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Teaser Loco-regional cancer drug therapies have been advanced to increase drug
concentrations in tumors while minimizing systemic toxicity. We review benefits and

limitations of current approaches and discuss a rapidly reversible hydrophobization
of drugs for solid tumor treatment.
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Insufficient drug uptake by solid tumors remains the major problem for

systemic chemotherapy. Many studies have demonstrated anticancer drug

effects to be dose-dependent, although dose-escalation studies have

resulted in limited survival benefit with increased systemic toxicities. One

solution to this has been the idea of loco-regional drug treatments, which

offer dramatically higher drug concentrations in tumor tissues while

minimizing systemic toxicity. Although loco-regional delivery has been

most prominent in cancers of the liver, soft tissues and serosal peritoneal

malignancies, survival benefits are very far from desirable. This review

discusses the evolution of loco-regional treatments, the present

approaches and offers rapidly reversible hydrophobization of drugs as the

new future direction.

Background
During the past century many great ideas and methodologies have molded the present approach

to cancer treatment, which saves lives and prolongs survival. At the same time, in spite of all the

achievements, the outcome of cancer treatments, especially that of solid tumors, remains

unsatisfactory. The aim of this review is to highlight the evolution of loco-regional treatment

of solid tumors, and outline the latest and potential future methodologies. It has to be noted from

the beginning that, although this review enumerates related events in medical history in

seemingly time-ordered fashion, in reality, ideas, innovations and methodologies in oncology

are often intertwined, and some apparent successions have been used only for a narrative purpose

– there are several reviews highlighting a chronological history of oncology [1–7].

More than 30 years ago, the multimodality approach was introduced for the treatment of solid

tumors, and it is still successfully used today. The basis of this approach is to remove tumor tissues

surgically, and further employ other techniques to kill any remaining tumor cells physically (i.e.

electrocoagulation, radiofrequency, microwave, high intensive focused ultrasound, laser and

cryosurgery) [8–12]. Chemotherapy has become an irreplaceable tool to eliminate tumor tissues
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that are not visible or that could not be ablated by the above

techniques. This approach, termed adjuvant therapy, is a standard

methodology in cancer treatment [8–12].

It has long been known that the antitumor effect of chemother-

apeutics is dose-dependent. Several strategies have been investi-

gated to increase chemotherapeutic concentrations during

treatment, including dose escalation and treatment intensifica-

tion. Early studies on dose escalations have shown positive

responses [13,14]; however, later investigations have concluded

that benefits appeared marginal whereas toxicity increased

[15–18]. Recent reports concluded that the dose-escalation regi-

men does not significantly extend overall survival in advanced

cancer, as compared to standard dose [19], whereas associated

hematologic and nonhematologic toxicities increased [20].

Because systemic anticancer chemotherapy targets all replicat-

ing cells, including those of normal tissues, limitations of all

chemotherapy, and especially of the dose-escalating strategy,

are obvious and have been known for a long time [20–24]. One

apparent solution to the problem is to localize a high concentra-

tion of drug(s) to the region of the tumor. Such an approach, later

termed loco-regional treatment, was pioneered and advanced in

the 1950s by Klopp and co-workers using intra-arterial drug ad-

ministration to tumor-affected regions [25–31]. Intra-arterial drug

delivery has developed into an important therapy for a variety of

solid tumors [32–40]. However, despite all the advances, the long-

term outcomes of patients receiving intra-arterial therapy (drug

alone, chemoembolization or drug-eluting beads) remain unsatis-

factory [41]. One obstacle remains: systemic toxicity, because the

drug inevitably enters the circulation following delivery.

An alternative logical approach in loco-regional chemotherapy

was reported by Ryan and colleagues in 1957 (in a dog model) [42].

The new approach enabled the delivery of a much higher dose of a

drug to tumors without systemic toxicity at all, using an oxygenated

extracorporeal circuit connected to a heart–lung machine [42]. This

technique was successfully implemented in the clinic within a year

[43]. Significant tumor reduction was observed after extracorporeal

perfusion of the extremities (i.e. melanoma and rhabdomyosarco-

ma), pelvis (i.e. sarcoma) and lung (i.e. epidermoid carcinoma) [43].

By 1962, 350 patients with different types of cancers had been

treated, with positive responses seen in 50% [44]. By avoiding

systemic and minimizing local toxicities this methodology has

enabled drug levels in tumor tissues up to ten-times higher than

with systemic treatments [45]. Extracorporeal circuits or isolated

drug perfusion protocols have since been implemented by other

groups for a variety of cancers of different localizations [46–48], and

all have reported positive outcomes to a certain degree.

However, overall survival benefits with either direct arterial

delivery or isolated drug perfusion protocols have appeared to

be modest or negligible when they are viewed in the scale of

achieved drug concentrations [46–52]. This lack of correlation

between the local dose achieved and tumor response is frustrating

and somewhat puzzling. We believe that this impediment could be

better understood and approached by reviewing evolution and

effects of loco-regional treatment in cancers for which direct

application of the drug is attainable (i.e. for serosal surface malig-

nancies). The following analysis of the loco-regional approach as a

direct drug application to cancer tissue is based on an example of

serosal peritoneal malignancies.
1856 www.drugdiscoverytoday.com
There are four major serosal cavities in the human body: the

peritoneal, the pericardial and the two pleural cavities, which are

lined by mesothelium over basal membrane [53]. Although the

mesothelium has been known for a long time, for a review see [54],

the significance of mesothelial cells in cancer was recognized only

recently [55]. The peritoneal cavity is of specific interest for the

current analysis because: (i) it is the dominant serosal cavity in

respect to cancer; (ii) its entire surface is amendable for loco-

regional treatment; and (iii) anatomical peculiarities allow extend-

ed manipulations on surface malignancies and visual control.

Among other cancer types, peritoneal carcinomatosis and partic-

ularly ovarian cancer is analyzed in this review as the most studied

peritoneal cancer. It has become evident that most recent achieve-

ments in the treatment of ovarian cancer are applicable to other

peritoneal surface malignancies.

Ovarian cancer is a highly lethal disease, with only a minority of

treated patients showing good survival rates [56,57], and remains

the fourth-or-fifth most common cause of cancer death among

women and the main lethality from gynecologic malignancies

[56–59]. Although early-stage ovarian carcinoma allows curative

surgery, unfortunately patients are usually diagnosed when the

disease has already spread beyond the ovaries. The asymptomatic

beginning of the disease [60] and the early peritoneal dissemina-

tion of cancerous cells [61,62] reflect the transcoelomic origin of

ovarian surface epithelial malignancy [63,64]. Even with progres-

sion, peritoneal dissemination often results in indistinct and

nonalerting mass effect symptoms [65].

The specifics of the circulation of the intraperitoneal fluid and

the peristalsis predetermine the pattern of peritoneal dissemina-

tion [66]. After this stage of the disease is established, known as a

peritoneal disseminated ovarian cancer, pathoanatomical condi-

tions usually do not allow an en bloc resection of the tumor [67,68].

Whole-abdominal radiation therapy for the disseminated tumors

was considered noneffective and severe toxicity was reported [69].

Systemic chemotherapy, as initial or adjuvant treatment, is effec-

tive only temporarily and, ultimately, most patients will die from

disease recurrence [70–74].

Early reports had shown positive responses using the dose-

escalation approach [13,14]; however, more-recent results have

concluded that it appears not to be the solution to improving

patient outcome [15,17]. Möbus et al. used a dose-intensification

approach to treat ovarian cancer with the support of marrow

recovery (by the infusion of autologous blood stem cells), but this

high-dose chemotherapy did not appear to be superior to conven-

tional-dose chemotherapy [75]. As a result some experts strongly

oppose systemic dose-escalation therapy for ovarian cancer. For

example, Ozols wrote in his Editorial: ‘The randomized trial com-

paring high-dose sequential chemotherapy with standard intrave-

nous chemotherapy by Möbus et al. in this issue of the Journal of

Clinical Oncology is the last nail in the coffin of this once important

concept’ [76]. This sobering opinion was confirmed by a recent

randomized Phase II clinical trial evaluating increasing the dose

intensity of cisplatin for the treatment of disseminated ovarian

cancer [77].

More than 35 years ago, cytoreductive or debulking surgery was

introduced [78,79], and this procedure still remains the main tool

in the treatment of disseminated peritoneal ovarian cancer

[80–82]. However, in spite of repeated debulking and second-look
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laparotomy, further combined with multi-agent chemotherapies,

the five-year survival rate is still low [83,84].

Exploiting the fact that all peritoneal tumors by default are

exposed to the peritoneal cavity, loco-regional intraperitoneal

chemotherapy was introduced for ovarian cancer [85]. Although

the exact technical term for application of chemotherapeutics

into the peritoneum to treat peritoneal cancer is ‘intracavitary

chemotherapy’, in this review we use the term ‘loca-regional

chemotherapy’, because prominent specialists and founders

of intracavitary chemotherapy used terms ‘intracavitary

chemotherapy’, ‘loca-regional treatment’ and ‘loca- regional

therapies’ interchangeably, for example see [86,87]. In its es-

sence, intracavitary chemotherapy is loca-regional, as opposed

to systemic.

It was reasoned that this approach, although limited by the

depth of penetration of the drug into the tumor (free-surface

diffusion), could facilitate very high drug doses at peritoneal

tumors while avoiding systemic toxicity [88–91]. However, treat-

ment outcomes of therapies for disseminated ovarian cancer (as

well as for others peritoneal surface malignancies) remained un-

changed until two methodologies merged: complete elimination

of all tangible peritoneal tumors (by means of dissection, electro-

coagulation and laser evaporation) followed immediately by peri-

operative intraperitoneal chemotherapy aimed to kill and remove

all remaining cancer cells. This innovative methodology and its

progress should be credited to Dr Paul H. Sugarbaker and collea-

gues; their persistent exploration and educational efforts

[49,66,92–117] have resulted in worldwide acceptance and suc-

cessful application of the technique known as ‘Sugarbaker’s pro-

tocol’ [118] for the treatment of peritoneal malignancies [119–

125]. Sugarbaker’s protocol emphasizes the importance of combi-

nation of two procedures: aggressive management of all visible

tumors, including peritoneal resection, and perioperative intra-

peritoneal hyperthermic chemotherapy, as mandatory factors to

prolong survival. Beneficially and surprisingly, an extent of peri-

toneal resection did not affect systemic drug levels [126]. Oddly

enough, each approach, taken separately, historically was not

sufficient to change overall survival significantly; and, further-

more, as a single modality each approach by itself faces obvious

theoretical limitations.

Theoretical limitation no. 1: complete elimination of all tumor
tissues by ablation
It is known that even the earliest studied stages of the ovarian

surface epithelial cancer (as well as other peritoneal surface ma-

lignancies) are associated with exfoliation or shedding of malig-

nant cells into the peritoneal cavity, leading to widespread

dissemination [127,128]. Spreading cancer cells attach to the

peritoneal surface and grow into tumor nodules [64,129]. Second-

ary tumors also spread cancer cells into the peritoneum by con-

tinued exfoliation, generating another wave of peritoneal

micrometastases, thus maintaining the vicious cycle of the dis-

ease. Therefore, we have to conclude that the total number of

undetectable single cancer cells and clusters is always much

greater than the number of visible tumors, and none of the

ablative procedures alone would be able to eliminate cancer

cells, even with the most thorough and aggressive protocols

[92,130–133].
Theoretical limitation no. 2: efficient killing of cancer cells via
loco-regional drug application, as the result of drug penetration
into the tumor based on free-surface diffusion (facilitated by
perioperative intraperitoneal chemotherapy)
It became evident during the past decades that an increased

interstitial fluid pressure in solid tumors is one of the main

obstacles in solid cancer therapy [134–144]. In normal organs,

the interstitial fluid pressure is always lower than the intravascular

pressure, facilitating molecular exchange between blood and tis-

sue compartments. In all studied solid tumors interstitial fluid

pressure is increased, forming a barrier to transcapillary transport

of drugs [135,137,140,143,144]. Increased interstitial fluid pres-

sure is also a characteristic of peritoneal malignancies [111,145–

147] and, by default, should interfere with free-surface diffusion of

drugs. Closed perfusion procedures with elevated intra-abdominal

pressure [146,148] could overcome tumor interstitial pressure by

convection-driven drug penetration [146], although accompanied

by side-effects [149,150]. Therefore, an open peritoneal drug ap-

plication as the means to kill all cancer cells in peritoneal tumors

via free-surface diffusion should face the same obstacles

[135,137,140,143,144]. The current knowledge on tumor patho-

physiology suggests that, as long as cancer tissue exists as intact

nodules (even small), high tumor interstitial fluid pressure would

interfere with drug penetration even with increased local concen-

tration. However, when Sugarbaker and co-workers combined

these two techniques they synergistically enhance each other:

the aggressive cytoreduction protocol with peritonectomy

removes all visible tumors (or breaks tumor nodal integrity)

and, hence, removes tumor high interstitial fluid pressure, facili-

tating an effective interaction of chemotherapeutics with remain-

ing single cells and cell clusters. Yet, one additional obstacle

remains – efficient drug uptake into the cancer cells.

There are numerous research publications [87,124,151–160]

and analyses [161–167] on the rationale, mechanisms, experimen-

tal techniques and clinical benefits of the combined application of

hyperthermia and chemotherapeutics, especially emphasizing the

benefit of hyperthermic intraoperative intraperitoneal chemo-

therapy (HIPEC) for surface peritoneal malignancies. In this treat-

ment model, assuming that a complete cytoreduction is achieved,

there are only two interacting components: the plasma membrane

of the cancer cells and the drug. In theory, we can take out of the

equation all active membrane transporters and apply Fick’s law of

diffusion, which states that diffusion linearly depends on concen-

tration [168]. In experiments with cell membranes it was shown

that membrane permeability increases with temperature [169].

Therefore, the question as to why does HIPEC work in patients

with complete cytoreduction [170,171] is not a reasonable one in

our opinion. We suggest that another question should be asked:

why does not Sugarbaker’s protocol provide a better outcome for

all patients? We have earlier proposed that the main obstacle

preventing local drug extraction by the tumor cells is the hydro-

philic nature of the drug formulations themselves, and suggested a

new approach for loco-regional drug treatment of cancer [172].

New approach: rapidly reversible hydrophobization of
drugs for first-pass drug extraction
The idea of increasing the hydrophobicity of a drug is not new.

Lipophilization of ionic drugs, without modification of their
www.drugdiscoverytoday.com 1857
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FIGURE 1

Conceptual schematic of the cellular delivery of a rapidly reversible

hydrophobization (RRH) prodrug, a stable prodrug and a standard drug in the
context of first-pass extraction. The RRH prodrug consists of the drug (green

cube) which is linked to a hydrophobic moiety (black tail) by highly labile

chemical linkages (pink tied or untied ribbon). The RRH prodrug provides

high levels of membrane attachment and internalization but upon a loss a
hydrophobic moiety it is expelled from the membrane to either the

cytoplasm or outside the cell. The RRH prodrug that was not extracted by cells

reverts to the less-membrane-active drug form. The hydrophobically
modified prodrug with a stable linkage (brown root) provides high levels of

membrane attachment, followed by internalization by endocytosis. The drug

itself, although available to other cells and tissues systemically, has little

cellular uptake potential.
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chemical structures, for transport through hydrophobic cell mem-

branes, was considered as an ideal approach long ago [173]. In fact,

drug hydrophobization utilizing relatively stable modifications

such as esters and amides has previously been shown to increase

drug interactions with cellular membranes and has correlated with

improved cellular uptake and lowered IC50 values [174–178].

However, concerns involving compound aggregation and embo-

lization (following drug administration), as well as the sequester-

ing of the drug in the cell membrane [179], have limited advances

in this area.

To limit the possibility of drug aggregation, or losing the

compound owing to membrane sequestration, we developed an

approach to drug hydrophobization in which the drug is linked to

a hydrophobic moiety by highly labile chemical linkages [termed

rapidly reversible hydrophobization (RRH)] [172,180,181] to form

a prodrug that is mixed with an aqueous solution before delivery.

Hydrophobization drastically enhances cell-membrane associa-

tion of the prodrug and, consequently, drug uptake, and the rapid

lability protects nontargeted tissues from exposure to the highly

active agent. Because the attachment linkages for the hydrophobic

moieties are rapidly hydrolyzed following administration, the

hydrophobic prodrug that is not extracted during a first-pass

exposure to tumor tissues rapidly reverts to the less-membrane-

permeable parent drug. This effect enables selective targeting of

tumor and organs via loco-regional treatments. Reversible hydro-

phobization also greatly expands the number of compounds that

could be effective drug candidates, by separating the delivery

function from the active portion of the molecule. This is ideologi-

cally the same concept as targeted drug conjugates and liposomal

and polymeric drug delivery systems. The conceptual basis of this

approach was previously outlined [172] and is presented in Fig. 1.

Reporter drug and prodrug
To demonstrate the idea and utility of RRH prodrugs, we looked

for a reporter system that would possess the following: (i) a

membrane-impermeable drug; (ii) a site suitable for modification

to the prodrug; and (iii) facile intracellular detection of the drug

inside cells. A suitable system that has been long understood in

biomedical research is propidium iodide (PI). PI is a well charac-

terized membrane, impermeable DNA intercalator and is routine-

ly used to detect cells with compromised membranes.

Chemically, PI possesses two amino groups at the three and eight

positions of the phenanthridinium ring system that are available

for modification. Additionally, PI exhibits a 20–30-fold enhanced

fluorescence upon intercalation into DNA, facilitating easy de-

tection of targeted cells. However, every potential drug that

possesses modification sites could be derivatized to a RRH pro-

drug. For example, melphalan, a long known DNA alkylation

chemotherapeutic, was similarly modified at the primary amine

of the amino acid [172]. Modification of the parent drug was

conducted with either an alkyl chlorosilane to form a silazane or a

derivatized maleic acid to form a maliamic acid (Fig. 2)

[172,180,181]. Both prodrug modification types are very revers-

ible, with half-lives in the order of 10–20 s (depending on pH

environment) when mixed with aqueous buffers [172]. We be-

lieve this rapid reversal to the parent drug is a crucial strategy for

effective first-pass extraction and minimization of systemic ex-

posure to the highly membrane-permeable prodrug.
1858 www.drugdiscoverytoday.com
In vitro and in vivo studies on RRH prodrugs
To deliver the highly hydrolytically unstable prodrugs, we relied

on a system for formulating a concentrated solution of the prodrug

in an organic solvent (for example DMSO) that rapidly mixed with

an aqueous buffer immediately before local administration. Rapid

and homogeneous mixing of the prodrug solution with isotonic

glucose was crucial to avoid membrane damage by the DMSO. To

achieve efficient mixing, a small passive mixing chamber with

colliding flows was constructed, and the mixed solution was

immediately applied to a target tissue. The principles of passive

mixing and the design of the mixing chamber were previously

reported [172,180,181] and details are given in the supplementary

material (Figs S1 and S2 in Supplementary material online). Using

programmed syringe pumps, the prodrug solutions (concentrated

in DMSO) were mixed and diluted at least tenfold with isotonic

glucose while it was delivered to tissues. No effect of the DMSO was

observed in any experiment when compared to Isotonic Glucose

(ITG) alone (no DMSO) controls.

Results of in vitro experiments
To determine if RRH prodrug modification led to increased cellular

uptake, RRH-PI uptake was investigated in a number of cell lines:

[B16 (murine melanoma), Hepa 1-6 (mouse hepatoma cells),

SKOV-3 (human ovarian carcinoma), OVCAR-3 (human ovarian

carcinoma), Jurkat (human T-lymphocyte), HEK 293 (human

embryonic kidney epithelial cells) and MC38 (mouse colon
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FIGURE 2

Hydrophobic modification of propidium iodide (PI) with either an alkyl chlorosilane to form a silazane or a derivatized maleic acid to form a maliamic acid. Red lines
indicate sites of reversible linkage.
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carcinoma cells)]. Both reversible modifications of PI behaved

similarly in the cellular uptake studies. In all cases, RRH-PI was

readily observed in nuclei of nearly 100% of cells within �2 min

following treatment. The cells appeared to be morphologically

normal, with no signs of damage following treatment. When RRH-

PI was hydrolyzed for 5 min before treatment, only a small portion

of cells showed PI-positive nuclei (similar to treatment with PI

alone). Treatment with RRH-PI was equally effective on suspended

cells (Jurkat). Quantitative determination by flow cytometry indi-

cated that >99% of the cells treated with RRH-PI were positive for

PI uptake compared with only about 9% for PI-treated cells when

Jurkat cells were suspended in ITG and passed through the mixing

chamber [172].

RRH prodrugs were tested for cytotoxic antiproliferative activity

in a number of proliferating cell lines. In the case of melphalan,

treatment with the parent drug resulted in �80% cell viability at

the highest drug concentration tested (1458 mM) in Hepa 1-6 and

SKOV-3. In MC38 cells, the IC50 was determined to be 1176 mM. By

contrast, an IC50 antiproliferative activity of RRH-melphalan was

achieved at dramatically lower concentrations (330, 384 and

304 mM, respectively) [172].

Targeting normal mouse tissues
Utilizing the same micro mixing chamber (Figs S1 and S2 in

Supplementary material online) and three-syringe pumps (Fig.

S3 in Supplementary material online), in vivo experiments using

loco-regional delivery were conducted and previously reported

[172,180,181]. To visualize cell targeting, tissues were snap-frozen

in O.C.T. compound, cryosectioned and stained for confocal

microscopy [actin (green, Alexa 488); cell nuclei (blue, ToPro-

3)]. Additionally, unstained frozen sections were examined by
fluorescent microscopy in a rhodamine and a fluorescein isothio-

cyanate (FITC) channel. The red PI nuclear fluorescence was strong

enough for detection of PI-labeled cells in the FITC channel and

under a long-pass FITC emission filter (505 plus), although the red

fluorescence was a bleed-through fluorescence that represented

only a small fraction of the real signal from PI intercalation. This

technique was advantageous as very fast examination, whereas the

green autofluorescence (observable in the FITC channel) was used

to outline general tissue morphology. For histopathology analysis,

formalin fixation was followed by routine processing and paraffin

embedding. Light microscopy of hematoxylin–eosin-stained par-

affin sections was performed for all experiments.

As detailed earlier, a variety of delivery techniques have been

developed to deliver drugs in a local setting to normal tissues

[172,180,181]. Using RRH prodrugs, we demonstrated that most

liver cells (i.e. hepatocytes and vascular cells) were targeted with a

single bolus injection to the portal vein (with occluded blood flow)

(Fig. S4 in Supplementary material online). A single bolus injection

of RRH-PI into the hepatic artery of normal mice (with preserved

portal blood flow) targeted all endothelial and most smooth

muscle cells of the hepatic artery, biliary plexus and gall bladder

arteries, as well as epithelial cells close to arterial trees (Figs S5 and

S6 in Supplementary material online). A single bolus injection of

RRH-PI into the common bile duct resulted in significant targeting

of all biliary epithelial cells and neighboring hepatocytes (Fig. S7 in

Supplementary material online). A single bolus injection into the

urinary bladder and ureter resulted in targeting of the all-accessible

urothelium (transitional epithelium), including that of the renal

pelvis and big distal collecting tubules (Figs S8–S10 in Supplemen-

tary material online). A single bolus injection into the right

internal carotid artery of a normal mouse resulted in strong
www.drugdiscoverytoday.com 1859
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FIGURE 3

Mouse MC38 colon carcinoma cells (104) were inoculated into liver via the ileo–colic vein of C57BL mice. Twenty-five days post-inoculation either rapidly reversible

hydrophobized (RRH)-propidium iodide (PI) (a) or unmodified (hydrolyzed) PI (b) was administrated via the hepatic artery while portal flow was preserved.

Unstained frozen sections, fluorescent microscopy, fluorescein isothiocyanate (FITC) excitation with long-pass FITC emission filter (505 plus). (a) Practically all
tumor cells are labeled after RRH-PI administration; (b) only a small number of scattered cells (probably apoptotic) are labeled in a tumor after unmodified PI

administration and none in preserved parenchyma. Note, the red PI nuclear fluorescence was strong enough for detection of PI-labeled cells in the FITC channel

using a long-pass FITC emission filter (505 plus), although the red fluorescence was a bleed-through fluorescence that represented only a small fraction of the real
signal from PI intercalation. Axioplan-2 microscope, magnification x400.
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targeting of the brain vascular cells and neurons and glial cells in

right brain hemisphere and in weak targeting in left hemisphere

(Fig. S11 in Supplementary material online). Some animals were

allowed to recover after administration of the RRH-PI, and were

sacrificed 24–30 hours later. In these cases, the RRH-PI-targeted

tissues still showed strong nuclear PI-labeling, for example in the

hepatic artery (Fig. S12 in Supplementary material online).

Topical administration of RRH-PI resulted in strong nuclear

labeling of cells to which the prodrug was directly applied. For

example, topical application of RRH-PI to the cornea, to the skin or

into the lumen of the intestine resulted in strong nuclear PI-

labeling of the cornea epithelium (Fig. S15 in Supplementary

material online), the epidermis or the enterocytes, respectively.

Targeting with RRH-BDMODS-PI and RRH-C12PMAA-PI was

equally effective for normal and malignant tissues, therefore a

particular form of RRH-PI is not always detailed.

Loca-regional cancer targeting with RRH prodrugs in
mouse tumor models
We thought that two mouse cancer models were of particular

interest for testing the RRH prodrug approach for loco-regional

drug therapy: liver tumors and disseminated ovarian cancer. Both

malignancies, as previously mentioned in this review, have been

intensively studied and approached in the clinic with loco-region-

al drug therapy. Both malignancies possess anatomical specifics

that are very appealing for loco-regional treatment. However,

survival benefits, even with the most advanced loco-regional drug

applications, remain very far from desirable [39,50,119–125,

182–188].

RRH prodrug testing in mouse models of liver
neoplasms
Loco-regional drug treatment of liver tumors via the hepatic artery

route relies on the well-established fact that liver tumors (primary
1860 www.drugdiscoverytoday.com
and secondary) are exclusively supplied by the hepatic artery,

whereas normal liver parenchyma is supplied mostly by portal

flow [40,187,189]. We therefore tested RRH prodrugs in mouse

models of liver neoplasms, to determine if the concept behind the

RRH prodrug would enable increased drug uptake in the tumor.

Four different mouse syngeneic liver tumor models were devel-

oped during the course of this work: colon carcinoma (MC38

colon carcinoma cells/C57BL), hepatocellular carcinoma

(Hepa1-6/C5BL), melanoma (B16 melanoma cells/C57BL) and

neuroblastoma (NXS2 neuroblastoma cells/A/J) [172,180,181].

Surgical aspects of hepatic artery access and infusion in mouse

models of liver neoplasms were previously reported [172,180,181]

and are also detailed in the supplementary material (Fig. S14 in

Supplementary material online: hepatic artery access and infusion

in mouse models). In general, the methods of hepatic artery access

were similar to the procedures used clinically [187].

Following hepatic artery injections, we observed an intensive

targeting of all cells in tumors by RRH prodrug (Fig. 3a), in a

dramatic contrast to only a small number of targeted cells by

hydrolyzed prodrug (Fig. 3b), which were probably apoptotic cells.

These tumor-targeting patterns were observed in all animals trea-

ted with RRH-PI or with native PI and hydrolyzed prodrug.

Another important characteristic of RRH prodrug delivery via

the hepatic artery was that, although all tumors were heavily

targeted, only a few cells in the liver parenchyma were targeted.

As expected, cells in all hepatic arteries were heavily targeted with

RRH-PI. Targeted hepatocytes and sinusoidal cells were scattered

in the vicinity of tumors and portal tracts, and by nonmorpho-

metric approximation constitute �1% of parenchymal volume.

This approximation was a result of fluorescent microscopic exam-

ination of numerous frozen liver sections from tumor-bearing

animals after the RRH prodrug delivery via the hepatic artery.

We acquired six consecutive overlapping fields, consisting

of parenchyma and a tumor, and combined them in one image
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FIGURE 4

Liver tumors were established by inoculation of MC38 cells (104, syngeneic colonic carcinoma) into the ileo–colic vein of C57Bl mice. Three weeks later, C12PMMA-

PI [0.16 mmol of rapidly reversible hydrophobized (RRH)-propidium iodide (PI) in 20 ml of DMSO mixed with 200 ml of isotonic glucose, mixing chamber] was

infused via the hepatic artery, portal flow was preserved. Unstained frozen sections were air-dried cover-slipped and examined using 488 nm illumination and

long-pass fluorescein isothiocyanate (FITC) emission filter (505 plus). Using Axioplan-2 microscope, under magnification 200� images, six consecutive overlapping
fields were collected and combined in one image. Note, extremely high targeting of all tumor cells and hepatic arteries, whereas only a few cells in the

parenchyma are targeted.
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(Fig. 4). Figure 4 shows: (i) the dramatic drop in targeting between

liver tumor and parenchyma; (ii) very strong targeting of all tumor

vasculature and liver hepatic artery that appeared in portal triads.

We hypothesize that such a dramatic drop in targeting is a result of

fast RRH-PI hydrolysis and specifics of the blood drainage from the

mouse liver tumors. In mouse tumors, blood drained from tumor

capillaries to the superficial venous network of the metastases and

further to hepatic veins [190]. In this scenario, any remaining

active RRH-PI drained from hepatic arteries to sinusoids would be
(a)

FIGURE 5

Mouse liver colonic carcinoma tumors were established as described before. Thre

(RRH)-propidium iodide (PI) in 20 ml of DMSO mixed with 200 ml of isotonic glucose, 

Frozen sections were stained with Phalloidin Alexa 488 (actin – green) and ToPro
Sections were examined under laser scanning microscope (LSM 510) confocal micr

cells, including all the hepatocellular carcinoma (HCC) and all cells of tumor microen

with PI fluorescence, resulting in the bright pink color. By contrast, there is a dim red

magnification 630�. (b) The same fluorescent staining, image taken from tumor–pa
probably around the venous network of the tumor [190]. Some bordering hepato
immediately extracted by membranes of erythrocytes, which con-

stitute the paramount membrane compound in vasculature, but

lacking nuclei.

Most animals were sacrificed 5–10 min after the restoration of

hepatic artery blood flow and reperfusion of liver tumors, which

was monitored and confirmed by surgical microscopy. Several

animals were allowed to recover following surgery and sacrificed

at 4–5 or 24 hours post-procedure. Results at the later time points

mirrored the results obtained at the early time points. Treatment
(b)

Drug Discovery Today 

e weeks later, C12PMMA-PI [0.16 mmol of rapidly reversible hydrophobized

mixing chamber] was infused via the hepatic artery, portal flow was preserved.

-3 (DNA – blue). Red channel showed fluorescence of DNA-intercalated PI.
oscopy. (a) This image represents the center of the tumor, where literally all

vironment, are strongly labeled. All DNA ToPro-3 fluorescence is co-localized

 signal, which is probably hydrolyzed PI that was retained in the tumor matrix,

renchyma interface. All tumor cells were targeted; the most targeted cells are
cytes are targeted as well, magnification 400�.

www.drugdiscoverytoday.com 1861



REVIEWS Drug Discovery Today � Volume 19, Number 12 �December 2014

(a) (b)

(c) (d)

(e) (f)
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FIGURE 6

Targeting of peritoneal organs and tissues in normal ICR mice. (a–e) Intraperitoneal application rapidly reversible hydrophobization (RRH)-propidium iodide (PI) to
normal peritoneal tissues. (a) Fallopian tube (BDMODS-PI); (b) fallopian tube (C12PMMA-PI); (c) jejunum (C12PMMA-PI); (d) uterus (C12PMMA-PI); (e) milky spot in

visceral mesentery (C12PMMA-PI); (f) application of hydrolyzed C12PMMA-PI on jejunum. Red channel – fluorescence of DNA-intercalated PI; green – actin stain

with Phalloidin Alexa 488; blue – nuclear stain with ToPro-3. Frozen sections, laser scanning microscope (LSM 510) confocal microscopy, bar = 100 mm. Note that

cells situated deeper in the tissues (beyond serosal layer) were labeled at a much lower intensity or not at all. Application of hydrolyzed RRH-PIs resulted in
extremely little if any drug uptake (f ).
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of other liver tumors (i.e. hepatocellular carcinoma, melanoma

and neuroblastoma) showed similar high levels of tumor targeting

while leaving the normal parenchyma free from drug uptake.

In parallel to fluorescent microscopy of unstained sections, we

performed a confocal microscopy of the same liver samples.

Figure 5a shows that practically all cells in the tumor (cancer cells

and cells of the tumor microenvironment) were heavily labeled

after RRH-PI delivery via the hepatic artery, providing a sufficient

delivery of RRH drug to the tumor. The sufficient delivery means

that an effective tumor perfusion was confirmed under a surgical
(a) (

(c) (

500 µm 

200 µm

200 µm 

(e) (

FIGURE 7

Pathological features of mouse model of disseminated peritoneal ovarian cancer, 5 

(a) Micro tumor growth on duodenal mesentery. (b) Defoliating cells from mesen

Tumor cell growth on mesenteric lymph node. (e) Tumor cell growth on abdomina
sections, hematoxylin and eosin (H&E) stain.
microscope. To get access to a hepatic artery (or celiac artery), a

mouse liver was kept toward a diaphragm with gauze soaked in

saline. In this position hepatic lobes occasionally were slightly

twisted, impeding the lobe vascular supply at the hepatic hilum.

However, because unmodified PI and RRH-PI solution have a

purple color, a sufficient RRH drug delivery to liver tumor was

easily monitored by a completely changed color of tumors that was

visible under a surgical microscope. Liver tumors in twisted lobes

changed color only in some areas, or did not change color at all,

and were not analyzed. Figure 5b shows that practically all cells in
b)

d)

100 µm

200 µm

200 µm

f)
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weeks after Nude-Foxn1nu mice inoculation with human SK-OV-3 cancer cells.

tery tumor. (c) Loose tumor cell growth on duodenal wall and pancreas. (d)
l surfaces of liver. (f) Tumor cell growth on diaphragm with invasion, paraffin
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(a) (b)

(c) (d)

(e) (f)
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FIGURE 8

First-pass targeting of peritoneal disseminated ovarian cancer in mouse with rapidly reversible hydrophobized (RRH)-propidium iodide (PI). (a) Targeting of multiple

cell layers in big ovarian tumor; (b) targeting of tumor tissue growing on colon wall; (c) targeting of mesenteric micrometastasis; (d) targeting of tumor cell cluster

growing on and invading large bowel; (e,f) heart and lung tissues of animal receive RRH-PI intraperitoneal perfusion. None of heart or lung tissues showed any PI-
labeling. Red channel – fluorescence of DNA-intercalated PI; green – actin stain with Phalloidin Alexa 488; blue – nuclear stain with ToPro-3. Frozen sections,

laser scanning microscope (LSM 510) confocal microscopy, bar = 100 mm. Note, the RRH-PI had targeted all of the single tumor cells, cell clusters and microtumors
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the tumor (cancer cells and cells of tumor microenvironment)

were heavily labeled after RRH-PI delivery via the hepatic artery,

including tumor cells at the tumor–parenchymal interface. In

addition, some liver cells neighboring the tumor were also labeled.

In this image the most-targeted cells are probably a part of the

venous network of the tumor [190].

RRH prodrug testing in a mouse model of peritoneal
disseminated ovarian cancer
Before experiments with the ovarian cancer mouse model, we

conducted studies to investigate RRH-PI targeting of peritoneal

organs and tissues in normal mice (ICR, female). The method of

the RRH-PI prodrug application and the results were detailed in

previous publications [180,181] presented at the McArdle Sympo-

sium on Cancer [191] (see also supplementary material online).

Briefly, the abdominal cavity was opened and the RRH-PI pro-

drug was directly applied to peritoneal organs using methods

described above (i.e. mixing chamber and syringe pumps). Alter-

natively, RRH-PI prodrug was injected intraperitoneally using

methods described above (i.e. mixing chamber and syringe

pumps). After 10 min to 1 hour the abdominal organs were har-

vested and analyzed. The application of RRH-PI resulted in strong

PI-targeting of all cells exposed to the peritoneal cavity (Fig. 6a–e).

The cells situated deeper in the tissues (i.e. beyond the serosal

layer) were labeled at a much lower intensity or not at all. Appli-

cation of hydrolyzed RRH-PIs resulted in extremely little if any

drug uptake (Fig. 6f).

Intraperitoneal perfusion with RRH-PI in a mouse
model of disseminated ovarian cancer
To test for RRH prodrug uptake in a peritoneal cancer, we estab-

lished a mouse model of disseminated ovarian cancer. Briefly,

Athymic Nude-Foxn1nu mice (female, 4–5 weeks) were injected

intraperitoneally with human ovarian adenocarcinoma cells (SK-

OV-3 cells, 2 � 106 cells in 1 ml PBS). The animals were treated

with RRH-PI after 2–3 weeks post-inoculation, or at the time of the

first manifestation of ascites (4–5 weeks post-inoculation). Follow-

ing tissue fixation (10% NBF, en bloc), microscopic examination on

the mice treated 2–3 weeks post-inoculation showed that multiple

microtumors (i.e. 1 mm and smaller) were present throughout the

peritoneal cavity, most notable on the mesentery. At 4–5 weeks

after SK-OV-3 cell inoculation the maximum tumor size increased

(5–7 mm); however the bulk of ovarian cancer mass was still

present as microtumors (0.1–1.0 mm; Fig. 7). The striking feature

of this ovarian cancer model was that at 5 weeks post-inoculation

most peritoneal surfaces were affected by growing cancer cells,

coating the visceral and parietal peritoneum (e.g. liver, pancreas

and diaphragm; Fig. 6a–f). All tumors showed defoliation of

cancerous cells. Thus, the pathological analysis indicated strong

similarities in peritoneal perpetuation and dissemination between

the SK-OV-3 mouse model and human ovarian cancer.

At 4–5 weeks after SK-OV-3 cell inoculation all of the animals

developed ascites. At this time point an intraperitoneal perfusion

with RRH-PI prodrug, followed by drug solution aspiration, was
(0.1–1.0 mm) within the peritoneal cavity, as well as larger tumors at a depth �500 m

targeted (a). The adjacent mesenteric cells and the outer layer of cells in all normal t

Nonmalignant tissues beyond the serosal layer showed very little, if any, RRH-PI uptake
conducted on tumor-bearing mice under isoflurane anesthesia

(Fig. S15 in Supplementary material online). The mice were

allowed to recover from anesthesia, monitored for 3–5 hours

and then sacrificed. Additional animals were monitored for

24 hours to insure tolerability of the procedure (i.e. no adverse

effect of treatment noted).

Microscopic examination indicated the RRH-PI had targeted all

of the single tumor cells, cell clusters and microtumors (0.1–

1.0 mm) within the peritoneal cavity. This targeting of the spread-

ing tumor cells and microtumors was total in regard to abundance

and significant in regard to intensity (Fig. 8). Larger tumors were

targeted to a depth �500 mm (i.e. 25–30 cell layers) within 5–7 min

following exposure to the prodrug (half-life of RRH-PI is �10–20 s).

Interestingly, deeper cell layers of relatively compact tumors were

also targeted (Fig. 8a). Considering fast RRH-PI hydrolysis, this

depth of cancer cell targeting in tumors could be due to mem-

brane-to-membrane transfer of the hydrophobic prodrug rather

than diffusion [192,193]. As expected, the adjacent mesenteric

cells also showed RRH-PI uptake and staining, as did the outer layer

of cells in all of the normal tissues exposed to the peritoneal cavity

(and the RRH-PI solution). However, the tumor tissues appeared to

be much more susceptible to RRH-PI uptake, showing greater

tissue penetration and more intense PI-positive staining as com-

pared with nonmalignant tissues beyond the serosal layer. Remote

tissues such as heart and lung did not show any RRH-PI targeting

(Fig. 8e,f).

Concluding remarks and some thoughts on clinical
applications of RRH drug modification
In this review we outline the evolution of the loco-regional drug

therapy for solid cancer and recent developments in this field.

Loco-regional drug therapy, as a part of adjuvant treatments, has

shown increased survival benefits for many types of cancer. We

started our investigation of RRH prodrugs for regional-local treat-

ment based upon the question of why, given the much greater

drug exposure to tumor tissue using these techniques (in some

cases 1000-times higher than with systemic treatment) [194], have

the clinical effects not been better? We hypothesize that the drugs

themselves showed poor tumor uptake even in the higher con-

centration environment. We (as others have) reason that hydro-

phobization of the drug enables greater cell uptake, and greater

first-pass extraction of the prodrug. We further surmise that, by

using a highly labile linkage, this prevents the highly membrane

active prodrug form affecting normal tissues distal to the region of

treatment. Over all, the effect would be to increase the tumor

uptake for a given dose for a short time while exposing remote

tissues to the less active parent drug, thereby effectively reducing

systemic exposure of the drug, which is often the factor limiting

drug dose.

Our experimental results have increased our belief that RRH

prodrug modification could be an effective tool in the treatment of

a multitude of cancers. Additionally, these modifications could

open a new door in drug development. Traditional therapeutics

show only a minimal degree of cellular uptake, and thereby
m (25–30 cell layers). Deeper cell layers of relatively compact tumors were also

issues exposed to the peritoneal cavity also showed very high RRH-PI uptake.

. Remote tissues such as heart and lungs did not show any RRH-PI targeting (e,f ).
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insufficient antitumor activity. However, this property helps to

decrease systemic toxicity. Utilizing a RRH prodrug approach,

drugs that show effectively little cellular uptake (and potentially

little systemic toxicity) could be converted to active therapeutics

for a short time in the tissue of interest (i.e. cancer). Our results

using PI have shown that a long-known membrane-impermeable

DNA intercalator can effectively target cells if hydrophobized and

even have a therapeutic effect in a tumor model [172,180,181].

Using this approach, we demonstrated that RRH prodrugs were

taken up by nearly all of the tumor cells in vascularized liver tumors.

Similarly, the RRH prodrugs demonstrated surface penetration into

ovarian tumors to a depth of at least 500 mm (�25–30 cell layers)

within seconds following RRH prodrug treatment. This is much

more rapid than uptake seen with conventional therapies [195]. In

other tumor types, conventional drug penetration in this range

usually takes hours to achieve [196–198]. We further demonstrated

that the effect was specific to the RRH modification because PI or

hydrolyzed RRH prodrug showed little if any cellular uptake in ether

treatment system. Although delivery to liver tumors and dissemi-

nated ovarian cancer were the only disease models in which we have

tried our approach, the results in combination with targeting of

normal tissues suggest that the potential applications could be

broad. From studied animal models it became apparent that RRH

methodology is capable of overcoming an increased interstitial fluid

pressure in solid tumors, which is one of the main obstacles in solid

cancer therapy [134–144].

Our results have shown that, when an artery was used as the

route to deliver RRH-PI (hepatic or carotid), all arterial endothelial

and smooth muscle cells showed a large amount of drug uptake. It

is logical to suggest that arterial intimal hyperplasia, the main

cause of failure in percutaneous coronary interventions and post-

transplant coronary arteriosclerosis, should be the obvious target

[199]. RRH drug technology could be used for intra-arterial lumi-

nal application to suppress proliferating neointimal cells in natu-

ral vessels, after bypass surgery, in stents or prosthetic vessels.

Because intensive cell targeting along a route of vascular delivery is

a property of RRH prodrug methodology, every vascular disease

involved in active cellular transformation would be a potential

target. If the hypothesis on the initiation of coronary atheroscle-

rosis due to intimal cell proliferation in epicardial arterial tunica

intima [200] is correct, reversal of coronary atherosclerosis before

plaque formation is theoretically possible. Similarly to cases of

angioplasty failure, the vascular target in coronary atherosclerosis

is discrete, accessible and usually is no more than a few centimeters

long. Angioplasty technology is such a rapidly evolving field that

creation a vascular catheter with a mixing chamber in its tip is just

an engineering matter, because catheters for isolated intravascular

perfusion are long-understood in cardiovascular intervention (e.g.

Schneider Europe, Bulach, Switzerland) and the technique aimed

to inhibit neointimal formation in an isolated coronary segment

with the double-balloon catheter was reported [201].

In a larger scope, every diseased organ or tissue compartment

that has accessible vasculature could be amendable for application

of local RRH drug therapy. It follows from all our observations that

delivery of RRH drug via duct to exocrine organ should target all

cells that are amendable to first-pass extraction. For example,

delivery via the pancreatic duct should target all duct and exocrine

cells but not pancreatic islets. Using devices similar to catheters for
1866 www.drugdiscoverytoday.com
isolated intravascular perfusion [198], RRH drug delivery to pros-

tate tissues via Ductus ejaculatorii is an achievable procedure.

Furthermore, our results on the targeting of all cell layers in the

stratified epithelium certainly indicate that this methodology could

be applicable for all surface malignancies, whether they appear in

the dermis, airways or gastrointestinal tract or originate from uri-

nary transitional epithelium. Again, mounting a mixing chamber

on a tip of a cystoscope should not be difficult. The irrigation of the

surface of the transitional epithelium with RRH prodrug followed by

drug removal could be a simple procedural task.

When the RRH prodrug methodology is utilized with drug deliv-

ery to the tumor via a vascular route, it enables a precise calculation

of the volume of the prodrug needed. This should significantly

reduce the total dose of drug and significantly limit systemic tox-

icity. Similarly, in the case of surface applications to internal cavities

(e.g. peritoneal cavity: bladder, ureter, kidney or pelvis) a prodrug

mixture could be removed shortly after application, thereby pre-

venting or significantly reducing systemic drug concentration.

Although the RRH prodrug must be taken into solution with a small

amount of an anhydrous solvent (e.g. DMSO), the limited amounts

utilized in these studies did not cause any side-effect. Because we did

not investigate how little DMSO was required for effective mixing, it

is possible that in treatments requiring large volumes solvent doses

could be a concern. However, the DMSO (or other nonpolar solvent)

is not necessary if the prodrug solution is not being mixed with the

blood. In cases when large surfaces need to be irrigated (e.g. perito-

neum, bladder, ureter, kidney pelvis) or tissues of exocrine glands

that drain secretion via ducts (e.g. exocrine pancreas, prostate) any

nontoxic oil could be a carrier for the RRH drug. We suggest that the

RRH prodrug behavior at an oil–cell interface would be similar to

that in our experiments, but that the RRH prodrugs stability would

be enhanced. Furthermore, RRH-drug–oil could be infused intra-

peritoneally during cystoscopy procedure. Because the RRH drug

internalization into the cellular membrane would take place only at

the oil–cell interface, free drug ingestion into the vasculature and

lymphatic system would be limited. Injected patients could be

active for some period of time, allowing natural circulation of

administrated drug solution. This is very important for all peritoneal

malignancies, because the route of peritoneal cancer dissemination

is usually the same as peritoneal fluid circulation. After a predeter-

mined time needed for treatment, the RRH prodrug in oil could be

removed by cystoscopy under ultrasound control. Of course, long-

term RRH prodrug effect on serosal membranes and normal urothe-

lium should be further investigated, because all surface cells are

targeted. However, we suggest that such adverse effects would be

inversely proportional to rate of cell proliferation in treatment area.

We suggest that RRH of drugs for first-pass drug extraction could

significantly contribute to current achievements in the field of loco-

regional cancer therapy.
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