sobolev inequalities.

3. A Priori Estimates

In this section we will show that problem (1.1), (1.2) satisfies a weak maxi-
mum principle. Also we will obtain a priori estimate for weak solutions.

Lemma 3.1. Let [u, T ] be a weak solution of (1.1), (1.2). Then we have

inf
�0

T0�T(x)�sup
�0

T0 a.e. in 0� . (3.1)

Proof. Assume l=sup�0 T0<� (If l=� we are done.) We take
�=T + in (2.2), where T +=sup[T&l, 0] to obtain (k(T ) {T, {T +)=
&b(u, T, T +). An easy computation shows that (k(T ) {T +, {T +)=
(k(T ) {T, {T +)=&b(u, T, T +)=&b(u, T +, T +). Therefore, by using
Lemma 2.6(ii), we have �0 k(T ) |{T +| 2=0. Thus, k(T ) |{T +|2=0 a.e. in
0, and consequently |{T +|2=0 a.e. in 0. This last equality implies that
T +=0 since T + # H 1

0 ; thus, the right hand side of (3.1) follows. The left
hand side (3.1) is similarly obtained. K

An interesting consequence of the previous lemma is that we can trans-
form problem (1.1), (1.2) into an equivalent one. Suppose that inf[k(t);
t # R]=0 or sup[k(t), t # R]=+� and sup�0 |T0|<+�; then, we con-
sider the modified function k� , with the same regularity as k and satisfying
k� ({)=k({) for all |{|�sup�0 |T0| and inf[k(t); |t|�sup�0 |T0|]�2�k� ({)�
2 sup[k(t); |t|�sup�0 |T0|] for all { # R.

Analogous considerations can be made for &( } ).
Clearly, a pair (u, T ) is a weak solutions of (1.1), (1.2) if and only if it

is a weak solution of the following problem

&div(&~ (T ) {u)+u .{u+{p=:Tg,

div u=0, = (3.2)

&div(k� (T ) {T )+u .{T=0 in 0.

T=T0 , u=0 on �0. (3.3)

394 lorca and boldrini
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Therefore, hereafter we can suppose that the functions &( } ) and k( } ) satisfy

0<&0(T0)�&({)�&1(T0)

= (3.4)
0<k0(T0)�k({)�k1(T0) for all { # R,

where &0(T0)=inf[&(t); |t|�sup�0 |T0|]�2, &1(T0)=2 sup[&(t); |t|�
sup�0 |T0|] with analogous definitions for k0(T0) and k1(T0).

Remark 3.2. Obviously, if we assume that

inf[&(t), k(t); t # R]>0, sup[&(t), k(t), t # R]<+�, (3.5)

then the above modification is unnecessary.

Now, we prove an a priori estimate. Let [u, .] be a weak solution of
(1.1), (1.2). Thus, by taking v=u and �=. in (2.2), we have

(&(.+S) {u, {u)+B(u, u, u)&:(.g, u)&:(Sg, u)=0, (3.6)

(k(.+S) {., {.)+b(u, ., .)+(k(.+S) {S, {.)+b(u, S, .)=0. (3.7)

From Lemma 2.6, Ho� lder's inequality and (3.4), we obtain &0(T0)|{u| 2�
:(.g, u)+:(Sg, u)�: | g| ( |.| 3+|S | 3) |u| 6 . By Sobolev imbeddings, we
find

|{u|�:
C

&0(T0)
( | g| |{.|+| g| &S&1). (3.8)

Similarly, we have k0(T0) |{.| 2�&b(u, S, .)&(k(.+S) {S, {.)=
b(u, ., S)&(k(.+S) {S, {.)�|u|6 |{.| |S | 3+k1(T0) |{S | |{.|�C |{u|
|S | 3 |{.|+k1(T0) |{S | |{.|.

Thus,

|{.|�
C

k0(T0)
|S | 3 |{u|+

k1(T0)
k0(T0)

&S&1 (3.9)

Substituting (3.9) into (3.8), we obtain

|{u|�
:C

&0(T0)
| g| \ C

k0(T0)
|S | 3 |{u|+

k1(T0)
k$0(T0)

&S&1+&S&1+ .

Thus,

\1&
:C 2

&0(T0) k0(T0)
| g| |S | 3+ |{u|

�
:C

&0(T0) k0(T0)
| g| &S&1 (k1(T0)+k0(T0)).

395generalized boussinesq models
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If we assume

:
C2

&0(T0) k0(T0)
| g| |S | 3<

1
2

, (3.10)

then we have

|{u|�
2:C

&0(T0) k0(T0)
| g| &S&1 (k1(T0)+k1(T0)+k0(T0)).

Substituting this in (3.9), we are left with

|{.|�
C

k0(T0)
|S | 3 _ 2:C

&0(T0) k0(T0)
| g| &S&1 (k1(T0)+k0(T0))&

+
k1(T0)
k0(T0)

&S&1

=
2

k0(T0) \
:C2 | g| &S&3

&0(T0) k0(T0)+ &S&1 (k1(T0)+k0(T0))

+
k1(T0)
k0(T0)

&S&1

�
2

k0(T0)
1
2

&S&1 (k1(T0)+k0(T0))+
k1(T0)
k0(T0)

&S&1

�
1

k0(T0)
&S&1 (2k1(T0)+k0(T0)).

We summarize these estimates in

|{u|�
2:C

&0(T0) k0(T0)
| g| &S&1 (k1(T0)+k0(T0))#F1(&S&1),

= (3.11)

|{.|�\2k1(T0)
k0(T0)

+1+ &S&1#F2(&S&1).

4. Existence of Weak Solutions

We start by proving the following result (compare with the one in
Morimoto [9]).

Lemma 4.1. Let 0 be a bounded domain in RN, N=2 or 3, with
Lipschitz continuous boundary. If T0 is a function in H 1�2(�0), then for any
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positive numbers = and 1�p�6 if n=3 or any finite p�1 if n=2, there
exists an extension S # H1(0) of T0 such that |S |p<=.

Proof. By definition of H1�2(�0), we can obtain an extension
T� 0 # H1(0), of T0 . For any $>0, we consider �0$=[x # RN; d(x, �0)<$]
and ;( } ) # C �

0 (RN) such that 0�;( } )�1, ;( } )#1 in �0$�2 , ;( } )#0 in
RN"�0$ (we can obtain such a function by applying a differential version
of Urysohn's Lemma).

Define S(x)=;(x) T� 0(x). Then S is a required extension, because
S # H1(0) and

|S |p�\|0 & �0$

|T� 0(x)| p dx+
1�p

.

Since by Sobolev embedding, H1(0)/L p(0), with p satisfying the stated
conditions, �0 |T� 0(x)| p dx<+�, and therefore we can choose $>0 suf-
ficiently small so that the right hand side of the above inequality is less
than =. K

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. According to Lemma 4.1, with p=3, we can
choose an extension S of T0 such that S # H1 and satisfies (3.10).

As n th aproximate solution of Eq. (2.1) we choose functions un(x)=
�n

k=1 cn, kvk(x) and .n(x)=�n
k=1 dn, k�k(x) satisfying the equations

(&(.n+S) {un, {v j)+B(un, un, v j)&:(.ng, v j)&:(Sg, v j)=0, (4.1)

(k(.n+S) {.n, {� j)+b(un, .n, � j)+(k(.n+S) {S, {� j)

+b(un, S, � j)=0, (4.2)

for 1� j�n.
First we assume the existence of (un, .n) for any n # N. Note that solu-

tions (un, .n) must satisfy estimate (3.11). In fact, the identity (3.6) for un

is obtained by multiplying (4.1) by cn, j and summing over j from 1 to n.
Similarly, we have estimate (3.7) for .n.

Estimates (3.11) follow from Eqs. (3.6), (3.7) as in Section 3. Therefore,
the sequence (un, .n) is bounded in V_H 1

0 .
Since V (respectively H 1

0) is compactly imbedded in H (respectively
L2(0)) we can choose subsequences, which we again denote by (un, .n),
and elements u # V, . # H 1

0 such that un � u weakly in V and strongly in H
and also .n � . weakly in H 1

0 , strongly in L2 and almost everywhere in 0.
Furthermore, we can suppose that {un � {u, weakly in L2 and {.n � {.,
weakly in L2.
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This is enough to take the limit as n goes to � in (4.1), (4.2) and obtain

(&(.+S) {u, {v j)+B(u, u, v j)&:(.g, v j)&:(Sg, v j)=0,

(k(.+S) {., {� j)+b(u, ., � j)+(k(.+S) {S, {� j) (4.3)

+b(u, S, � j)=0, \j # N.

In fact, in taking this limit, there is no difficulty with the nonlinear term.
It is easy to see that B(un, un, v) � B(u, u, v) \v # V and that b(un, .n, �) �
b(u, ., �), \� # H1(0) (see, for example, Temam [13]). Also, we observe
that

(&(.n+S) {un, {v j)=({un, &(.n+S) {v j) � ({u, &(.+S) {v j)

=(&(.+S) {u, {v j)

because &(.n+S) {v j � &(.+S) {v j strongly in L2(0) due to the
Lebesgue Dominated Convergence Theorem. Similarly, (k(.n+S) {.n,
{� j) � (k(.+S) {., {� j).

Since the system [vk] (respectively [�k]) is complete in V (respectively
H 1

0(0)), (4.3) implies that (u, .) satisfies (2.1). Therefore, (u, .+S) is a
required weak solution.

In order to prove the solvability of the system (4.1), (4.2) for any n # N,
we follow Heywood [8] in applying Brouwer's Fixed Point Theorem.

Let Vn be the subspace of V spanned by [v1, ..., vn], and let Mn be the
subspace spanned by [�1, ..., �n]. For every (w, !) # Vn_Mn we consider
the unique solution L(w, !)=(u, .) # Vn_Mn of the linearized equations

(&(!+S) {u, {v j)+B(w, u, v j)&:(.g, v j)&:(Sg, v j)=0, (4.4)

(k(!+S) {., {� j)+b(w, ., � j)

+(k(!+S) {S, {� j)+b(w, S, � j)=0, (4.5)

for 1� j�n. This is a system of 2n linear equations for the coefficients in
the expansions u=�n

k=1 ckvk, .=�n
k=1 dk �k. Equations (4.4), (4.5) have

a unique solution because the associated homogeneous system (S=0) has
an unique solution. In fact, if (u, .) is a solution of the homogeneous
system, proceeding as before, we multiply (4.4) by cj , (4.5) by dj , and sum
over j from 1 to n, to obtain &0(T0) |{u| 2=0, k0(T0) |{.| 2=0. Hence
u=0, .=0. The continuity of L follows by applying arguments that are
similar to the ones used to take the limit in (4.1), (4.2).
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We also have the estimates

|{u|�
:C

&0(T0)
( | g| |{.|+| g| &S&1), (4.6)

|{.|�
C

k0(T0)
|S | 3 |{w|+

k1(T0)
k0(T0)

&S&1 , (4.7)

which are shown in exactly the same way as was done for a solution
(un, .n) of (4.1), (4.2).

Substituting (4.7) into (4.6) and proceeding as we did to obtain (3.11) we
find

|{u|�
:C 2

&0(T0) k0(T0)
| g| |S | 3 |{w|

+
:C

&0(T0) k0(T0)
| g| &S&1 (k1(T0)+k0(T0)).

Since (2.10) holds, we have

|{u|�
1
2

|{w|+:
C

&0(T0) k0(T0)
| g| &S&1| (k1(T0)+k0(T0)). (4.8)

If we assume |{w|�F1(&S&1) (see (3.11)), then (4.7) and (4.8) imply
that (u, .) satisfies (3.11), that is,

|{u|�F1(&S&1) and |{.|�F2(&S&1). (4.9)

Thus, (4.4), (4.5) define a continuous mapping L from the closed and
convex set M=[(w, !) # Vn_Mn�|{w|�F1(&S&1) and |{!|�F2(&S&1)]
into itself. Using Brower's Fixed Point Theorem, we conclude that the map
L has at least one fixed point, which is a solution of (4.1), (4.2). Thus, the
proof of Theorem 2.1 is complete. K

5. Existence of Strong Solutions

In this section we will prove Theorem 2.2; for this we follow Temam
[14] in using the equivalence of the norm given by the Stokes operator
(respectively Laplacian operator) and the V & H2(0) norm (respectively
H 1

0(0) & H 2(0) norm) in smooth domain. The main difficult here is to
estimate the nonlinearity in the higher order terms in the velocity equation;
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for this we will need an estimate for the associated pressure in the Stokes'
Problem.

Proof of Theorem 2.2. We choose the extension S of T0 such that S is
the solution of the problem: &2S=0 in 0, S=T0 on �0. We know that
S is a function in H2(0) and satisfies

&S&2�C &T0&3�2, �0 . (5.1)

According to the proof of Theorem 2.1, we have a sequence (un, .n) satisfy-
ing (4.1), (4.2) provided (3.10) holds. Since |S | 3�C &S&1�C &T0&3�2, �0 ,
we conclude the existence of this sequence for &T0&3�2, �0 sufficiently small.
We need only to show that we can take this sequence bounded in H 2(0).

For this, we multiply Eq. (4.4) by : jcj , and then sum over j from 1 to n,
to obtain (div(&(!+S) {u), 2� u)&B(w, u, 2� u)+:(Sg, 2� u)+:(.g, 2� u)=0.
By using the identity div(&(!+S) {v)=&(!+S) 2v+&$(!+S) {(!+S) {v,
where {(!+S) {v denotes the vector field which i th component is given by
[{(!+S) {v] i=({(!+S), {vi)Rn , and where ( } , } )Rn denotes the canonical
inner product in Rn, we find

&(&(!+S) 2u, 2� u)=&B(w, u, 2� u)+:(.g, 2� u)+:(Sg, 2� u)

+(&$(!+S) {(!+S) {u, 2� u). (5.2)

Since &2u{2� u, we need the following decomposition 2� u+grad q=
&2u. It is well known that (see Teman [14])

&q&1�C |2� u|. (5.3)

Now, we can rewrite (5.2) as (&(!+S) 2� u, 2� u)=&B(w, u, 2� u)+:(.g,
2� u)+:(Sg, 2� u)+(&$(!+S) {(!+S) {u, 2� u)+(&(!+S) {q, 2� u).

By Ho� lder's inequality, Sobolev imbedding, and (3.4), we have

|2� u| 2�
C

&0(T0)
( |{w|+&$1(T0)( |{!|+&S&2)) |2� u| 2

+
:C

&0(T0)
| g| 3 ( |{.|+&S&1) |2� u|+ } \&(!+S)

&0(T0)
{q, 2� u+ } , (5.4)

where &$1(T0)=2 sup[ |&$(t)|; |t|�sup�0 |T0|]. We observe that

(&(!+S) {q, 2� u)=&(q, div(&(!+S) 2� u))

=&(q, (&$(!+ S) {(!+S), 2� u)Rn)
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because 2� u # Vn . Therefore,

} \&(!+S)
&0(T0)

{q, 2� u+ }�&$1(T0)
&0(T0)

|q| 4 |{(!+S)| 4 |2� u|

�C
&$1(T0)
&0(T0)

( |2!|+&S&2) &q&1 |2� u|. (5.5)

Combining estimates (5.4), (5.5), and (5.1), we have

|2� u|�
C�

&0(T0)
( |2� w|+2&$1(T0)( |2!|+&T0&3�2, �0)) |2� u|

+:
C�

&0(T0)
| g| 3 ( |2.|+&T0&3�2, �0). (5.6)

Similarly, the following estimate holds,

|2.|�
C�

k0(T0)
( |2� w|+k$1(T0)( |2!|+&T0&3�2, �0))( |2.|+&T0&3�2, �0)

+
k1(T0)
k0(T0)

&T0&3�2, �0 , (5.7)

where k$1(T0)=2 sup[ |k$(t)|; |t |�sup�0 |T0|] and C� is a positive constant.
Now, we take (w, !) such that |2� w|�(4:C� �&0(T0)) |g| 3 (1+k1(T0)�k0(T0))
&T0&3�2, �0 , |2!|�(1+2(k1(T0)�k0(T0))) &T0&3�2, �0 and we take &T0&3�2, �0

sufficiently small so that

C�
k0(T0) _1+2k$1(T0) \1+

k1(T0)
k0(T0)+& &T0&3�2, �0<

1
2

(5.8)

and

C�
&0(T0) _

4:C�
&0(T0)

| g| 3+4&$1(T0)&\1+
k1(T0)
k0(T0)+ &T0&3�2, �0<

1
2

. (5.9)

Observe that this is possible because lim$ � 0+ k($)>0 and lim$ � 0+ &($)>0.
Then, estimates (5.6), (5.7) imply

|2� u|�4
:C�

&0(T0)
| g| 3 \1+

k1(T0)
k0(T0)+ &T0&3�2, �0#r

|2.|�\1+2
k1(T0)
k0(T0)+ &T0&3�2, �0#s.
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Consequently, if &T0&3�2, �0 is small enough, L maps the closed and con-
vex set [(w, !) # Vn_Mn ; |2� w|�r and |2!|�s] into itself. Then we can
choose a sequence (un, .n) bounded in H 2(0) satisfying (4.1), (4.2), and
Theorem 2.2 follows. K

6. Regularity

We first state some lemmas that will be necessary to prove Theorem 2.3.

Lemma 6.1. Let h be any function of class Ck such that sup[ |(d ih�dti) (t)|,
t # R]�C, i=0, ..., k. Then there exists constants C(k) and C1(k) such that
for all T # Wk+1, 4(0),

(i) |h(T )|k, ��C(k) :
k

l=0

|T | l
k+1, 4; (ii) |h(T )|k, 4�C1(k) :

k

l=0

|T | l
k, 4 .

Proof. We only prove (i); the other inequality can be proved in the
same way. We proceed by induction on k.

If k=0, the result is trivial. So suppose the result is true for any j # N
such that 0� j<k, and take ;=(;1 , ..., ;n), ;i # N, |;|=;1+ } } } +;n=k.
Then, if i # [1, ..., n] is such that ;i>0, we have �;(h(T ))=� ;$(�xi (h(T ))=
�;$(h$(T ).�xi T )=�#+$=;$ c(#, $) �#(h$(T )) �$(�xi T ), where ;$=;&ei and
ei is the i th vector in the canonical basis of Rn, c(#, $) are positive con-
stants, and #=(#1 , ..., #n), $=($1 , ..., $n), #j , $j # N.

Thus, by the inductive hypothesis and the Sobolev imbeddings,

|�;(h(T ))|�� :
#+$=;$

c(#, $) |�#(h$(T ))| � |�$(�xi T )|�

� :
#+$=;$

c(#, $) M( |#| ) :
|#|

l=1

|T | l
|#|+1, 4 |T | |$|+1, �

� :
#+$=;$

c(#, $) M( |#| ) C :
|#|

l=1

|T | l
|#|+1, 4 |T | |$|+2, 4 .

Now, we observe that |#|�k&1, |$|�k&1 and so |#|+1�k and |$|+
2�k+1. Thus,

|�;(h(T ))|��C(k) :
k

l=1

|T | l
k+1, 4

and the lemma is proved. K
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Lemma 6.2. If h satisfies the conditions of Lemma 6.1, then for all T in
Wk+1, 4(0) and all f in Wk, p(0) there holds

|h(T ) f |k, p�C1(k) \ :
k

l=1

|T | l
k+1, 4+ | f | k, p .

Proof. Let ;=(;1 , ..., ;n), ;i # N, |;|=;1+ } } } +;n=k. As before

�;(h(T ) f )= :
#+$=;

c(#, $) �#(h(T )) �$f ;

therefore, by Lemma 6.1, we have

|�;(h(T ) f )|p� :
#+$=;

c(#, $)| �#(h(T ))|� |�$f | p

� :
#+$=;

c(#, $) C(#, $) :
|#|

l=1

|T | l
|l |+1, 4 |�$f | p

�C1(k) \ :
k

l=1

|T | l
k+1, 4+ | f |k, p .

This proves the lemma. K

Lemma 6.3. Let (u, T ) be a strong solution of (1.1), (1.2). Assume
T0 # W7�4, 4(�0); then T # W 2, 4(0).

Proof. According to Section 3, we can suppose that (3.4) holds. We
observe that T # H2(0) satisfies

&2T+
k$(T )
k(T )

|{T | 2+
1

k(T )
u .{T=0 in 0

(6.1)

T=T0 on �0.

Since T0 # W7�4, 4(�0)�W 5�3, 3(�0) and T # H 2(0), u # H$(0) (because
(u, T ) is a strong solution), and (k$(T)�k(T)) |{T | 2+(1�k(T )) u .{T #
L3(0). Thus we can apply the well-known L p-regularity properties of the
Laplace operator, obtaining T in W2, 3(0). By using Sobolev imbedding
we have that {T # Lq(0), for all 1�q<�. Consequently, (k$(T )�k(T ))
|{T | 2+(1�k(T )) u .{T # L4(0), and by applying the L p-regularity once
again, we find T # W 2, 4(0). K

Proof of Theorem 2.3. We proceed inductively on k. If k=0 the result
follows by Lemma 6.3. Now we suppose the result is true for k&1 (that is,
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T # Wk+1, 4(0)). Note that if ;=(;1 , ..., ;n), ;i # N, |;|=;i+ } } } +;n=k,
then

�;(u {T )= :
#+$=;

c( j) �#u �$({T )+u �;({T ),

where c( j) are positive constants, #=(#1 , ..., #n), $=($1 , ..., $n), #i , $i # N.
Thus,

|�;(u {T )| 4� :
#+$=;

c( j) |�#u| 4 |�$({T )|�+|u|� |�;({T )| 4 ,

and Sobolev imbeddings together with the inductive hypothesis imply
|u{T |k, 4�C0, k |u|k+1, 2 |T |k+1, 4+C0, k &u&2 |T | k+1, 4<�. By using
Lemma 6.2, we conclude (1�&(T )) u {T # Wk, 4(0). Similarly as before,
there holds

|� ; |{T | 2| 4� :
#+$=;

c( j) |�# {T |� |�$ {T | 4+|� ; {T | 4 |{T |�

�C0, k |T | 2
k+1, 4+C0, k |T |k+1, 4 |T | 2, 4<�.

Therefore, we have (k$(T )�k(T )) |{T | 2 # Wk, 4(0). Now, by applying the
L p-regularity for problem (6.1), we see that T # Wk+2, 4(0).

As in the proof of Lemma 6.3, we have that u is a solution of the Stokes
problem

&2u+grad \ p
&(T )+=&

&$(T )
&(T )2 p {T&

1
&(T )

u .{u

+:
T

&(T )
g+

&$(T )
&(T )

{T.{u,
(6.2)

div u=0 in 0,

u=0 on �0,

where p satisfies (2.2). As above, we show by induction that the right hand
side terms in the first equation of (6.2) are in H k(0). By Cattabriga's
Theorem (see [5] and [2]) applied to (6.2), we find that u # H k+2(0),
p�&(T ) # H k+1(0).

Applying Lemma 6.2 we conclude that p # Hk+1(0). This completes the
proof. K
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7. Uniqueness

In this section we will prove Theorem 2.4. Let (u1 , T1), (u2 , T2) be a weak
solution of (1.1), (1.2) such that T1 and T2 are in H2(0). Put w=u1&u2 ,
!=T1&T2 . Then w # V, ! # H 1

0(0) & H2(0) and satisfy for \v # V, \� #
L2(0) (&(T1) {w, {v)+B(w, u1 , v)+B(u2 , w, v)&:(!g, v)+((&(T1)&&(T2))
{u2 , {v)=0, &(div(k(T1) {!), �)+b(w, T1 , �)+b(u2 , !, �)&(div((k(T1)&
k(T2)) {T2), �)=0.

We take v=w and �=&2! in these last equalities, thus obtaining

|{w|�
:C

&0(T0)
| g| |2!|+

CB

&0(T0)
|{u| |{u1|+

C1

&0(T0)
|!| � |{u2| (7.1)

|2!|�
C

k0(T0)
&T1&2 |{w|+

C
k0(T0)

|{u2| |2!|+
C1

&0(T0)
|!|� |2T2|

+
k$1(T0)
k0(T0)

C &T2&2 |2!|+
C1

k0(T0)
&T2&

2
2 |!| � , (7.2)

where C1 is a constant such that |k$(t)&k$(s)|+|k(t)&k(s)|+|&(t)&
&(s)|�C1 |t&s| for all t, s in R. This is shown in exactly the same way as
in the case of the n th aproximate solutions (un, .n) in Section 4 and 5.

We note that |!|��C |2!|. Thus, (7.2) implies that

|2!|�
C

k0(T0)
&T1&2 |{w|

+
C

k0(T0)
[|{u2|+(C1+k$1(T0)) &T2&2+C1 &T2&

2
2] |2!|.

Assume that (C�k0(T0))[ |{u2|+(C1+k$1(T0)) &T2&2+C1 &T2&2
2)]< 1

2;
then

|2!|�
2

k0(T0)
&T1&2 |{w|. (7.3)

Substituting (7.3) into (7.1), we obtain

|{w|�_ C
&0(T0) k0(T0)

&T1&2 (:C | g|+C1 |{u2| )+
CB

&0(T0)
|{u1| )& |{w|.

Thus, if (C�&0(T0) k0(T0)) &T1&2 (:c | g|+C1 |{u2| )+(CB�&0(T0)) |{u1|<1,
we have |{w|=|2!|=0. Since w # V and ! # H 1

0(0) & H 2(0), we see w=0,
!=0 in 0. Therefore, u1=u2 , T1=T2 .

405generalized boussinesq models
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