# Some properties of a generalized Hamy symmetric function and its applications 

Kaizhong Guan ${ }^{\text {a,* }}$, Ruke Guan ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Research Institute of Mathematics, University of South China, Hengyang, Hunan 421001, China<br>${ }^{\mathrm{b}}$ School of Urban Construction, University of South China, Hengyang, Hunan 421001, China

## ARTICLE INFO

## Article history:

Received 28 January 2010
Available online 8 October 2010
Submitted by B.S. Thomson

## Keywords:

Convexity
Schur-convexity
Hamy symmetric function
Monotonicity
Inequality

## ABSTRACT

This paper is concerned with the generalized Hamy symmetric function

$$
\sum_{n}(x, r ; f)=\sum_{1 \leqslant i_{1}<i_{i}<\cdots<i_{r} \leqslant n} f\left(\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{F}}\right),
$$

where $f$ is a positive function defined in a subinterval of $(0,+\infty)$. Some properties, including Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity are investigated. As applications, several inequalities are obtained, some of which extend the known ones.
© 2010 Elsevier Inc. All rights reserved.

## 1. Introduction

Throughout this paper, let $R_{+}$denote the set of all positive real numbers and $R_{+}^{n}$ its n-product. For $\Omega \subseteq R_{+}^{n}$, let

$$
\ln \Omega=\left\{\left(\ln x_{1}, \ln x_{2}, \ldots, \ln x_{n}\right) \mid x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega\right\}
$$

and

$$
1 / \Omega=\left\{\left(1 / x_{1}, 1 / x_{2}, \ldots, 1 / x_{n}\right) \mid x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega\right\} .
$$

For a positive $n$-tuple $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R_{+}^{n}$, Hamy [12] introduced the symmetric function

$$
\begin{equation*}
F_{n}(x, r)=F_{n}\left(x_{1}, \ldots, x_{n} ; r\right)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n}\left(\prod_{j=1}^{r} x_{i_{j}}\right)^{\frac{1}{r}}, \quad r=1,2, \ldots, n . \tag{1.1}
\end{equation*}
$$

In Hamy's honor, the above function is called Hamy symmetric function. Corresponding to this function is the $r$-th order Hamy mean

$$
\begin{equation*}
\sigma_{n}(x, r)=\frac{1}{\binom{n}{r}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n}\left(\prod_{j=1}^{r} x_{i_{j}}\right)^{\frac{1}{r}}, \quad r=1,2, \ldots, n, \tag{1.2}
\end{equation*}
$$

[^0]where $\binom{n}{r}=\frac{n!}{(n-r)!r!}$. It is obvious that $\sigma_{n}(x, 1)$ is the arithmetic mean
$$
A_{n}(x)=A_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$
and $\sigma_{n}(x, n)$ is the geometric mean
$$
G_{n}(x)=G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt[n]{x_{1} x_{2} \ldots x_{n}}
$$

There are some papers on Hamy symmetric function and its mean. For example, Hara et al. [13] established the following refinement of the classical arithmetic and geometric means inequality:

$$
\begin{equation*}
G_{n}(x)=\sigma_{n}(x, n) \leqslant \sigma_{n}(x, n-1) \leqslant \cdots \leqslant \sigma_{n}(x, 2) \leqslant \sigma_{n}(x, 1)=A_{n}(x) \tag{1.3}
\end{equation*}
$$

The paper [17] by Ku et al. contains some interesting inequalities including the fact that $\left(\sigma_{n}(x, r)\right)^{r}$ is log-concave. For more details, please refer to the book [6] by Bullen. In 2006, Guan [8] investigated Schur-convexity of Hamy symmetric function $F_{n}(x, r)$ and some inequalities were also obtained by use of the theory of majorization.

Recently, Guan [9] defined a generalized Hamy symmetric function of the form

$$
\begin{equation*}
\sum_{n}(x, r ; f)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} f\left(\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}\right), \quad r=1,2, \ldots, n \tag{1.4}
\end{equation*}
$$

where $f$ is a positive function defined in a subinterval of $(0,+\infty)$. The author investigated the geometric Schur-convexity of $\sum_{n}(x, r ; f)$ when $f$ is a multiplicatively convex function, i.e., $G G$-convex function.

The main purpose of this paper is to investigate further Schur-convexity, geometric Schur-convexity, and harmonic Schurconvexity of $\sum_{n}(x, r ; f)$. As applications, some inequalities are established by use of the theory of majorization. Our results improve the known ones.

The notation of Schur-convex function was introduced by I. Schur in 1923 [24]. It has many important applications in analytic inequalities [ $4,8,10,14,19,25$ ], combinatorial optimization [15], isoperimetric problem for polytopes [27], gamma and digamma functions [20], and other related fields. For a historical development of this kind of functions and the fruitful applications to statistics, economics and other applied fields, refer to the popular book by Marshall and Olkin [19].

Definition 1.1. (See [10,19,24-26].) A real-valued function $\phi$ defined on a set $\Omega \subseteq R^{n}$ ( $n \geqslant 2$ ) is said to be a Schur-convex function on $\Omega$ if

$$
\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant \phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

for each pair of $n$-tuples $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ on $\Omega$, such that $x$ is majorized by $y$ (in symbols $x \prec y$ ), that is,

$$
\sum_{i=1}^{m} x_{[i]} \leqslant \sum_{i=1}^{m} y_{[i]}, \quad m=1,2, \ldots, n-1, \quad \text { and } \quad \sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]},
$$

where $x_{[i]}$ denotes the $i$ th largest component in $x . \phi$ is called Schur-concave if $-\phi$ is Schur-convex.
The notation of geometric convexity was introduced by Montel [22] and investigated by Anderson et al. [3], Guan [11] and Niculescu [23]. The geometric Schur-convexity was investigated by Chu et al. [7], Guan [9], and Niculescu [23]. We also note that the authors use the term "Schur-multiplicative (geometric) convexity". However, we here point out that the term "geometric Schur-convexity" is more appropriate. As a matter of fact, from [7,9,11,22,23], we have no difficulty to find that $f$ being geometric convex in convexity theory means that the function $x \mapsto \log f\left(e^{x}\right)$ is convex and that "Schurmultiplicative (geometric) convexity" of $\phi$ is equivalent to Schur-convexity of the function $x \mapsto \phi\left(e^{x}\right)$, which in turn, for positive functions, is equivalent to Schur-convexity of the function $x \mapsto \log \phi\left(e^{x}\right)$. Thus, we give an alternative definition of geometric Schur-convexity.

Definition 1.2. Let $\Omega \subseteq R_{+}^{n}(n \geqslant 2)$ be a set. A real-valued function $\phi: \Omega \rightarrow R$ is called a geometrically Schur-convex function on $\Omega$ if the function $x \mapsto \phi\left(e^{x}\right)$ is Schur-convex on $\ln \Omega . \phi$ is called geometrically Schur-concave if $-\phi$ is geometrically Schur-convex.

Recently, Xia et al. [26] introduced the notion of harmonically Schur-convex function and some interesting inequalities were obtained.

Definition 1.3. (See [26].) Let $\Omega \subseteq R_{+}^{n}(n \geqslant 2)$ be a set. A real-valued function $\phi$ defined on $\Omega$ is called a harmonically Schurconvex function if the function $x \mapsto \phi(1 / x)$ is Schur-convex on $1 / \Omega . \phi$ is called a harmonically Schur-concave function on $\Omega$ if $-\phi$ is harmonically Schur-convex.

Let $M(x, y)$ and $N(x, y)$ be any two mean functions of two positive numbers $x, y \in R_{+}$. Anderson et al. [3] introduced the definition of $M N$-convex function as follows.

Definition 1.4. (See [3].) Let $f: I \rightarrow R_{+}$be continuous, where $I$ is a subinterval of $(0, \infty)$. The function $f$ is called $M N$ convex (concave) if $f(M(x, y)) \leqslant(\geqslant) N(f(x), f(y))$, for all $x, y \in I$.

Remark 1.5. Let $A(x, y)(G(x, y), H(x, y))$ denote the arithmetic (geometric, harmonic) mean of two positive numbers $x, y$, it follows from [3] that
(1) $f$ is GG-convex $\Rightarrow$ GA-convex;
(2) $f$ is $H H$-convex $\Rightarrow H G$-convex $\Rightarrow H A$-convex. For concavity, the implications in (1) and (2) are reversed.

## 2. Lemmas

In order to establish our main results we need several lemmas, which we present in this section. The following lemma is so-called Schur's condition which is very useful for determining whether or not a given function is Schur-convex or Schur-concave.

Lemma 2.1. (See $[8,10,19]$.) Let $\Omega \subseteq R^{n}$ be symmetric and convex set with nonempty interior, and let $f: \Omega \rightarrow R$ be differentiable in the interior of $\Omega$ and continuous on $\Omega$. Then $f$ is Schur-convex on $\Omega$ if and only if $f$ is symmetric on $\Omega$ and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(\frac{\partial f}{\partial x_{1}}-\frac{\partial f}{\partial x_{2}}\right) \geqslant 0 \tag{2.1}
\end{equation*}
$$

for all $x \in \Omega^{0}$, where $\Omega^{0}$ is the interior of $\Omega$.

Schur's condition that guarantees a symmetric function being Schur-concave is the same as (2.1) except the direction of the inequality.

Remark 2.2. From Definitions 1.2 and 1.3, Lemma 2.1 implies the following conclusion (also see $[7,9,10,26]$ ).
Let $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be symmetric and have continuous partial derivatives on $I^{n}$, where $I$ is a subinterval of $(0, \infty)$. Then
(1) $f: I^{n} \rightarrow R$ is a geometrically Schur-convex function if and only if

$$
\begin{equation*}
\left(\ln x_{1}-\ln x_{2}\right)\left(x_{1} \frac{\partial f(x)}{\partial x_{1}}-x_{2} \frac{\partial f(x)}{\partial x_{2}}\right) \geqslant 0 \tag{2.2}
\end{equation*}
$$

for all $x \in I^{n}, f$ is geometrically Schur-concave if and only if (2.2) is reversed.
(2) $f: I^{n} \rightarrow R$ is a harmonically Schur-convex function if and only if

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(x_{1}^{2} \frac{\partial f(x)}{\partial x_{1}}-x_{2}^{2} \frac{\partial f(x)}{\partial x_{2}}\right) \geqslant 0 \tag{2.3}
\end{equation*}
$$

for all $x \in I^{n}, f$ is harmonically Schur-concave if and only if (2.3) is reversed.

Lemma 2.3. (See [19, p. 89].) Let $\Omega$ be a symmetric and convex subset of $R^{l}$, and let $\phi$ be a Schur-convex function defined on $\Omega$ with the property for each fixed $x_{2}, \ldots, x_{1}$, the function

$$
\phi\left(z, x_{2}, \ldots, x_{l}\right) \text { is convex in } z \text { on }\left\{z \mid\left(z, x_{2}, \ldots, x_{l}\right) \in \Omega\right\} .
$$

Then for any $n>l$,

$$
\psi\left(x_{1}, \ldots, x_{n}\right)=\sum_{\pi} \phi\left(x_{\pi(1)}, \ldots, x_{\pi(l)}\right)
$$

is Schur-convex on $\Omega^{*}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid\left(x_{\pi(1)}, \ldots, x_{\pi(l)}\right) \in \Omega\right.$ for all permutations $\left.\pi\right\}$.

Recall that Anderson et al. [3] investigated the relation between convexity and GA (HA, GG)-convexity for a function defined in $(0, b), 0<b<\infty$. We can establish a more general lemma in a similar way as follows.

Lemma 2.4. Let $I \subseteq R_{+}$be an interval and $f: I \rightarrow R_{+}$be continuous in $I$. Then
(1) $f$ is GA-convex (concave) in I if and only if $f\left(e^{x}\right)$ is convex (concave) in $\ln I=\{\ln x \mid x \in I\}$;
(2) $f$ is HA-convex (concave) in I if and only if $f(1 / x)$ is convex (concave) in $1 / I=\left\{\left.\frac{1}{x} \right\rvert\, x \in I\right\}$;
(3) $f$ is GG-convex (concave) in I if and only if $\ln f\left(e^{x}\right)$ is convex (concave) in $\ln I=\{\ln x \mid x \in I\}$.

Proof. We only consider the case $I=(a, b)(0<a<b<\infty)$, since the case where $I$ is another interval is similar if we define $\ln 0=-\infty, \ln (+\infty)=+\infty, 1 / 0=+\infty$ and $1 / \infty=0$.
(1) Let $g(x)=f\left(e^{x}\right)$, and let $x, y \in \ln I=(\ln a, \ln b)$, so $e^{x}, e^{y} \in(a, b)$. Then $f$ is $G A$-convex (concave) in $(a, b)$ if and only if

$$
f\left(\sqrt{e^{x} e^{y}}\right) \leqslant(\geqslant) \frac{f\left(e^{x}\right)+f\left(e^{y}\right)}{2} \Leftrightarrow g\left(\frac{x+y}{2}\right) \leqslant(\geqslant) \frac{g(x)+g(y)}{2}
$$

hence the result.
(2) Let $g(x)=f(1 / x)$, and let $x, y \in 1 / I=(1 / b, 1 / a)$, so $1 / x, 1 / y \in(a, b)$. Then $f$ is HA-convex (concave) in ( $a, b$ ) if and only if

$$
f\left(\frac{2}{x+y}\right) \leqslant(\geqslant) \frac{f(1 / x)+f(1 / y)}{2} \Leftrightarrow g\left(\frac{x+y}{2}\right) \leqslant(\geqslant) \frac{g(x)+g(y)}{2}
$$

hence the result.
(3) Let $g(x)=\ln f\left(e^{x}\right)$, and let $x, y \in \ln I=(\ln a, \ln b)$, so $e^{x}, e^{y} \in(a, b)$. Then $f$ is $G G$-convex (concave) in ( $a, b$ ) if and only if

$$
\begin{aligned}
f\left(\sqrt{e^{x} e^{y}}\right) \leqslant(\geqslant) \sqrt{f\left(e^{x}\right) f\left(e^{y}\right)} & \Leftrightarrow \ln f\left(e^{\frac{x+y}{2}}\right) \leqslant(\geqslant) \frac{\ln f\left(e^{x}\right)+\ln f\left(e^{y}\right)}{2} \\
& \Leftrightarrow g\left(\frac{x+y}{2}\right) \leqslant(\geqslant) \frac{g(x)+g(y)}{2}
\end{aligned}
$$

hence the result.

The next result is an immediate consequence of Lemma 2.4.

Corollary 2.5. Let I be a subinterval of $(0, \infty)$ and $f: I \rightarrow R_{+}$have continuous derivatives in $I$. Then
(1) $f$ is GA-convex (concave) if and only if $x f^{\prime}(x)$ is increasing (decreasing);
(2) $f$ is HA-convex (concave) if and only if $x^{2} f^{\prime}(x)$ is increasing (decreasing);
(3) $f$ is GG-convex (concave) if and only if $x f^{\prime}(x) / f(x)$ is increasing (decreasing).

Lemma 2.6. (See $[10,26]$.) Assume that $x_{i}>0, i=1,2, \ldots, n, \sum_{i=1}^{n} x_{i}=s$, and $c \geqslant s$. Then

$$
\frac{c-x}{\frac{n c}{s}-1}=\left(\frac{c-x_{1}}{\frac{n c}{s}-1}, \frac{c-x_{1}}{\frac{n c}{s}-1}, \ldots, \frac{c-x_{n}}{\frac{n c}{s}-1}\right) \prec\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x
$$

## 3. Main results

In this section, we mainly investigate Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity of $\sum_{n}(x, r ; f)$. Some relevant results in the literature are generalized and improved.

Theorem 3.1. Let I be a subinterval of $(0,+\infty)$ and $f: I \rightarrow R_{+}$be a continuous function. Then
(1) $\sum_{n}(x, r ; f)$ is Schur-convex in $I^{n}$ if $f$ is decreasing and AA-convex (usual convex) in I;
(2) $\sum_{n}(x, r ; f)$ is Schur-concave in $I^{n}$ if $f$ is increasing and $A A$-concave in I.

Proof. (1) Let $\phi\left(x_{1}, \ldots, x_{r}\right)=f\left(\sqrt[r]{x_{1} x_{2} \ldots x_{r}}\right),\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in I^{r}$. From Lemma 2.1 (or Chapter 3, F. 1 in [19, p. 83]), it follows that the function $\sqrt[r]{x_{1} x_{2} \ldots x_{r}}$ is Schur-concave in $I^{r}$, and so $\phi=f\left(\sqrt[r]{x_{1} x_{2} \ldots x_{r}}\right)$ is Schur-convex for $f$ decreasing. Since $f$ is convex in $I$, one can easily see that for each fixed $x_{2}, \ldots, x_{r}$, the function $\phi$ is convex in $z$ on $\left\{z \mid\left(z, x_{2}, \ldots, x_{r}\right) \in I^{r}\right\}$. It follows from Lemma 2.3 that the function

$$
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\pi} \phi\left(x_{\pi(1)}, \ldots, x_{\pi(r)}\right)
$$

is Schur-convex in $I^{n}$. Then the function $\sum_{n}(x, r ; f)$ is Schur-convex in $I^{n}$ since $\sum_{n}(x, r ; f)=\frac{1}{r!} \psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
(2) If $f$ is increasing and $A A$-concave in $I$, then $-f$ is decreasing and $A A$-convex. By the part (1), the function $-\sum_{n}(x, r ; f)$ is Schur-convex and so $\sum_{n}(x, r ; f)$ is Schur-concave. The proof is completed.

Corollary 3.2. Assume that $x_{i}>0, i=1,2, \ldots, n, \alpha \in R$, and set

$$
F_{n}^{r}(x, \alpha)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n}\left(\prod_{j=1}^{r} x_{i_{j}}\right)^{\frac{\alpha}{r}}, \quad r=1,2, \ldots, n .
$$

We have
(1) if $0<\alpha \leqslant 1$, then $F_{n}^{r}(x, \alpha)$ is Schur-concave in $R_{+}^{n}$;
(2) if $\alpha<0$, then $F_{n}^{r}(x, \alpha)$ is Schur-convex in $R_{+}^{n}$.

Proof. Let $f(x)=x^{\alpha}, x \in(0,+\infty)$, one can easily verify that $f(x)$ is increasing and $A A$-concave for $0<\alpha \leqslant 1$, and that $f(x)$ is decreasing and $A A$-convex for $\alpha<0$. By Theorem 3.1, we can conclude that the results hold and so the proof is completed.

Theorem 3.3. Let $f: I \rightarrow R_{+}$be a continuous function, where $I$ is a subinterval of $(0, \infty)$. Then
(1) $\sum_{n}(x, r ; f)$ is geometrically Schur-convex in $I^{n}$ if $f$ is GA-convex in $I$;
(2) $\sum_{n}(x, r ; f)$ is geometrically Schur-concave in $I^{n}$ if $f$ is GA-concave in $I$.

Proof. (1) By Definition 1.2, we only need to prove that

$$
\sum_{n}\left(e^{x}, r ; f\right)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} f\left(e^{\frac{x_{i_{1}}+\cdots+x_{i r}}{r}}\right)
$$

is Schur-convex on $\ln \left(I^{n}\right)=(\ln I)^{n}$. One can easily see that the function $\phi\left(x_{1}, \ldots, x_{r}\right)=f\left(e^{\frac{x_{1}+\cdots+x_{r}}{r}}\right)$ is Schur-convex. For each fixed $x_{2}, \ldots, x_{r}$, from Lemma 2.4 it follows that the function $\phi\left(z, x_{2}, \ldots, x_{r}\right)$ is convex in $z$ on $\left\{z \mid\left(z, x_{2}, \ldots, x_{r}\right) \in \ln \left(I^{r}\right)\right\}$. It follows from Lemma 2.3 that the function

$$
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\pi} \phi\left(x_{\pi(1)}, \ldots, x_{\pi(r)}\right)
$$

is Schur-convex in $\ln \left(I^{n}\right)$. This shows that the function $\sum_{n}\left(e^{x}, r ; f\right)$ is Schur-convex in $\ln \left(I^{n}\right)$ since $\sum_{n}\left(e^{x}, r ; f\right)=$ $\frac{1}{r!} \psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
(2) If $f$ is $G A$-concave in $I$, then $-f$ is GA-convex. By the part (1), the function $-\sum_{n}(x, r ; f)$ is geometric Schur-convex and so $\sum_{n}(x, r ; f)$ is geometric Schur-concave. The proof is completed.

Remark 3.4. When $f$ is monotonic and GG-convex, Guan [9] proved that $\sum_{n}(x, r ; f)$ is geometrically Schur-convex in $I^{n}$. By Remark 1.5, one can easily see that Theorem 3.3 generalizes Theorem 2.3 in [9].

Theorem 3.5. Let $f: I \rightarrow R_{+}$be a continuous function, where I is a subinterval of $(0,+\infty)$. Then
(1) $\sum_{n}(x, r ; f)$ is harmonically Schur-convex in $I^{n}$ if $f$ is increasing and HA-convex in $I$;
(2) $\sum_{n}(x, r ; f)$ is harmonically Schur-concave in $I^{n}$ if $f$ is decreasing and HA-concave in I.

Proof. (1) By Definition 1.3, we need to prove that the function $\sum_{n}(1 / x, r ; f)$ is Schur-convex in $1 / I^{n}=(1 / I)^{n}$. Note that

$$
\sum_{n}(1 / x, r ; f)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} f\left(\prod_{j=1}^{r}\left(\frac{1}{x_{i_{j}}}\right)^{1 / r}\right) .
$$

Put

$$
\varphi\left(x_{1}, \ldots, x_{r}\right)=f\left(\frac{1}{\sqrt[r]{x_{1} \ldots x_{r}}}\right)
$$

Using Lemma 2.1, one can find that $\frac{1}{\sqrt[r]{x_{1} \ldots x_{r}}}$ is Schur-convex in $1 / I^{r}=(1 / I)^{r}$, which implies that the function $\varphi\left(x_{1}, \ldots, x_{r}\right)$ is Schur-convex if $f$ is increasing. Form Lemma 2.4, for fixed $x_{2}, \ldots, x_{r}$, the function $\varphi\left(z, x_{1}, \ldots, x_{r}\right)$ is convex in $z$. It follows from Lemma 2.3 that the function

$$
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\pi} \varphi\left(x_{\pi(1)}, \ldots, x_{\pi(r)}\right)
$$

is Schur-convex in $1 / I^{n}$. This implies that the function $\sum_{n}(1 / x, r ; f)$ is Schur-convex in $1 / I^{n}$ since $\sum_{n}(1 / x, r ; f)=$ $\frac{1}{r!} \psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
(2) If $f$ is decreasing and $H A$-concave in $I$, then $-f$ is increasing and $H A$-convex. By the part (1), the function $-\sum_{n}(x, r ; f)$ is harmonic Schur-convex and so $\sum_{n}(x, r ; f)$ is harmonic Schur-concave. The proof is completed.

Remark 3.6. From Remark 1.5, one can easily find that the conclusion of Theorem 3.5(1) holds if $f$ is increasing and GAconvex. The result in Theorem 3.5(2) is true if $f$ is decreasing and GA-concave.

Using Corollary 2.5, one can easily verify that $f(x)=x$ is increasing and $A A$-concave, $G A$-convex, and increasing and HA-convex in $R_{+}$. Using Theorems 3.1, 3.3 and 3.5, respectively, we can establish the following corollary.

Corollary 3.7. Hamy symmetric function $F_{n}(x, r), r \in\{1,2, \ldots, n\}$, is Schur-concave, geometrically Schur-convex, and harmonically Schur-convex in $R_{+}^{n}$.

Theorem 3.8. Assume that $f: I \rightarrow R_{+}$be a real-valued function, where I is a subinterval of $(0, \infty)$, set

$$
\sigma_{n}^{r}(x ; f)=\frac{1}{\binom{n}{r}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} f\left(\prod_{j=1}^{r} x_{i_{j}}^{1 / r}\right), \quad r=1,2, \ldots, n,
$$

the following statements hold.
(1) If $f$ is GA-convex, then

$$
\begin{equation*}
\sigma_{n}^{n}(x ; f) \leqslant \sigma_{n}^{n-1}(x ; f) \leqslant \cdots \leqslant \sigma_{n}^{2}(x ; f) \leqslant \sigma_{n}^{1}(x ; f) \tag{3.1}
\end{equation*}
$$

(2) If $f$ is GA-concave, then the inequality (3.1) is reversed, that is,

$$
\begin{equation*}
\sigma_{n}^{n}(x ; f) \geqslant \sigma_{n}^{n-1}(x ; f) \geqslant \cdots \geqslant \sigma_{n}^{2}(x ; f) \geqslant \sigma_{n}^{1}(x ; f) \tag{3.2}
\end{equation*}
$$

Proof. As the proofs are similar, here we give the proof of (1). Using the same method as in original Hamy's proof for Hamy symmetric function [6], we only need to prove that

$$
\begin{equation*}
\sigma_{n}^{k+1}(x ; f) \leqslant \sigma_{n}^{k}(x ; f), \quad k=1,2, \ldots, n-1 \tag{3.3}
\end{equation*}
$$

Since $f$ is GA-convex, then we have

$$
\begin{aligned}
& \sum_{1 \leqslant i_{1}<\cdots<i_{k+1} \leqslant n} f\left(\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{k+1}}\right)^{\frac{1}{k+1}}\right) \\
= & \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k+1} \leqslant n} f\left(\left(\left(x_{i_{2}} \ldots x_{i_{k+1}}\right)^{\frac{1}{k}}\left(x_{i_{1}} x_{i_{3}} \ldots x_{i_{k+1}}\right)^{\frac{1}{k}} \ldots\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}\right)^{\frac{1}{k}}\right)^{\frac{1}{k+1}}\right) \\
\leqslant & \sum_{1 \leqslant i_{1}<\cdots<i_{k+1} \leqslant n} \frac{1}{k+1}\left\{f\left(\left(x_{i_{2}} \ldots x_{i_{k+1}}\right)^{\frac{1}{k}}\right)+f\left(\left(x_{i_{1}} x_{i_{3}} \ldots x_{i_{k+1}}\right)^{\frac{1}{k}}\right)+\cdots+f\left(\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}\right)^{\frac{1}{k}}\right)\right\} \\
= & \frac{n-k}{k+1} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} f\left(\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}\right)^{\frac{1}{k}}\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\sigma_{n}^{k+1}(x ; f) & =\frac{1}{\left(\begin{array}{c}
n \\
k+1
\end{array}\right.} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k+1} \leqslant n} f\left(\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{k+1}}\right)^{\frac{1}{k+1}}\right) \\
& \leqslant \frac{1}{\binom{n}{k+1}} \frac{n-k}{k+1} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} f\left(\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}\right)^{\frac{1}{k}}\right) \\
& =\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} f\left(\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}\right)^{\frac{1}{k}}\right) \\
& =\sigma_{n}^{k}(x ; f) .
\end{aligned}
$$

This shows that (3.3) holds and so the proof is completed.

Remark 3.9. When $f$ is GG-convex, Guan [9] also obtained the inequality (3.1). However, Remark 1.5 implies that Theorem 3.8 generalizes Theorem 2.1 in [9]. And moreover, by the definition of GA-convex, we can deduce the following so-called Jensen type inequality for $G A$-convex function

$$
\begin{equation*}
f\left(\sqrt[n]{x_{1} x_{2} \ldots x_{n}}\right) \leqslant \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n} \tag{3.4}
\end{equation*}
$$

It is clear that the inequality (3.1) is a refinement of the inequality (3.4).
Since $f(x)=x$ is $G A$-convex in $(0,+\infty)$. The following conclusion immediately follows from Theorem 3.8.
Corollary 3.10. (See [8,13].) If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R_{+}^{n}$, then

$$
G_{n}(x)=\sigma_{n}(x, n) \leqslant \sigma_{n}(x, n-1) \leqslant \cdots \leqslant \sigma_{n}(x, 2) \leqslant \sigma_{n}(x, 1)=A_{n}(x) .
$$

## 4. Some applications

In this section, taking particular function $f$ in Theorems 3.1, 3.3, 3.5 and 3.8 , we establish some interesting inequalities. Some relevant results in the literature are recovered and generalized.

Theorem 4.1. If $0<x_{i}<1, i=1, \ldots, n$, and $k \in\{1,2, \ldots, n\}$, then the sequence

$$
\frac{k}{\binom{n-1}{k-1}} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \frac{\sum_{j=1}^{k} x_{i_{j}}}{k-\sum_{j=1}^{k} x_{i_{j}}}
$$

is non-increasing in $k=1,2, \ldots, n$.
Proof. Let $f(t)=\frac{\ln t}{1-\ln t}, t \in(1, e)$. Differentiating it yields

$$
f^{\prime}(t)=\frac{1}{t(1-\ln t)^{2}} \quad \text { and } \quad\left(t f^{\prime}(t)\right)^{\prime}=\frac{2}{t(1-\ln t)^{3}}
$$

This implies that $f(t)$ is GA-convex in $(1, e)$. Using Theorem 3.8 and noting that

$$
\sigma_{n}^{k}(t ; f)=\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \frac{\sum_{j=1}^{k} \ln t_{i_{j}}}{k-\sum_{j=1}^{k} \ln t_{i_{j}}},
$$

one can see that the sequence

$$
\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \frac{\sum_{j=1}^{k} \ln t_{i_{j}}}{k-\sum_{j=1}^{k} \ln t_{i_{j}}}
$$

is non-increasing in $k=1,2, \ldots, n$. This and letting $t_{i}=e^{x_{i}} \in(1, e), i=1,2, \ldots, n$, have completed the proof.
Remark 4.2. With the conditions of Theorem 4.1, Shapiro's inequality [10] reads as follows

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}}{1-x_{i}} \geqslant \frac{n S_{n}}{n-S_{n}} \tag{4.1}
\end{equation*}
$$

where $S_{n}=\sum_{i=1}^{n} x_{i}, 0<x_{i}<1, i=1, \ldots, n$. One can easily see that Theorem 4.1 gives a refinement of Shapiro's inequality (4.1).

The $p$-th power mean of a positive $n$-tuple $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is

$$
M_{n}^{p}(x)= \begin{cases}\left(\frac{x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p}}{n}\right)^{1 / p}, & p \neq 0 \\ G_{n}(x), & p=0\end{cases}
$$

For $0<x_{i} \leqslant 1 / 2, i=1,2, \ldots, n$, the well-known Ky Fan inequality [5, p. 5] reads as follows

$$
\begin{equation*}
\frac{G_{n}(x)}{G_{n}(1-x)} \leqslant \frac{A_{n}(x)}{A_{n}(1-x)} \tag{4.2}
\end{equation*}
$$

where $1-x=\left(1-x_{1}, 1-x_{2}, \ldots, 1-x_{n}\right)$. The inequality (4.2) has stimulated many researchers to give new proofs, improvements and generalizations of it. See, for example $[1,2,18]$ and the references cited therein. Now we establish the following Ky Fan type inequalities.

Theorem 4.3. Let $\sum_{i=1}^{n} x_{i}=s \leqslant 1, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in(0,1)^{n}(n \geqslant 2)$. If $\alpha \in(-\infty, 0) \cup(0,1]$, then

$$
\begin{equation*}
\left(\frac{F_{n}^{r}(x, \alpha)}{F_{n}^{r}(1-x, \alpha)}\right)^{1 / \alpha} \leqslant \frac{A_{n}(x)}{A_{n}(1-x)}, \quad r=1,2, \ldots, n \tag{4.3}
\end{equation*}
$$

where $F_{n}^{r}(x, \alpha)$ is defined as Corollary 3.2. In particular,

$$
\begin{equation*}
\frac{M_{n}^{\alpha}(x)}{M_{n}^{\alpha}(1-x)} \leqslant \frac{A_{n}(x)}{A_{n}(1-x)} \tag{4.4}
\end{equation*}
$$

Proof. From Lemma 2.6, it follows that

$$
\begin{equation*}
\frac{1-x}{n / s-1}=\left(\frac{1-x_{1}}{n / s-1}, \ldots, \frac{1-x_{n}}{n / s-1}\right) \prec\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x \tag{4.5}
\end{equation*}
$$

(i) When $\alpha<0$, by Corollary 3.2, $F_{n}^{r}(x, \alpha)$ is Schur-convex. This and (4.5) lead to

$$
\frac{F_{n}^{r}(1-x, \alpha)}{F_{n}^{r}(x, \alpha)} \leqslant\left(\frac{n}{s}-1\right)^{\alpha}
$$

This implies (4.3).
(ii) When $0<\alpha \leqslant 1$, it follows from Corollary 3.2 that $F_{n}^{r}(x, \alpha)$ is Schur-concave. This and (4.5) lead to

$$
\frac{F_{n}^{r}(1-x, \alpha)}{F_{n}^{r}(x, \alpha)} \geqslant\left(\frac{n}{s}-1\right)^{\alpha}
$$

This also implies (4.3).
The cases (i) and (ii) show that (4.3) holds. Taking $r=1$ in (4.3), we can obtain (4.4). The proof is completed.
Remark 4.4. Taking limits in (4.4) as $\alpha \rightarrow 0$ yields

$$
\frac{G_{n}(x)}{G_{n}(1-x)} \leqslant \frac{A_{n}(x)}{A_{n}(1-x)}
$$

where $0<x_{i}<1, i=1,2, \ldots, n$, and $\sum_{i=1}^{n} x_{i} \leqslant 1$.
Using Corollary 2.5(1), one can easily verify that the function $f(x)=1 / x$ is $G A$-convex in $R_{+}$. Theorem 3.8 immediately gives us the following result which was established by Hara et al. [13].

Theorem 4.5. (See [13].) If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R_{+}^{n}, H_{n}(x)=n / \sum_{i=1}^{n}\left(1 / x_{i}\right)$, and $r \in\{1,2, \ldots, n\}$, then the sequence

$$
u(H, G, x ; r)=\left(\frac{1}{\binom{n}{r}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{1}{\left(\prod_{j=1}^{r} x_{i_{j}}\right)^{1 / r}}\right)^{-1}
$$

is non-decreasing with respect to $k(1 \leqslant k \leqslant n)$, that is,

$$
\begin{equation*}
H_{n}(x)=u(H, G, x ; 1) \leqslant u(H, G, x ; 2) \leqslant \cdots \leqslant u(H, G, x ; n-1) \leqslant u(H, G, x ; n)=G_{n}(x) \tag{4.6}
\end{equation*}
$$

Hara et al. [13] also established a more general result than those of Corollary 3.10 and Theorem 4.5 by use of the $p$-th power mean $M_{n}^{p}(x)$. Fix $n \in N, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R_{+}^{n}$ and choose $k$ with $1 \leqslant k \leqslant n$. For any $s, t \in R$, let

$$
\begin{aligned}
u(s, t, x ; k) & =M_{\substack{n \\
k}}^{s}\left(M_{k}^{t}\left(x_{1}, \ldots, x_{k}\right), \ldots, M_{k}^{t}\left(x_{n-k+1}, \ldots, x_{n}\right)\right) \\
& =\left\{\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n}\left(\frac{x_{i_{1}}^{t}+x_{i_{2}}^{t}+\cdots+x_{i_{k}}^{t}}{k}\right)^{s / t}\right\}^{1 / s},
\end{aligned}
$$

the authors investigated the monotonicity of $u(s, t, x ; k)$ with respect to $k$. Here we give an alternative proof.
Theorem 4.6. (See [13].) If $s \leqslant t$, then the sequence $u(s, t, x ; k)$ is non-decreasing with respect to $k$ with $1 \leqslant k \leqslant n$.

Proof. If $s=0$ and $t=0$, then $u(s, t, x ; k)=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$ for $k=1,2, \ldots, n$. The result is obvious. If $s \neq 0$ and $t=0$, one can prove the result as Corollary 3.10 does by taking $f(x)=x^{s}, x \in R_{+}$. Now we consider the case $s \neq 0$ and $t \neq 0$. To this end, let $f(y)=(\ln y)^{s / t}, y \in(1, \infty)$. Differentiating it yields

$$
\left(y f^{\prime}(y)\right)^{\prime}=\frac{s}{t}\left(\frac{s}{t}-1\right)(\ln y)^{\frac{s}{t}-1}
$$

Consider the following three possible cases.

Case 1. If $0<s \leqslant t$, then the function $f$ is $G A$-concave from Corollary 2.5(1). It follows from Theorem 3.8 that the sequence

$$
\sigma_{n}^{k}(y ; f)=\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} f\left(\prod_{j=1}^{k} y_{i_{j}}^{1 / k}\right)=\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n}\left(\frac{\ln y_{i_{1}}+\cdots+\ln y_{i_{k}}}{k}\right)^{s / t}
$$

is non-decreasing in $k$. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R_{+}^{n}$, letting $y_{i}=\exp \left(x_{i}^{t}\right), i=1,2, \ldots, n$, and noticing that $s>0$, we conclude that $u(s, t, x ; k)$ is also non-decreasing with respect to $k$.

Case 2. If $s \leqslant t<0$, then the function $f$ is GA-convex by Corollary 2.5(1). It follows from Theorem 3.8 that the sequence

$$
\sigma_{n}^{k}(y ; f)=\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} f\left(\prod_{j=1}^{k} y_{i_{j}}^{1 / k}\right)=\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n}\left(\frac{\ln y_{i_{1}}+\cdots+\ln y_{i_{k}}}{k}\right)^{s / t}
$$

is non-increasing in $k$. Taking $y_{i}=\exp \left(x_{i}^{t}\right), i=1,2, \ldots, n$, and noticing that $s<0$, we conclude that $u(s, t, x ; k)$ is nondecreasing with respect to $k$.

Case 3. If $s<0<t$, then the function $f$ is GA-convex from Corollary 2.5(1). Using the same method as Case 2 does, we can also conclude that $u(s, t, x ; k)$ is non-decreasing with respect to $k$. The proof is completed.

## Theorem 4.7.

(1) If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in(0,1)^{n}$ and $r \in\{1,2, \ldots, n\}$, then

$$
\begin{align*}
& \frac{1}{\left(_{r}^{n}\right)} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}}{1+\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}} \geqslant \frac{G_{n}(x)}{1+G_{n}(x)},  \tag{4.7}\\
& \frac{1}{\left.{ }_{r}^{r}\right)} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{1}{1+\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}} \leqslant \frac{1}{1+G_{n}(x)} . \tag{4.8}
\end{align*}
$$

(2) If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[1, \infty)^{n}$ and $r \in\{1,2, \ldots, n\}$, then

$$
\begin{align*}
& \frac{1}{\left({ }_{r}^{n}\right)} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{\tau}}}{1+\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}} \leqslant \frac{G_{n}(x)}{1+G_{n}(x)},  \tag{4.9}\\
& \frac{1}{\left.{ }_{r}^{r}\right)} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{1}{1+\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}} \geqslant \frac{1}{1+G_{n}(x)} . \tag{4.10}
\end{align*}
$$

Proof. We clearly see that

$$
\begin{equation*}
\left(\ln G_{n}(x), \ln G_{n}(x), \ldots, \ln G_{n}(x)\right) \prec\left(\ln x_{1}, \ln x_{2}, \ldots, \ln x_{n}\right) . \tag{4.11}
\end{equation*}
$$

Let $f(x)=\frac{x}{1+x}$ and $g(x)=\frac{1}{1+x}, x \in(0, \infty)$. Directly computing gives us

$$
\begin{equation*}
\left(x f^{\prime}(x)\right)^{\prime}=\frac{1-x}{(1+x)^{3}}, \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x g^{\prime}(x)\right)^{\prime}=\frac{x-1}{(1+x)^{3}} \tag{4.13}
\end{equation*}
$$

Thus, (4.12) and Corollary 2.5(1) show that $f(x)$ is $G A$-convex for $x \in(0,1)$ and $G A$-concave for $x \in[1, \infty)$. Therefore, Theorem 3.3 and (4.11) lead to (4.7) and (4.9).

On the other hand, (4.13) and Corollary 2.5(1) show that $g(x)$ is GA-concave for $x \in(0,1)$ and GA-convex for $x \in[1, \infty)$. Thus, Theorem 3.3 and (4.11) lead to (4.8) and (4.10). The proof is completed.

If we take $r=1$ in Theorem 4.7, then we get the following corollary.

Corollary 4.8. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[1, \infty)^{n}$, then

$$
\begin{equation*}
A_{n}\left(\frac{x}{1+x}\right) \leqslant \frac{G_{n}(x)}{1+G_{n}(x)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}\left(\frac{1}{1+x}\right) \geqslant \frac{1}{1+G_{n}(x)} \tag{2}
\end{equation*}
$$

Both (4.14) and (4.15) are reversed if $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in(0,1)^{n}$.
Theorem 4.9. If $x=\left(x_{1}, \ldots, x_{n}\right) \in R_{+}^{n}, H_{n}(x)=n / \sum_{i=1}^{n}\left(1 / x_{i}\right)$, and $k \in\{1,2, \ldots, n\}$, then

$$
\begin{equation*}
\frac{1}{1+A_{n}(x)} \leqslant \frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \frac{1}{1+\left(\prod_{j=1}^{k} x_{i_{j}}\right)^{1 / k}} \leqslant \frac{1}{1+H_{n}(x)}, \quad k=1,2, \ldots, n . \tag{4.16}
\end{equation*}
$$

Proof. One can easily verify that the function $f(x)=\frac{1}{1+x}, x \in(0, \infty)$, is decreasing and $A A$-convex. Therefore, from Theorem 3.1, we can see that

$$
\sum_{n}(x, k ; f)=\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \frac{1}{1+\left(\prod_{j=1}^{k} x_{i_{j}}\right)^{1 / k}}
$$

is Schur-convex. This and the expression $\left(A_{n}(x), A_{n}(x), \ldots, A_{n}(x)\right) \prec\left(x_{1}, \ldots, x_{n}\right)$ imply the left inequality in (4.16). On the other hand, straightforward calculation gives us

$$
f^{\prime}(x)=-\frac{1}{(1+x)^{2}} \quad \text { and } \quad\left(x^{2} f^{\prime}(x)\right)^{\prime}=-\frac{2 x}{(1+x)^{3}}
$$

This together with Corollary 2.5(2) shows that $f(x)$ is decreasing and HA-concave in $R_{+}^{n}$. One can easily see that

$$
\begin{equation*}
\left(\frac{1}{H_{n}(x)}, \frac{1}{H_{n}(x)}, \ldots, \frac{1}{H_{n}(x)}\right) \prec\left(\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{n}}\right)=\frac{1}{x} \tag{4.17}
\end{equation*}
$$

Thus, the right inequality in (4.16) immediately follows from Theorem 3.5 and (4.17). The proof is completed.

## Remark 4.10.

(1) Taking $k=1$ in (4.16), we obtain

$$
\begin{equation*}
\frac{1}{1+A_{n}(x)} \leqslant \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+x_{i}} \leqslant \frac{1}{1+H_{n}(x)} \tag{4.18}
\end{equation*}
$$

This inequality is also produced from the last formula by the end of [21].
(2) Using the expression $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \prec\left(S_{n}, 0, \ldots, 0\right)$ (see [19, p. 133].) and Theorem 3.1, we also obtain

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+x_{i}} \leqslant 1-\frac{S_{n}}{n\left(1+S_{n}\right)} \tag{4.19}
\end{equation*}
$$

where $S_{n}=\sum_{i=1}^{n} x_{i}, x_{i}>0, i=1, \ldots, n$. This inequality was proposed by Janous [16].
(3) It is natural to ask which is sharper between the inequality (4.19) and the right inequality in (4.18). It is uncertain. As a matter of fact, if $x=(1 / 2,2)$, then we have $\frac{1}{1+H_{n}(x)}=\frac{5}{9}<1-\frac{S_{n}}{n\left(1+S_{n}\right)}=\frac{9}{14}$. If $x=(1 / 4,1 / 10)$, we obtain $\frac{1}{1+H_{n}(x)}=\frac{7}{8}>$ $1-\frac{S_{n}}{n\left(1+S_{n}\right)}=\frac{47}{54}$.

Theorem 4.11. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R_{+}^{n}$ and $r \in\{1,2, \ldots, n\}$, then

$$
\begin{equation*}
\frac{H_{n}(x)}{1+H_{n}(x)} \leqslant \frac{1}{\binom{n}{r}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}}{1+\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}} \leqslant \frac{A_{n}(x)}{1+A_{n}(x)} \tag{4.20}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\frac{H_{n}(x)}{1+H_{n}(x)} \leqslant A_{n}\left(\frac{x}{1+x}\right) \leqslant \frac{A_{n}(x)}{1+A_{n}(x)} \tag{4.21}
\end{equation*}
$$

Proof. Let $f(x)=\frac{x}{1+x}$, directly computing yields

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{(1+x)^{2}}, \quad f^{\prime \prime}(x)=-\frac{2}{(1+x)^{3}}, \quad\left(x^{2} f^{\prime}(x)\right)^{\prime}=\frac{2 x}{(1+x)^{3}} \tag{4.22}
\end{equation*}
$$

This together with Corollary $2.5(2)$ implies that $f(x)$ is increasing and HA-convex in $R_{+}$. Using (4.17) and Theorem 3.5, we arrive at the left inequality in (4.20). From (4.22), one can easily see that $f(x)$ is also increasing and $A A$-concave. Thus, Theorem 3.1 and the expression $\left(A_{n}(x), \ldots, A_{n}(x)\right) \prec\left(x_{1}, \ldots, x_{n}\right)$ implies the right inequality in (4.20). Taking $r=1$ in (4.20) leads to (4.21) and so the proof is completed.

Using Theorems 4.7 and 4.11, we obtain the following results.
Corollary 4.12. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in(0,1)^{n}$ and $r \in\{1,2, \ldots, n\}$, then

$$
\begin{equation*}
\frac{G_{n}(x)}{1+G_{n}(x)} \leqslant \frac{1}{\binom{n}{r}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}}{1+\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}} \leqslant \frac{A_{n}(x)}{1+A_{n}(x)} \tag{4.23}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\frac{G_{n}(x)}{1+G_{n}(x)} \leqslant A_{n}\left(\frac{x}{1+x}\right) \leqslant \frac{A_{n}(x)}{1+A_{n}(x)} \tag{4.24}
\end{equation*}
$$

Corollary 4.13. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[1, \infty)^{n}$ and $r \in\{1,2, \ldots, n\}$, then

$$
\begin{equation*}
\frac{H_{n}(x)}{1+H_{n}(x)} \leqslant \frac{1}{\binom{n}{r}} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant n} \frac{\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}}{1+\prod_{j=1}^{r} x_{i_{j}}^{\frac{1}{r}}} \leqslant \frac{G_{n}(x)}{1+G_{n}(x)} \tag{4.25}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\frac{H_{n}(x)}{1+H_{n}(x)} \leqslant A_{n}\left(\frac{x}{1+x}\right) \leqslant \frac{G_{n}(x)}{1+G_{n}(x)} \tag{4.26}
\end{equation*}
$$

## Acknowledgment

The authors are very grateful to the referee for his (her) suggestions for the improvement of this paper.

## References

[1] H. Alzer, On an inequality of Ky Fan, J. Math. Anal. Appl. 137 (1989) 168-173.
[2] H. Alzer, The inequality of Ky Fan and related results, Acta Appl. Math. 38 (1995) 305-354.
[3] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) $1294-1308$.
[4] J.S. Aujla, F.C. Silva, Weak majorization inequalities and convex function, Linear Algebra Appl. 369 (2003) 217-233.
[5] E.F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1961.
[6] P.S. Bullen, Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
[7] Y. Chu, X. Zhang, G. Wang, The Schur geometrical convexity of the extended mean values, J. Convex Anal. 4 (2008) 707-718.
[8] K.Z. Guan, The Hamy symmetric function and its generalization, Math. Inequal. Appl. 4 (2006) 797-805.
[9] K.Z. Guan, A class of symmetric functions for multiplicatively convex function, Math. Inequal. Appl. 4 (2007) 745-753.
[10] K.Z. Guan, Some properties of a class of symmetric functions, J. Math. Anal. Appl. 336 (2007) 70-80.
[11] K.Z. Guan, Multiplicative convexity and its applications, J. Math. Anal. Appl. 362 (2010) 156-166.
[12] M. Hamy, Sur le théorème de la moyenne, Bull. Sci. Math. 14 (2) (1890) 103-104.
[13] T. Hara, M. Uchiyama, S. Takahasi, A refinement of various mean inequalities, J. Inequal. Appl. 2 (1998) 387-395.
[14] G.H. Hardy, J.E. Littlewood, D. Pólya, Some simple inequalities satisfied by convex functions, Mess. Math. 58 (1929) 145-152.
[15] F.K. Hwang, U.G. Rothblum, Partition-optimization with Schur convex sum objective functions, SIAM J. Discrete Math. 3 (2004) 512-524.
[16] W. Janous, Aufgabe 845, Elem. Math. 36 (1981) 100-101.
[17] H.T. Ku, M.C. Ku, X.M. Zhang, Inequalities for symmetric means, symmetric harmonic means and theirs applications, Bull. Austral. Math. Soc. 56 (1997) 409-420.
[18] N. Levinson, Generalization of an inequality of Ky Fan, J. Math. Anal. Appl. 8 (1964) 133-134.
[19] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Application, Academic Press, New York, 1979.
[20] M. Merkle, Convexity, Schur-convexity and bounds for the gamma function involving the digamma function, Rocky Mountain J. Math. 3 (1998) 10531066.
[21] M. Merkle, Reciprocally convex functions, J. Math. Anal. Appl. 293 (2004) 210-218.
[22] P. Montel, Sur les fonctions convexes et les fonctions sousharmoniques, J. Math. 9 (1928) 29-60.
[23] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 2 (2003) 155-167.
[24] I. Schur, Über eine klasse von mittelbildungen mit anwebdungen auf die determinantentheorie, Sitzunsber. Berlin. Math. Ges. 22 (1923) 9-20.
[25] C. Stepolhkepniak, An effective characterization of Schur-convex functions with applications, J. Convex Anal. 1 (2007) 103-108.
[26] W.F. Xia, Y.M. Chu, Schur-convexity for a class of symmetric functions and its applications, J. Inequal. Appl. 2009 (2009), Article ID 493759,15 pages.
[27] X.M. Zhang, Schur convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc. 2 (1998) 461-470.


[^0]:    * Corresponding author.

    E-mail address: guan668@yahoo.com.cn (K. Guan).

