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AntieT cell globulin (ATG) is polyclonal IgG from rabbits immunized with human thymocytes or a human T
cell line. Prophylaxis using ATG infused with conditioning for adult marrow or blood stem cell transplantation
reduces both acute and chronic graft-versus-host disease (GVHD). However, ATG is not or minimally effica-
cious in steroid refractory GVHD treatment. Regarding preemptive therapy, ATG is promising; however,
further work is needed on establishing adequate biomarkers to be used as triggers for preemptive therapy
before it can be used routinely. Relapse is not increased by ATG, except possibly in the setting of reduced-
intensity conditioning. Infections are probably increased when using high but not low-dose ATG, except
for Epstein-Barr virusedriven post-transplantation lymphoproliferative disorder, which may be increased
even with low-dose ATG. Survival is not improved with ATG; however, survival free of immunosuppressive
therapy is improved. Pharmacokinetics of ATG are highly variable, resulting in highly variable areas under the
time-concentration curves. Optimized dosing of ATG might improve transplantation outcomes. In conclusion,
ATG reduces GVHD and, thus, may improve quality of life, without compromising survival.

� 2015 American Society for Blood and Marrow Transplantation.
INTRODUCTION
Clinically significant graft-versus-host disease (GVHD), ie,

grade 2 to 4 acute GVHD (aGVHD) or extensive or moderate/
severe chronic GVHD (cGVHD), occurs in 40% to 90% of re-
cipients of T cellereplete allogeneic hematopoietic cell
transplantation (HCT) (for cGVHD, the up to 90% pertains to
patients surviving 1 year). It leads to morbidity, mortality,
and poor quality of life. Unfortunately, prophylaxis of GVHD
with small molecule immunosuppressive drugs or with pure
ex vivo T cell depletion (without in vivo T cell depletion) has
been associated with increased relapse and infections [1-5].
AntieT cell globulin (ATG) is promising as GVHD prophylaxis
that may not result in increased relapse or fatal infections in
adults undergoing bone marrow transplantation (BMT) or
peripheral blood stem cell transplantation (PBSCT). This is
less clear in the setting of pediatric BMT or PBSCT and adult
and pediatric cord blood transplantation (CBT). Thus, here
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we review the use of ATG first in the setting of adult BMT/
PBSCT and then in the setting of pediatric BMT/PBSCT and
CBT. We also review the impact of ATG and ATG pharmaco-
kinetics (PK) on immune reconstitution and its possible as-
sociation with susceptibility to infections and relapse.

The name antieT cell globulin is imprecise because ATG
contains antibodies expressed not only onTcells but also other
cells, and it does not contain total serum globulin but only IgG.
A precise name would be AntieT cell and other cell IgG.
ATG FORMULATIONS
As shown in Table 1, ATG is manufactured by immunizing

animals with human thymocytes (ATGAM [Pfizer, New York,
NY] and Thymoglobulin [Sanofi, Paris, France]) or Jurkat T
lymphoblastoid cells (ATG-F [Neovii Biotech, Waltham, MA])
and subsequently extracting IgG from the sera of the
immunized animals. Rabbits are used for the production of
Thymoglobulin and ATG-F, whereas horses are used for the
production of ATGAM. The rabbit products cause more pro-
found and longer lymphocytopenia than the horse product,
despite the horse product being given at a higher dose [6].
Interestingly, horse ATG appears to be more efficacious than
rabbit ATG when treating aplastic anemia [6], though not all
studies confirm this [7]. For prophylaxis of GVHD, rabbit ATG
is efficacious whereas horse ATG is not efficacious [8-10]. In

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:jstorek@ucalgary.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbmt.2014.11.676&domain=pdf
http://dx.doi.org/10.1016/j.bbmt.2014.11.676
http://dx.doi.org/10.1016/j.bbmt.2014.11.676
http://dx.doi.org/10.1016/j.bbmt.2014.11.676
http://www.bbmt.org


Table 1
ATG Formulations

ATGAM (Pfizer) Thymoglobulin* (Sanofi) ATG-F* (Fresenius/Neovii)

Animal immunized Horse Rabbit Rabbit
Human cells for the immunization of the animal Thymocytes Thymocytes Jurkat cells (T lymphoblastoid cell line)
Lymphodepletion in vivo � þ þ
* The immunized rabbits are pathogen free, the thymocytes (obtained from pediatric donors undergoing cardiac surgery in case of Thymoglobulin) are

screened for known viruses, and the IgG from the immunized rabbits is pasteurized, ensuring safety. The rabbit IgG is exposed to human erythrocytes that adsorb
antibodies against antigens on their surface. In case of ATG-F, the rabbit IgG is also adsorbed on human placental cells.
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the randomized study of horse ATG prophylaxis in patients
with aplastic anemia, the incidence of cGVHD was even
higher in the horse ATG arm compared with the no ATG arm,
though this was not statistically significant [8]. Thus, only
rabbit ATG is reviewed further.

Thymoglobulin contains antibodies against multiple anti-
gens, including CD1a, CD2, CD3/T cell receptor, CD4, CD5, CD6,
CD7, CD8, CD11a/CD18 (LFA1), CD11b, CD16, CD19, CD20,
CD25, CD28, CD29, CD30, CD32, CD38, CD40, CD44, CD45,
CD49, CD50 (ICAM3), CD54 (ICAM1), CD56, CD58, CD61, CD81,
CD82, CD95, CD98, CD99, CD102 (ICAM2), CD126, CD138,
CD147, CD152 (CTLA4), CD184 (CXCR4),CD195 (CCR5), CD197
(CCR7), HLA class I, beta-2-microglobulin, and HLA class II
[11,12]. Antigens targeted by ATG-F have not been studied as
extensively as for Thymoglobulin; however, it is likely that the
number of antigens targeted by ATG-Fmay be lower than that
of Thymoglobulin (eg, CD4 and HLA-DR antibodies are lacking
in ATG-F [12]). This may be because (1) Jurkat cells are rela-
tively homogeneous whereas thymocytes are heterogenic
(include T cell precursors, T cells, dendritic cells, B cells,
plasma cells, macrophages, and stromal/epithelial cells), and
(2) because during the production of ATG-F (but not Thymo-
blobulin), the rabbit IgG is adsorbed on human placental cells.
Compared with Thymoglobulin, a higher concentration of
ATG-F is needed to achieve the same degree of complement
mediated lysis [13-15]. Perhaps this is the reasonwhy a higher
dose of ATG-F appears to be needed to achieve a similar de-
gree of GVHD reduction. ATG-F for GVHD prophylaxis has
been administered in recent studies at a dose of 15 to 60 mg/
kg, whereas Thymoglobulin is administered at 2.5 to 10 mg/
kg. The European Blood and Marrow Transplant Group rec-
ommends, based on consensus opinion, 30 mg/kg ATG-F or
7.5 mg/kg Thymoglobulin, divided into 3 doses administered
on days -3, -2, and -1 (for 8/8 HLA allele-matched unrelated
donor transplantation) [16]. Further work is needed to
establish the optimal dosing. See the Pharmacokinetics sec-
tion (below) for our opinion on the dosing.
PROPHYLAXIS VERSUS THERAPY OF GVHD WITH ATG
Prophylactic ATG is typically administered during condi-

tioning. Because of its relatively long half-life (3 days to
6 weeks), ATG can persist in the HCT recipient for weeks to
months, suppressing or killing T cells infused with the graft.
This is thought to be the primary mechanism of reduced
incidence of GVHD as reviewed below.

In contrast to the efficacy of ATG for GVHD prophylaxis,
treatment of established GVHD with ATG has produced
disappointing results [17,18]. However, this has been studied
only for steroid refractory GVHD.

In the upcoming paragraphs, we will first review ATG use
for GVHD prophylaxis (ATG in conditioning) and later
ATG use for preemptive therapy (post-transplantation
administration of ATG to patients at high risk of developing
GVHD per early post-transplantation biomarkers).
GVHD Reduction by ATG in Conditioning for Adult BMT/
PBSCT

The impact of ATG on GVHD has been studied in 5 ran-
domized studies,multiple nonrandomized studies, and several
studies comparing the GVHD incidence betweenpatientswith
high versus low ATG serum levels (who were treated with a
uniformdoseofATG) (Table 2). In all of the randomized studies
andmostof thenonrandomized studies, aGVHDand/orcGVHD
incidence was reduced. Overall, the impact of ATG appears to
be greater on cGVHD than aGVHD (Table 2). This is expected to
lead to improved quality of life. This has been so far docu-
mented in 2 randomized studies and 1 nonrandomized study
[19-21]. The anti-GVHD effect of ATGmay be less pronounced
in the setting of BMT compared with PBSCT [22].

The mechanism (how ATG reduces GVHD) is probably
multifactorial, as ATG is polyclonal. ATG includes IgG speci-
ficities against antigens expressed on T cells, B cells, natural
killer cells, granulocytes, monocyte/macrophages, dendritic
cells, endothelial cells and nonhematolymphatic cells, all of
which have been implicated in the pathogenesis of GVHD.
Leading hypotheses are that ATG kills alloreactive T cells by
inducing their apoptosis or complement lysis, interferes with
alloreactive T cell traffic (eg, exit from blood to epithelial tis-
sues) or function (eg, activation due to disruption of T cell
antigen-presenting cell synapse, proliferation, cytokine pro-
duction, cytotoxicity), or stimulates development of regula-
tory T cells [23-26]. Interestingly, a low ATG concentration
may stimulate, whereas a high ATG concentrationmay inhibit,
a mixed lymphocyte reaction [27]. Another hypothesis for the
anti-GVHD effect is that ATG kills dendritic cells (that present
alloantigens) via apoptosis or complement lysis [15,28,29],
interferes with their maturation, or stimulates development
of tolerogenic dendritic cells [30]. Among all immune cells,
ATG has the highest affinity for naïve T cells [31], which are
enriched for alloreactive T cells [32]. As ATG administration
results in severe naïve T lymphocytopenia (Figure 1) [33-35],
we hypothesize that many naïve T cells infused with the graft,
including alloreactive T cells, are killed by ATG.
Relapse and ATG in Conditioning for Adult BMT/PBSCT
The impact of ATG on relapse appears to depend on the

intensity of conditioning. In 19 of 19 studies onmyeloablative
conditioning transplantations or combined myeloablative
and reduced-intensity conditioning (RIC) transplantations,
including the 5 randomized studies, ATG prophylaxis was not
associated with increased relapse. In contrast, in 4 of 6
studies on exclusively RIC transplantations, ATG prophylaxis
was associated with increased relapse (Table 2). Use of ATG
with very low intensity conditioning (eg, 2 Gy total body
irradiation only) has not been reported.

The reason why ATG does not increase relapse (after mye-
loablative HCT) is not known. At least 2 hypotheses exist: (1)
ATG selectively interferes with GVHD but not graft-versus-
leukemia, and (2) ATG has a direct antileukemic effect,



Table 2
Impact of ATG on GVHD and Relapse after Adult BMT/PBSCT*

Dose (mg/kg) Controls Acute
GVHD

Chronic
GVHDy

Relapse Survival Conditioning
Intensityz

Comment

Randomized studies:
Bacigalupo

[20] [64]
7.5-15 T No ATG Yx Y 4 4 MA [ quality of life

among �4 year
survivors

Finke [49] [94] 60 F No ATG Yk Y 4 4 MA cGVHD > aGVHD
Wang [46] 10 T 6 T Y Y?{ 4 4 MA Haplo-identical

donors
Bonifazi [60] 30 F No ATG 4 Y 4 4 MA HLA matched sibs
Walker [21] 4.5 T No ATG Y Y 4 4 MA [ quality of life

Nonrandomized studies:
Zander [41] �40 F No ATG Y Y 4 4 MA
Shattenberg

[42]
8-16 T No ATG Y 4 4 4 MA

Remberger [47] 6-10 T 4 T Y 4 4 4 MA
Basara [95] 5-15 T, 45-60 F No ATG 4 Y 4 4 MA
Russell [63] 4.5 T No ATG 4 Y [?# [ MA
Mohty [96] Varied No ATG 4 Y 4 4 MA
Milano [52] 4.5-6 T No ATG Y Y Not

given
4 MA

Soifer [61] Varied No ATG 4 Y [ Y RIC
Yu [19] 16 F No ATG Y Y 4 4 MA [ quality of life
Baron [97] Varied No ATG 4 Y [ 4 RIC
Bonifazi [98] 15-30 F No ATG 4 Y 4 4 MA
Crocchiolo [43] 5 T 2.5 T Y Y 4 4 RIC
Remberger [44] 8 T 6 T 4 4 [ 4 RIC
Wolschke [45] Median 30 F No ATG Y Y 4 4 MA, RIC
Dulery [99] Median 5 T No ATG Y Y?** 4 4 MA, RIC
Baron [100] Varied No ATG 4 Y 4 4 RIC
Devillier [62] Median 7.5 T Median 5 T 4 4 [ Y RIC HLA-matched sibs

Studies of ATG levels:
Remberger [101] 4-8 mg/kg T MA, RIC

Day 0 level >70 mg/L Day 0 level �70 mg/L Y 4 4 Not
given

Podgorny [50] 4.5 mg/kg T MA
Day 7 level >w1 mg/L Day 7 level �w1 mg/L Y Y 4 4

Day 28 level >w0.04 mg/L Day 28 level �w0.04 mg/L Y Y 4 4

Chawla [102] 4.5 mg/kg T MA
Day 0 level >w8 mg/L Day 0 level �w8 mg/L 4 Y 4 4

Day 7 level >w1.3 mg/L Day 7 level �w1.3 mg/L Y Y 4 4

Day 28 level >w0.1 mg/L Day 28 level �w0.1 mg/L Y Y 4 4

T indicates Thymoglobulin; F, ATG-F; MA, myeloablative; RIC, reduced intensity conditioning.
* Table contains only studies in which the difference in the incidence of GVHD or relapse was unequivocally attributed to ATG (and not due to confounding

factors).
y In studies in which the incidence of both any cGVHD and extensive cGVHDwere compared between the ATG-treated and no (or low dose) ATG-treated, only

the results of the comparison of extensive cGVHD is indicated here.
z Conditioning intensity is categorized as MA, RIC, or nonmyeloablative (NMA) according to Bacigalupo et al. [103]. The category listed here is that pertaining

to the majority of patients in the study.
x aGVHD reduced with 15 but not 7.5 mg/kg.
k cGVHD > aGVHD denotes greater reduction of cGVHD than aGVHD. In the randomized study of Finke/Socie et al. [49,94], aGVHD grade 2 to 4 was reduced

1.5-fold, aGVHD grade 3 to 4 was reduced 2.1-fold, and extensive cGVHD was reduced 3.7-fold.
{ Difference between patients receiving 10 versus 6 mg ATG was significant only for any cGVHD, not for moderate to severe cGVHD.
# P value for difference in relapse incidence was .05.
** P value for difference in extensive cGHVD incidence was .057.
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because it contains antibodies against antigens commonly
expressed by both thymocytes/Jurkat cells and leukemic cells.
We favor the latter hypothesis because, although there are no
experimental data supporting the former hypothesis, ATG has
been shown to induce apoptosis and complement lysis of
leukemic cell lines and primary leukemic cells (acute leukemia
blasts, chronic lymphocytic leukemia cells) in vitro [36-40].

Infections and ATG in Conditioning for Adult BMT/PBSCT
Total infections

Studies evaluating the impact of ATG on infections are
listed in Table 3. In most of them, the authors compared the
percent of patients who died of an infection among ATG
versus no/low-doseeATG treated patients. In 6 of 8 such
studies, no difference was found, suggesting that ATG does
not lead to increased infectious mortality [41-46]. However,
in the study of Bacigalupo, higher mortality because of in-
fections (primarily bacterial) was found when using 15 mg/
kg but not 7.5 mg/kg Thymoglobulin (compared with no
ATG) [20], suggesting that ATG can lead to infectious mor-
tality if used at a high dose. Consistent with that, Remberger
found a trend toward increased infectious mortality with
10 mg/kg compared with 4 to 8 mg/kg Thymoglobulin [47].
This is also consistent with Hamadani’s study evaluating the
percentage of patients with �1 infection (fatal and nonfatal)
among those treated with 7.5 mg/kg versus 6.0 mg/kg Thy-
moglobulindthe percentage was significantly higher in the
7.5 mg/kg group [48]. Apart from the study of Hamadani,
there are 2 studies evaluating whether ATG leads to
increased infections in general (fatal and nonfatal) (Finke



Figure 1. Median immune cell subset counts in recipients of blood stem cells conditioned with ATG (black diamonds) versus without ATG (gray squares). The time
points displayed are 1, 3, 6 and 12 months after transplantation. Error bars indicate the 25th to 75th percentiles. Stars indicate a significant difference (P < .05)
between ATG-conditioned and noneATG-conditioned patients. Normal values are shown as horizontal dashed lines (10th and 90th percentiles). Days after trans-
plantation are shown on all x-axes. On all y-axes, values are cells per microliter blood. Mem/Eff indicates memory/effector. From Bosch et al. [33], with permission.
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et al. [49], and Podgorny et al. [50]/Hoegh-Petersen et al.
[51]). The strength of these 2 studies is that they evaluated
the impact of ATG on not only the percentage of patients
with�1 infection, but also on the infection rate (density over
a time period), which is more sensitive and more clinically
relevant. In Finke’s study, no difference in either the per-
centage of patients with �1 infection or the infection rate
was found between ATG versus noneATG-treated patients.
This was true for any infection (due to anymicroorganism) as
well as viral, bacterial, and fungal infections. Similarly, in
Podgorny/Hoegh-Petersen’s study, no difference between
patients with high versus low ATG levels on day 7 was found
in any, bacterial, and fungal infections when using both the
percentage of patients with �1 infection method and the
infection rate method. However, a small but statistically
significant difference was found in viral infections when



Table 3
Impact of ATG on Infections after Adult BMT/PBSCT

Dose (mg/kg) Controls What Was Compared ATG Impact on
Infections

Comment

Randomized studies:
Bacigalupo [20] 7.5-15 T No ATG % Patients with

a fatal infection
4 (7.5), [ (15)

Finke [49] [94] 60 F No ATG % Patients with �1
any, viral, bacterial,
or fungal infection

4 any, 4 viral,
4 bacterial, 4 fungal

Trend toward [ %
patients with PTLD

Wang [46] 10 T 6 T % Patients with a
fatal any infection,
or a fatal viral
infection

4 any, [ viral [ % patients
with PTLD

Nonrandomized studies:
Zander [41] �40 F No ATG % Patients with a

fatal infection
4

Shattenberg [42] 8-16 T No ATG % Patients with a
fatal infection

4

Remberger [47] 10 T 4-8 T % Patients with a
fatal infection

[? (P ¼ .09) Trend toward [ %
patients with �1
HSV, VZV and
CMV disease

Hamadani [48] 7.5 T 6 T % Patients with �1
any, viral or bacterial
infection, % patients
with �1 CMV reactivation
(>4,000 copies/mL)

[ any,
[? viral, [ bacterial,
[ CMV reactivation

Soifer [61] Varied No ATG % Patients with PTLD [

Yu [19] 16 F No ATG % Patients with �1
opportunistic infection

[

Crocchiolo [43] 5 T 2.5 T % Patients with a
fatal infection

4

Remberger [44] 8 T 6 T % Patients with a
fatal infection

4

Wolschke [45] median 30 F No ATG % Patients with a
fatal infection

4 Trend toward [ %
patients with PTLD

Studies of ATG levels:
Podgorny [50] and

Hoegh-Petersen
[51],*

Day 7 level >w1.4 mg/L Day 7 level �w1.4 mg/L 1. % Patients with �1
any, viral,
bacterial or fungal
infection;

1. 4 any, 4 viral,
4 bacterial, 4 fungal

2. Rates of any, viral,
bacterial or fungal
infection;

2. 4 any, [ viral,
4 bacterial, 4 fungal

3. % Patients with PTLD 3. [ PTLD

Day 28 level >w0.08 mg/L Day 28 level �w0.08 mg/L 1. 4 any, 4 viral,
4 bacterial, 4 fungal
2. 4 any, 4 viral,
4 bacterial, 4 fungal
3. [ PTLD

Chawla [102],* Day 0 level >w8 mg/L
Day 7 level >w1.9 mg/L
Day 28 level >w0.1 mg/L

Day 0 level �w8 mg/L
Day 7 level �w1.9 mg/L
Day 28 level �w0.1 mg/L

% Patients with CMV
reactivation (>25,000
IU/mL plasma),
% Patients with PTLD

4 CMV, 4 PTLD
4 CMV, [ PTLD
4 CMV, [ PTLD

* All patients received 4.5 mg/kg Thymoglobulin.
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using the rate method but not when using the percentage of
patients with �1 infection method.

Viral infections
Consistent with the increase in viral infection rate in

Hoegh-Petersen’s study [51], there was a trend toward
increased percentage of patients with �1 herpes simplex
virus, varicella zoster virus, or cytomegalovirus (CMV)
infection among patients treated with 10 versus 4 to 8 mg/kg
Thymoglobulin in Remberger’s study [47], an increased
percentage of patients who died because of a viral infection
among those treated with 10 versus 6 mg/kg Thymoglobulin
inWang’s study (despite death due to any infection not being
different) [46], and an increased percentage of patients with
lower respiratory tract viral infection (that did not increase
transplantation-related mortality) in patients treated with
4.5 to 6.0 mg/kg versus no Thymoglobulin in Milano’s study
[52]. The cumulative incidence of Epstein-Barr virus (EBV)e
induced post-transplantation lymphoproliferative disorder
(PTLD) has been conspicuously increased with ATG in some
studies (Table 3). Fortunately, fatal PTLD is rare when using
rituximab or EBV-specific T cells prophylactically, preemp-
tively (when EBV DNAemia has exceeded a threshold), or
promptly (with early signs of PTLD) [53,54].

Collectively, at low doses (<8 mg/kg), ATG appears not to
increase total infections or fatal infections. Viral infections,
particularly PTLD, appear to be increased. With higher ATG
doses, mortality due to infections may be substantially
increased.

The mechanism (why low-dose ATG has no impact on the
incidence of infections other than viral infections/PTLD) is
not known. We offer the following 3 hypothetical



Figure 2. Engraftment kinetics in patients randomized to treatment with
ATG-F (60 mg/kg) versus no ATG (control). ANC indicates absolute neutrophil
count. From Finke et al. [49], with permission. Figure 3. Survival and survival free of immunosuppressive therapy (IST) in

patients randomized to ATG-F in conditioning versus no ATG. Overall survival
(A) was not significantly different between the 2 groups (P ¼ .39). For survival
free of IST (B), significance of difference was not given but was probably high
as the hazard ratio for receiving IST was .31 (P < .0001). From Socie et al. [94],
with permission.
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explanations: (1) GVHD (or its treatment) is a major risk
factor for infections, so with lower incidence of GVHD due to
ATG, fewer GVHD-associated infections are expected; (2)
ATG kills primarily naïve T cells, whereas memory/effector T
cells, enriched for T cells against common pathogens, are
relatively spared [31,33-35]; and (3) ATG improves the
reconstitution of natural killer cells, B cells, and CD8 T cells
(Figure 1) [33].

Engraftment and ATG in Conditioning for Adult BMT/
PBSCT

Transient neutropenia and thrombocytopenia have been
reported after administering ATG to recipients of solid organ
grafts [55-59]. For HCT recipients, data on whether ATG de-
lays engraftment or increases the likelihood of graft failure
has been inconsistent. In the randomized studies of ATG-F
versus no ATG [49,60], median time to neutrophil engraft-
ment was delayed by 3 to 7 days and median time to platelet
engraftment was delayed by 7 to 14 days, and there was a
trend toward increased incidence of platelet (but not
neutrophil) nonengraftment (Figure 2). In the published ar-
ticles on the randomized studies of Thymoglobulin [20,46],
there was no impact on the median time to neutrophil
engraftment or the incidence of neutrophil nonengraftment.
However, delayed platelet engraftment was noted in the
Bacigalupo study (significant with the dose of 15 but not
7.5 mg/kg) [20] and a trend toward increased incidence of
platelet nonengraftment by day 100 was noted in the Wang
study [46]. In the nonrandomized studies listed in Table 2,
ATG was reported to have no effect on the speed of
engraftment or the incidence of nonengraftment in all but 2
studies. The 2 exceptions arrived at different conclusions:
Soiffer’s study found decreased day 60 platelet engraftment
from 92% in the non-ATG group to 88% in the Thymoglobulin
group [61], whereas Zander’s study found faster engraftment
of leukocytes (neutrophils not reported) in the ATG-F group
[41]. Our (Albertan) unpublished data on 295 adult BMT/
PBSCT recipients who received Thymoglobulin 4.5 mg/kg
with conditioning and in whom we correlated day 7 ATG
levels [50] with time to neutrophil engraftment suggest no
negative impact of Thymoglobulin on neutrophil engraft-
ment. On the contrary, we observed a trend toward earlier
neutrophil engraftment with higher Thymoglobulin levels
(Spearman rank correlation coefficient r ¼ -.10, P ¼ .10).
Collectively, in spite of some controversy, based on the ran-
domized studies, it is likely that ATG-F has a negative effect
on both neutrophil and platelet engraftment and Thymo-
globulin on platelet engraftment.
Survival and ATG in Conditioning for Adult BMT/PBSCT
No impact of ATG on overall survival has been demon-

strated in the 5 randomized studies and all but 3 of the
nonrandomized studies listed in Table 2. The 3 exception
studies arrived at different conclusions: In Soiffer’s and
Devillier’s studies, which used RIC, the survival after ATG
versus no or lower dose ATG was decreased, which was
attributed to increased incidence of relapse [61,62]. In Rus-
sell’s study, which used myeloablative conditioning, survival
was increased, which was attributed to decreased incidence
of nonrelapse death [63]. Whereas ATG appears not to
improve overall survival, it appears to improve survival free
of immunosuppressive therapy for cGVHD (Figure 3) and, by
extrapolation, survival with good quality of life.
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The reason overall survival may not be improved (despite
the reduction of GVHD without significantly impacting
relapse or fatal infections) is not known. As ATG appears to
reduce primarily cGVHD and deaths due to cGVHD and/or its
treatment can occur many years after transplantation,
perhaps improved survival will have become apparent with
longer follow-up. In all but 2 of the studies listed in Table 2,
the median follow-up was <5 years or not given. The 2
studies with >5-year median follow-up were the Russell
study, which showed a marginal improvement of survival
with 4.5 mg/kg Thymoglobulin versus no ATG [63] and the
Bacigalupo study, which showed no difference in survival
[20,64]. In the latter study, there was a trend toward
improved survival among ATG versus noneATG-treated pa-
tients who survived 1 year after transplantation (P ¼ .09)
[64], consistent with the notion that survival benefit might
become apparent only after many years of follow-up, as
cGvHD is associated with late mortality.

Anomalies of ATG-conditioned Adult BMT/PBSCT
What the transplantation community has learned since

the 1970s using patients conditioned without ATG may not
always apply to ATG-conditioned patients. One example is
the apparently high incidence of PTLD with ATG (Table 3).
Here, we provide additional 2 examples of differences be-
tween transplantations with versus without ATG: (1) impact
of donor CMV serostatus on survival of CMV-seropositive
recipients and (2) risk factors for cGVHD.

D-Rþ (donor CMV seronegative and recipient CMV sero-
positive) patients had similar survival compared with DþRþ
patients in multiple studies in which most or all patients
were conditioned without ATG [65]. Among patients condi-
tioned with ATG, D-Rþ patients in our study had lower
survival compared to DþRþ patients (42% versus 56% at
w2 years), due to difference in nonrelapse mortality [66].
This is consistent with 3 other studies on ATG-conditioned
patients [67-69]. The reason for the discrepancy between
non-ATG and ATG-conditioned patients is not known.
Perhaps the T cellereplete grafts from seronegative donors
contain enough naïve CMV-specific T cells that, in the
absence of ATG, can differentiate after transplantation into
memory/effector cells and protect the recipient against CMV
complications, whereas in the presence of ATG, the naïve
CMV-specific T cells from the graft are killed or inhibited
from differentiating into thememory/effector cells. Also, ATG
could kill or inhibit recipient CMV-specific T cells surviving
the conditioning chemo/radiotherapy, which in the absence
of ATG, prevent CMV complications [70]. These 2 hypotheses
are consistent with the fact that after ATG conditioning, D-
Rþ patients have fewer CMV-specific T cells and more CMV
reactivations and CMV diseases than DþRþ patients [66].

Recognized risk factors for cGVHD after T cellereplete
transplantation include HLA-mismatched or unrelated
donor, older patient, older donor, female donor for male
recipient, and blood stem cell graft [71]. In an Australian and
Albertan study of 356 ATG-conditioned BMT/PBCST re-
cipients, none of the above risk factors applied [72]. Instead,
surprisingly, younger patient and absence of total body
irradiation in conditioning were identified as risk factors for
developing cGVHD.

We hypothesize that the lack of knowledge of the
“anomalies” of ATG-conditioned transplantations may have
contributed to why survival with ATG was not superior to
survival without ATG in most studies listed in Tables 2 and 3,
which showed decreased GVHD and no impact on relapse or
fatal infections. Perhaps, survival of ATG-conditioned pa-
tients would surpass that of non-ATG patients if, for example,
only CMV-seropositive donors were chosen for seropositive
patients. Moreover, most patients used in the studies listed in
Tables 2 and 3 underwent transplantation before the era of
routine EBV DNAemia monitoring and preemptive or prompt
therapy of PTLD; thus, a higher incidence of fatal PTLD
among ATG versus noneATG-conditioned patients may have
also contributed to the “no survival difference” finding in
most of the studies.

PREEMPTIVE THERAPY OF GVHD AFTER ADULT BMT/
PBSCT

Given that low-dose ATG does not worsen survival after
myeloablative BMT/PBSCT and improves quality of life by
reducing GVHD, it is our bias that ATG prophylaxis (ATG
givenwith conditioning) should be routinely used with adult
myeloablative BMT/PBSCT. However, in our (Albertan)
experience, approximately 40% adult PBSCT recipients still
develop clinically significant GVHD despite prophylaxis with
4.5 mg/kg Thymoglobulin. Increasing the dose of ATG should
further lower the incidence of GVHD [46,47] but may be
associated with an unacceptable increase in fatal infections.
Even more prolonged infusion-related side effects of higher
dose ATG (eg, more fever or rigors), despite being typically
easily manageable, may be unwelcome by patients. Thus, a
higher dose of ATG or an extra dose (on top of the 4.5 mg/kg)
might be justified only for patients at high risk of developing
significant GVHD. Given that pretransplantation risk factors,
such as HLA-mismatched or unrelated donor, patient age,
donor age, or female donor for male recipient, discriminate
poorly or not at all between patients at high versus low risk
of developing GVHD after low-dose ATG prophylaxis [73],
early post-transplantation biomarkers may be needed to
guide the preemptive therapy. Bacigalupo et al. pioneered
the use of early post-transplantation biomarkers, specifically
serum cholinesterase, gamma glutamyl transferase, urea, and
total protein. Based on these biomarkers on day 7, patients at
high risk of GVHD were randomized to receive 2 or 3 extra
doses of ATG, 1.25 mg/kg each, between day 7 and 11. This
resulted in 2- to 3-fold decrease in the incidence of both
grade 3 and 4 aGVHD and extensive cGVHD [74]. As expected
from the studies of ATG prophylaxis, relapse or fatal in-
fections were not increased, and survival was virtually
identical. Thus, despite quality of life not reported in Baci-
galupo’s study, it is likely that preemptive ATG on top of low-
dose prophylactic ATG further improves quality of life (due to
reduction of cGVHD) and should theoretically be recom-
mended, although it does not improve survival.

However, in practice, preemptive ATG cannot be presently
recommended to be used at multiple centers because bio-
markers that are valid for stratifying patients into high
versus low risk of GVHD at 1 center may not be valid at
another center. We evaluated the performance of biomarkers
used in the Bacigalupo’s study [74] using Albertan patients
and failed to validate the biomarkers (Table 4). It is not clear
whether the difference between Bacigalupo’s and our results
is due to different treatment/supportive care practices or
different patient ethnicities. In summary, preemptive use of
ATG is promising, but centers wishing to apply it should first
identify which 1 or few of currently existing biomarker
candidates stratify their patients into high versus low risk of
GVHD. Ferrara, Paczesny, Levine, and others work on
discovering new biomarkers with high positive and negative
predictive values for development of clinically significant



Table 4
Lack of Validation of Genoa Biomarkers for Prediction of GVHD in Alberta

Biomarker
(on Day 7)

Genoa*

Association with
Transplantation-Related
Mortality (Surrogate for
Acute and/or Chronic GVHD)
is Shown as Arrowz and
Univariate P value is Given
in Parentheses.

Albertay

Associations with
Acute GVHD/Chronic
GVHD are Shown as
Arrowz and Univariate
P Values are Given in
Parentheses

GGT [ (.004) 4 (.17)/4 (.45)
Cholinesterase [ (.0007) 4 (.59)/[ (.04)
Total protein Y (.0003) Not done
Albumin Y (.008) 4 (.21)/[ (.01)
Blood urea

nitrogen
[ (<.0001) 4 (.86)/4 (.55)

GGT indicates Gamma glutamyl transferase.
* Based on Sormani et al. [104] and Bacigalupo et al. [74]. Transplantation-

related mortality was used as surrogate for GVHD, as per the authors the
transplantation-related mortality was mostly due to GVHD.

y Based on Pratt et al. [105] and unpublished data of Pratt and Storek (May
2014). Acute GVHD refers to grade 2 to 4 acute GVHD; chronic GVHD refers
to chronic GVHD treated with systemic immunosuppressive therapy.

z [ indicates that higher serum level of biomarker is associated with a
higher likelihood of GVHD, Y indicates that lower serum level of biomarker
is associated with a higher likelihood of GVHD, and 4 indicates no signif-
icant association of biomarker with GVHD.
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GVHD, but so far only in the setting of no ATG [75,76]. This
work, if conducted also on ATG-conditioned patients, might
lead to discovering 1 or a few universally applicable bio-
markers (valid in any center). This would, hopefully, lead to
universal applicability of preemptive therapy with ATG.
IMPACT OF ATG IN CONDITIONING ON GVHD, RELAPSE,
INFECTIONS, AND SURVIVAL IN PEDIATRIC BMT/PBSCT

Whatever has been learned about ATG in adults cannot be
assumed to apply to children. The main reason is that the
incidence of GVHD (without ATG) is lower in children
compared with adults. In adults, the small increase in viral
infections due to ATG is far outweighed by the significant
reduction of GVHD; however, the risk to benefit ratio may
not be as favorable in children. Furthermore, dosing of ATG is
less clear in pediatric patients than it is in adult patients.
Most of the studies that have analyzed the dosing were
combined studies, including adults and pediatrics [44,47]. A
small pediatric study by Call et al. suggested that 10 mg/kg
Thymoglobulin is a safe dose [77]. Another pediatric study
compared 7.5 to 10 mg/kg with 15 to 40 mg/kg Thymoglo-
bulin [78]. There was no added benefit of the high dose
(aGVHD incidence was<10% and cGVHD incidence was 0% in
both the low- and the high-dose groups); however, the high
dose resulted in substantially increased incidence of PTLD
[78]. Consistent with that, we (Boelens et al.) recently
showed in a study including bone marrow and cord blood
donors that higher post-transplantation ATG exposures are
not associated with lower incidence of GVHD but are asso-
ciated with worse T cell reconstitution, and the worse T cell
reconstitution is associated with higher nonrelapse mortal-
ity, presumably due to infections [79]. Also consistent with
that, a recent randomized trial comparing 30 mg ATG-F
versus 15 mg ATG-F showed that nonrelapse mortality was
lower in the 15 mg/kg group, which resulted in higher
leukemia-free survival [80]. Neither GVHD nor relapse inci-
dence were different between the 2 doses. Collectively, high-
dose ATG (>10 mg/kg Thymoglobulin or � 30 mg/kg ATG-F)
has an unfavorable risk to benefit ratio in children. Studies
are needed to determine the risk to benefit ratios of various
low doses.

IMPACT OF ATG IN CONDITIONING ON GVHD, RELAPSE,
INFECTIONS AND SURVIVAL IN ADULT AND PEDIATRIC
CBT

GVHD incidence is lower after CBT than it is after BMT/
PBSCT, so the benefit of ATG may be lower in the setting of
CBT. Infections occur more frequently after CBT than after
BMT/PBSCT (in part because cord blood graft contains fewer
T cells and virtually no memory/effector T cells), so the risk of
ATG may be higher in the setting of CBT. Even though cord
blood T cells are mostly naive, in the absence of ATG, the
naïve T cells can differentiate early after CBT into memory/
effector cells and, thus, protect the recipient against viral
infections and relapse [81,82]. With ATG, the naïve T cells
may be eliminated or made unable to differentiate into the
memory/effector cells, which appears to lead to frequent
viral reactivations/diseases [83,84] and relapse [85]. Thus,
the risk to benefit ratio of ATG after CBT is expected to be less
favorable than it is after BMT/PBSCT. However, this has not
been evaluated in a prospective study. In the largest retro-
spective study, survival was lower with ATG (w10 mg/kg
between day -5 and 0) than without ATG (61% versus 71%),
however, this was not statistically significant [83]. In the
second largest retrospective study, survival was significantly
lower with ATG (median 5 mg/kg between approximately
day -6 and -5) than without ATG (38% versus 57%; P ¼ .02)
[86].

PHARMACOKINETICS AND TIMING OF PROPHYLACTIC
ATG IN RELATION TO GRAFT INFUSION

The PK of ATG are likely influenced by its binding to a
diversity of target antigens and Fc receptors. This is likely to
cause variability and nonlinearity in both distribution and
elimination of ATG. Furthermore, a minority of patients may
have pre-existing neutralizing anti-ATG antibodies or
develop these antibodies after transplantation, which may
cancel the anti-GVHD effect [87].

Only a few studies have described the PK of ATG, using
noncompartmental analysis or applying linear 1- or 2-
compartment models [77,78,88-90]. Levels of total ATG (to-
tal rabbit IgG) or active ATG (rabbit IgG capable of binding to
human lymphocytes or a T cell line) were measured. The
half-life after HCT is longer for the total than the active ATG
[87]. The active ATG appears more associated with pharma-
codynamic (PD) effects; however, this has not been studied
rigorously. In all studies, substantial interpatient variability
was observed (Figure 4). Estimates of the half-life of ATG
have varied from 2 days to 6 weeks. In 1 study, nonlinear PK
were observed as a more than proportional increase of
maximal concentration and half-life with increasing dose
[78]. The high variability is possibly related to the size and
age of the patient (baby, child, or adult) or to HCT-related
factors, such as timing of ATG administration and cell
counts present in the recipient before conditioning or in the
infused graft. The relative and absolute size of the leukocyte
subpopulations vary with age [91] and are influenced by the
treatment of the disease before HCT. We (Boelens et al.) have
embarked on a study of ATG PK and PD in a large pediatric
cohort (n > 250, combined CBT and BMT/PBSCT). So far we
have found that PK is influenced by patient weight and
lymphocyte count before conditioning [92]. Regarding PD,
higher post-transplantation exposure (area under the time-
concentration curve) was associated with poorer T cell



Figure 4. Pharmacokinetics of ATG. Thymoglobulin (approximately 10 mg/kg)
was infused between transplantation day -5 (here denoted as day 0, ie, the day
of the first Thymoglobulin infusion) and transplantation day 0 (here denoted
as day 5 after the first Thymoglobulin infusion; transplantation day 0 is
indicated by the arrow). Thereafter, serum levels of active ATG (rabbit IgG
capable of binding to a human T cell line [HUT] [87]) were measured in 121
patients undergoing transplantation within the pediatric blood and marrow
transplant program in Utrecht (66% cord blood, 29% bone marrow, 5% pe-
ripheral blood stem cells). Regarding the Thymoglobulin dose, 94% patients
received between 9 and 11 mg/kg, 4% <9 mg/kg and 2% >11 mg/kg. The dotted
line denotes the assumed lowest pharmacodynamically relevant serum level
of Thymoglobulin. AU indicates arbitrary units.
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reconstitution [79], which was associated with lower overall
survival due to higher incidence of relapse and higher non-
relapse mortality, presumably from infections. Further and
more detailed analyses are currently being performed using
both the above pediatric cohort as well as an adult cohort
(n > 250) to get better and more detailed information on the
association between ATG exposure before or after HCT and T
cell reconstitution and HCT outcomes (eg, GVHD, relapse,
infections).

The timing of ATG administration is also important. Late
ATG administration (close to day 0) likely kills/inhibits donor
T cells (infused with the graft) to a greater degree than early
administration (eg, before day -5), whereas killing/inhibiting
host T cells, host antigen presenting cells, and leukemic cells
may be similar. Thus, compared with the early administra-
tion, the late administration is expected to result in less
GVHD [93] and more viral infections [83,84]. It is also theo-
retically conceivable that the late administration is more
likely to delay engraftment, whereas the early administration
might facilitate engraftment.

It is impossible to make a firm recommendation on the
dose and timing of ATG, as insufficient data are available, and
transplantation settings may vary, especially the type of
GVHDprophylaxis used in addition to ATG. For pediatric dose,
see discussion in the section “Impact of ATG in Conditioning
on GVHD, Relapse, Infections, and Survival in Pediatric BMT/
PBSCT” (above). For adult BMT/PBSCT dose, we are of the
opinion that the European Blood and Marrow Transplant
Group consensus-recommended dose (7.5 mg/kg Thymoglo-
bulin or30mg/kgATG-F, divided into3doses administeredon
days -3, -2, and -1, in combination with methotrexate and a
calcineurin inhibitor) [16] is adequate for HLA-matched and
mismatched unrelated donor transplantation, though a lower
dose (as for matched siblings, see next sentence) could be
considered for matched unrelated donor transplantation. In
the HLA-matched sibling donor setting, 4.5 to 6.0 mg/kg
Thymoglobulin or 16 mg/kg ATG-F (dose associated with
improved quality of lifewithout affecting survival [19])might
suffice, particularly if the last infusion is givenonday -1 or day
0 (before graft infusion). Based on our (Storek’s and Mohty’s)
experience, for matched sibling transplantation, we would
recommend the 4.5 to 6.0 mg/kg Thymoglobulin dose, with
the last infusion on day -1 (for 5 to 6 mg/kg total dose) or day
0 (for 4.5 mg/kg total dose).

FUTURE PERSPECTIVES
Adequate immune reconstitution is important as all lim-

itations of HCT (relapse, infections, GVHD) are associated
with either immune deficiency or immune dysregulation.
Given the high PK variability, an individualized ATG dosing,
resulting in a predictable immune reconstitution and pre-
dictable likelihood of GVHD, infections, and relapse, may
further improve the outcomes of HCT. Future detailed im-
mune reconstitution studies, including multiple immune cell
subsets not only in blood but also in tissues, and other bio-
markers of infections/GVHD/relapse in association with ATG
PK may provide improved insight into the biology of the
desired effect (graft-versus-leukemia) and the complications
(GVHD, infections) of HCT.

CONCLUSION
In the setting of adult myeloablative PBSCT, ATG pro-

phylaxis definitely reduces GVHD, primarily cGVHD; thus,
ATG probably improves quality of life. This may not be
associated with increased relapse or fatal infections. ATG
may not improve survival. Hopefully, the impact of ATG on
quality of life, relapse, infections, and survival will be defi-
nitely resolved in 2 randomized trials that have so far been
reported only in an abstract form [21,60] and in an ongoing
trial by Soiffer et al. comparing ATG-F to no ATG (Clinical-
Trials.gov identifier NCT01295710). It remains to be deter-
mined whether survival will be improved after we have
learned more about the anomalies of ATG-conditioned HCT
(eg, high mortality of CMV-seropositive recipients of grafts
from CMV-seronegative donors, or high incidence of PTLD)
and adjusting our donor selection and supportive care
accordingly. It also remains to be determined whether the
survival or quality of life will be improved after we have
found biomarkers predicting GVHD with high sensitivity and
specificity and implemented preemptive therapy accord-
ingly. Regarding CBT and pediatric BMT/PBSCT, the benefit
(reduction of GVHD) may not be as pronounced as after adult
PBSCT and the risks (particularly viral diseases after CBT)
may be higher. More studies are needed to determine
whether the risk to benefit ratio warrants use of ATG in the
setting of CBT and pediatric BMT/PBSCT. PK and PD studies
will hopefully provide more insight into variables influ-
encing the ATG exposure before and after HCT and their ef-
fects. This may lead to optimized dosing and timing of ATG
administration.
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