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This paper is concerned with the generalized Hamy symmetric function

∑
n
(x, r; f ) =

∑
1�i1<i2<···<ir�n

f

(
r∏

j=1

x
1
r
i j

)
,

where f is a positive function defined in a subinterval of (0,+∞). Some properties,
including Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity are
investigated. As applications, several inequalities are obtained, some of which extend
the known ones.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let R+ denote the set of all positive real numbers and Rn+ its n-product. For Ω ⊆ Rn+ , let

lnΩ = {
(ln x1, ln x2, . . . , ln xn)

∣∣ x = (x1, x2, . . . , xn) ∈ Ω
}

and

1/Ω = {
(1/x1,1/x2, . . . ,1/xn)

∣∣ x = (x1, x2, . . . , xn) ∈ Ω
}
.

For a positive n-tuple x = (x1, x2, . . . , xn) ∈ Rn+ , Hamy [12] introduced the symmetric function

Fn(x, r) = Fn(x1, . . . , xn; r) =
∑

1�i1<i2<···<ir�n

(
r∏

j=1

xi j

) 1
r

, r = 1,2, . . . ,n. (1.1)

In Hamy’s honor, the above function is called Hamy symmetric function. Corresponding to this function is the r-th order
Hamy mean

σn(x, r) = 1

(n
r )

∑
1�i1<i2<···<ir�n

(
r∏

j=1

xi j

) 1
r

, r = 1,2, . . . ,n, (1.2)

* Corresponding author.
E-mail address: guan668@yahoo.com.cn (K. Guan).
0022-247X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2010.10.014

https://core.ac.uk/display/82814897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jmaa.2010.10.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:guan668@yahoo.com.cn
http://dx.doi.org/10.1016/j.jmaa.2010.10.014


K. Guan, R. Guan / J. Math. Anal. Appl. 376 (2011) 494–505 495
where (n
r ) = n!

(n−r)!r! . It is obvious that σn(x,1) is the arithmetic mean

An(x) = An(x1, x2, . . . , xn) = x1 + x2 + · · · + xn

n
,

and σn(x,n) is the geometric mean

Gn(x) = Gn(x1, x2, . . . , xn) = n
√

x1x2 . . . xn.

There are some papers on Hamy symmetric function and its mean. For example, Hara et al. [13] established the following
refinement of the classical arithmetic and geometric means inequality:

Gn(x) = σn(x,n) � σn(x,n − 1) � · · · � σn(x,2) � σn(x,1) = An(x). (1.3)

The paper [17] by Ku et al. contains some interesting inequalities including the fact that (σn(x, r))r is log-concave. For more
details, please refer to the book [6] by Bullen. In 2006, Guan [8] investigated Schur-convexity of Hamy symmetric function
Fn(x, r) and some inequalities were also obtained by use of the theory of majorization.

Recently, Guan [9] defined a generalized Hamy symmetric function of the form

∑
n
(x, r; f ) =

∑
1�i1<i2<···<ir�n

f

(
r∏

j=1

x
1
r
i j

)
, r = 1,2, . . . ,n, (1.4)

where f is a positive function defined in a subinterval of (0,+∞). The author investigated the geometric Schur-convexity
of

∑
n(x, r; f ) when f is a multiplicatively convex function, i.e., GG-convex function.

The main purpose of this paper is to investigate further Schur-convexity, geometric Schur-convexity, and harmonic Schur-
convexity of

∑
n(x, r; f ). As applications, some inequalities are established by use of the theory of majorization. Our results

improve the known ones.
The notation of Schur-convex function was introduced by I. Schur in 1923 [24]. It has many important applications in

analytic inequalities [4,8,10,14,19,25], combinatorial optimization [15], isoperimetric problem for polytopes [27], gamma
and digamma functions [20], and other related fields. For a historical development of this kind of functions and the fruitful
applications to statistics, economics and other applied fields, refer to the popular book by Marshall and Olkin [19].

Definition 1.1. (See [10,19,24–26].) A real-valued function φ defined on a set Ω ⊆ Rn (n � 2) is said to be a Schur-convex
function on Ω if

φ(x1, x2, . . . , xn) � φ(y1, y2, . . . , yn)

for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) on Ω , such that x is majorized by y (in symbols x ≺ y),
that is,

m∑
i=1

x[i] �
m∑

i=1

y[i], m = 1,2, . . . ,n − 1, and
n∑

i=1

x[i] =
n∑

i=1

y[i],

where x[i] denotes the ith largest component in x. φ is called Schur-concave if −φ is Schur-convex.

The notation of geometric convexity was introduced by Montel [22] and investigated by Anderson et al. [3], Guan [11]
and Niculescu [23]. The geometric Schur-convexity was investigated by Chu et al. [7], Guan [9], and Niculescu [23]. We
also note that the authors use the term “Schur-multiplicative (geometric) convexity”. However, we here point out that the
term “geometric Schur-convexity” is more appropriate. As a matter of fact, from [7,9,11,22,23], we have no difficulty to
find that f being geometric convex in convexity theory means that the function x �→ log f (ex) is convex and that “Schur-
multiplicative (geometric) convexity” of φ is equivalent to Schur-convexity of the function x �→ φ(ex), which in turn, for
positive functions, is equivalent to Schur-convexity of the function x �→ logφ(ex). Thus, we give an alternative definition of
geometric Schur-convexity.

Definition 1.2. Let Ω ⊆ Rn+ (n � 2) be a set. A real-valued function φ : Ω → R is called a geometrically Schur-convex function
on Ω if the function x �→ φ(ex) is Schur-convex on ln Ω . φ is called geometrically Schur-concave if −φ is geometrically
Schur-convex.

Recently, Xia et al. [26] introduced the notion of harmonically Schur-convex function and some interesting inequalities
were obtained.

Definition 1.3. (See [26].) Let Ω ⊆ Rn+ (n � 2) be a set. A real-valued function φ defined on Ω is called a harmonically Schur-
convex function if the function x �→ φ(1/x) is Schur-convex on 1/Ω . φ is called a harmonically Schur-concave function on
Ω if −φ is harmonically Schur-convex.
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Let M(x, y) and N(x, y) be any two mean functions of two positive numbers x, y ∈ R+ . Anderson et al. [3] introduced
the definition of MN-convex function as follows.

Definition 1.4. (See [3].) Let f : I → R+ be continuous, where I is a subinterval of (0,∞). The function f is called MN-
convex (concave) if f (M(x, y)) � (�)N( f (x), f (y)), for all x, y ∈ I .

Remark 1.5. Let A(x, y) (G(x, y), H(x, y)) denote the arithmetic (geometric, harmonic) mean of two positive numbers x, y,
it follows from [3] that

(1) f is GG-convex ⇒ GA-convex;
(2) f is HH-convex ⇒ HG-convex ⇒ HA-convex. For concavity, the implications in (1) and (2) are reversed.

2. Lemmas

In order to establish our main results we need several lemmas, which we present in this section. The following lemma
is so-called Schur’s condition which is very useful for determining whether or not a given function is Schur-convex or
Schur-concave.

Lemma 2.1. (See [8,10,19].) Let Ω ⊆ Rn be symmetric and convex set with nonempty interior, and let f : Ω → R be differentiable in
the interior of Ω and continuous on Ω . Then f is Schur-convex on Ω if and only if f is symmetric on Ω and

(x1 − x2)

(
∂ f

∂x1
− ∂ f

∂x2

)
� 0 (2.1)

for all x ∈ Ω0 , where Ω0 is the interior of Ω .

Schur’s condition that guarantees a symmetric function being Schur-concave is the same as (2.1) except the direction of
the inequality.

Remark 2.2. From Definitions 1.2 and 1.3, Lemma 2.1 implies the following conclusion (also see [7,9,10,26]).
Let f (x) = f (x1, x2, . . . , xn) be symmetric and have continuous partial derivatives on In , where I is a subinterval of

(0,∞). Then

(1) f : In → R is a geometrically Schur-convex function if and only if

(ln x1 − ln x2)

(
x1

∂ f (x)

∂x1
− x2

∂ f (x)

∂x2

)
� 0 (2.2)

for all x ∈ In, f is geometrically Schur-concave if and only if (2.2) is reversed.
(2) f : In → R is a harmonically Schur-convex function if and only if

(x1 − x2)

(
x2

1
∂ f (x)

∂x1
− x2

2
∂ f (x)

∂x2

)
� 0 (2.3)

for all x ∈ In, f is harmonically Schur-concave if and only if (2.3) is reversed.

Lemma 2.3. (See [19, p. 89].) Let Ω be a symmetric and convex subset of Rl , and let φ be a Schur-convex function defined on Ω with
the property for each fixed x2, . . . , xl , the function

φ(z, x2, . . . , xl) is convex in z on
{

z
∣∣ (z, x2, . . . , xl) ∈ Ω

}
.

Then for any n > l,

ψ(x1, . . . , xn) =
∑
π

φ(xπ(1), . . . , xπ(l))

is Schur-convex on Ω∗ = {(x1, . . . , xn) | (xπ(1), . . . , xπ(l)) ∈ Ω for all permutations π}.

Recall that Anderson et al. [3] investigated the relation between convexity and GA (HA, GG)-convexity for a function
defined in (0,b), 0 < b < ∞. We can establish a more general lemma in a similar way as follows.
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Lemma 2.4. Let I ⊆ R+ be an interval and f : I → R+ be continuous in I . Then

(1) f is GA-convex (concave) in I if and only if f (ex) is convex (concave) in ln I = {ln x | x ∈ I};
(2) f is HA-convex (concave) in I if and only if f (1/x) is convex (concave) in 1/I = { 1

x | x ∈ I};
(3) f is GG-convex (concave) in I if and only if ln f (ex) is convex (concave) in ln I = {ln x | x ∈ I}.

Proof. We only consider the case I = (a,b) (0 < a < b < ∞), since the case where I is another interval is similar if we
define ln 0 = −∞, ln(+∞) = +∞, 1/0 = +∞ and 1/∞ = 0.

(1) Let g(x) = f (ex), and let x, y ∈ ln I = (ln a, ln b), so ex, e y ∈ (a,b). Then f is GA-convex (concave) in (a,b) if and only
if

f
(√

exe y
)
� (�)

f (ex) + f (e y)

2
⇔ g

(
x + y

2

)
� (�)

g(x) + g(y)

2
,

hence the result.
(2) Let g(x) = f (1/x), and let x, y ∈ 1/I = (1/b,1/a), so 1/x,1/y ∈ (a,b). Then f is HA-convex (concave) in (a,b) if and

only if

f

(
2

x + y

)
� (�)

f (1/x) + f (1/y)

2
⇔ g

(
x + y

2

)
� (�)

g(x) + g(y)

2
,

hence the result.
(3) Let g(x) = ln f (ex), and let x, y ∈ ln I = (ln a, ln b), so ex, e y ∈ (a,b). Then f is GG-convex (concave) in (a,b) if and

only if

f
(√

exe y
)
� (�)

√
f
(
ex

)
f
(
e y

) ⇔ ln f
(
e

x+y
2

)
� (�)

ln f (ex) + ln f (e y)

2

⇔ g

(
x + y

2

)
� (�)

g(x) + g(y)

2
,

hence the result. �
The next result is an immediate consequence of Lemma 2.4.

Corollary 2.5. Let I be a subinterval of (0,∞) and f : I → R+ have continuous derivatives in I . Then

(1) f is GA-convex (concave) if and only if xf ′(x) is increasing (decreasing);
(2) f is HA-convex (concave) if and only if x2 f ′(x) is increasing (decreasing);
(3) f is GG-convex (concave) if and only if xf ′(x)/ f (x) is increasing (decreasing).

Lemma 2.6. (See [10,26].) Assume that xi > 0, i = 1,2, . . . ,n,
∑n

i=1 xi = s, and c � s. Then

c − x
nc
s − 1

=
(

c − x1
nc
s − 1

,
c − x1
nc
s − 1

, . . . ,
c − xn
nc
s − 1

)
≺ (x1, x2, . . . , xn) = x.

3. Main results

In this section, we mainly investigate Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity of∑
n(x, r; f ). Some relevant results in the literature are generalized and improved.

Theorem 3.1. Let I be a subinterval of (0,+∞) and f : I → R+ be a continuous function. Then

(1)
∑

n(x, r; f ) is Schur-convex in In if f is decreasing and AA-convex (usual convex) in I;
(2)

∑
n(x, r; f ) is Schur-concave in In if f is increasing and AA-concave in I .

Proof. (1) Let φ(x1, . . . , xr) = f ( r
√

x1x2 . . . xr ), (x1, x2, . . . , xr) ∈ Ir . From Lemma 2.1 (or Chapter 3, F.1 in [19, p. 83]), it follows
that the function r

√
x1x2 . . . xr is Schur-concave in Ir , and so φ = f ( r

√
x1x2 . . . xr ) is Schur-convex for f decreasing. Since f

is convex in I , one can easily see that for each fixed x2, . . . , xr , the function φ is convex in z on {z | (z, x2, . . . , xr) ∈ Ir}. It
follows from Lemma 2.3 that the function

ψ(x1, x2, . . . , xn) =
∑
π

φ(xπ(1), . . . , xπ(r))

is Schur-convex in In . Then the function
∑

n(x, r; f ) is Schur-convex in In since
∑

n(x, r; f ) = 1 ψ(x1, x2, . . . , xn).
r!
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(2) If f is increasing and AA-concave in I , then − f is decreasing and AA-convex. By the part (1), the function
−∑

n(x, r; f ) is Schur-convex and so
∑

n(x, r; f ) is Schur-concave. The proof is completed. �
Corollary 3.2. Assume that xi > 0, i = 1,2, . . . ,n, α ∈ R, and set

F r
n(x,α) =

∑
1�i1<i2<···<ir�n

(
r∏

j=1

xi j

) α
r

, r = 1,2, . . . ,n.

We have

(1) if 0 < α � 1, then F r
n(x,α) is Schur-concave in Rn+;

(2) if α < 0, then F r
n(x,α) is Schur-convex in Rn+ .

Proof. Let f (x) = xα , x ∈ (0,+∞), one can easily verify that f (x) is increasing and AA-concave for 0 < α � 1, and that
f (x) is decreasing and AA-convex for α < 0. By Theorem 3.1, we can conclude that the results hold and so the proof is
completed. �
Theorem 3.3. Let f : I → R+ be a continuous function, where I is a subinterval of (0,∞). Then

(1)
∑

n(x, r; f ) is geometrically Schur-convex in In if f is GA-convex in I;
(2)

∑
n(x, r; f ) is geometrically Schur-concave in In if f is GA-concave in I .

Proof. (1) By Definition 1.2, we only need to prove that∑
n

(
ex, r; f

) =
∑

1�i1<i2<···<ir�n

f
(
e

xi1
+···+xir

r
)

is Schur-convex on ln(In) = (ln I)n . One can easily see that the function φ(x1, . . . , xr) = f (e
x1+···+xr

r ) is Schur-convex. For each
fixed x2, . . . , xr , from Lemma 2.4 it follows that the function φ(z, x2, . . . , xr) is convex in z on {z | (z, x2, . . . , xr) ∈ ln(Ir)}. It
follows from Lemma 2.3 that the function

ψ(x1, x2, . . . , xn) =
∑
π

φ(xπ(1), . . . , xπ(r))

is Schur-convex in ln(In). This shows that the function
∑

n(ex, r; f ) is Schur-convex in ln(In) since
∑

n(ex, r; f ) =
1
r!ψ(x1, x2, . . . , xn).

(2) If f is GA-concave in I , then − f is GA-convex. By the part (1), the function −∑
n(x, r; f ) is geometric Schur-convex

and so
∑

n(x, r; f ) is geometric Schur-concave. The proof is completed. �
Remark 3.4. When f is monotonic and GG-convex, Guan [9] proved that

∑
n(x, r; f ) is geometrically Schur-convex in In . By

Remark 1.5, one can easily see that Theorem 3.3 generalizes Theorem 2.3 in [9].

Theorem 3.5. Let f : I → R+ be a continuous function, where I is a subinterval of (0,+∞). Then

(1)
∑

n(x, r; f ) is harmonically Schur-convex in In if f is increasing and HA-convex in I;
(2)

∑
n(x, r; f ) is harmonically Schur-concave in In if f is decreasing and HA-concave in I .

Proof. (1) By Definition 1.3, we need to prove that the function
∑

n(1/x, r; f ) is Schur-convex in 1/In = (1/I)n . Note that

∑
n
(1/x, r; f ) =

∑
1�i1<i2<···<ir�n

f

(
r∏

j=1

(
1

xi j

)1/r
)

.

Put

ϕ(x1, . . . , xr) = f

(
1

r
√

x1 . . . xr

)
.

Using Lemma 2.1, one can find that 1
r√x1...xr

is Schur-convex in 1/Ir = (1/I)r , which implies that the function ϕ(x1, . . . , xr) is

Schur-convex if f is increasing. Form Lemma 2.4, for fixed x2, . . . , xr , the function ϕ(z, x1, . . . , xr) is convex in z. It follows
from Lemma 2.3 that the function
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ψ(x1, x2, . . . , xn) =
∑
π

ϕ(xπ(1), . . . , xπ(r))

is Schur-convex in 1/In . This implies that the function
∑

n(1/x, r; f ) is Schur-convex in 1/In since
∑

n(1/x, r; f ) =
1
r!ψ(x1, x2, . . . , xn).

(2) If f is decreasing and HA-concave in I , then − f is increasing and HA-convex. By the part (1), the function
−∑

n(x, r; f ) is harmonic Schur-convex and so
∑

n(x, r; f ) is harmonic Schur-concave. The proof is completed. �
Remark 3.6. From Remark 1.5, one can easily find that the conclusion of Theorem 3.5(1) holds if f is increasing and GA-
convex. The result in Theorem 3.5(2) is true if f is decreasing and GA-concave.

Using Corollary 2.5, one can easily verify that f (x) = x is increasing and AA-concave, GA-convex, and increasing and
HA-convex in R+ . Using Theorems 3.1, 3.3 and 3.5, respectively, we can establish the following corollary.

Corollary 3.7. Hamy symmetric function Fn(x, r), r ∈ {1,2, . . . ,n}, is Schur-concave, geometrically Schur-convex, and harmonically
Schur-convex in Rn+ .

Theorem 3.8. Assume that f : I → R+ be a real-valued function, where I is a subinterval of (0,∞), set

σ r
n (x; f ) = 1

(n
r )

∑
1�i1<i2<···<ir�n

f

(
r∏

j=1

x1/r
i j

)
, r = 1,2, . . . ,n,

the following statements hold.

(1) If f is GA-convex, then

σ n
n (x; f ) � σ n−1

n (x; f ) � · · · � σ 2
n (x; f ) � σ 1

n (x; f ). (3.1)

(2) If f is GA-concave, then the inequality (3.1) is reversed, that is,

σ n
n (x; f ) � σ n−1

n (x; f ) � · · · � σ 2
n (x; f ) � σ 1

n (x; f ). (3.2)

Proof. As the proofs are similar, here we give the proof of (1). Using the same method as in original Hamy’s proof for Hamy
symmetric function [6], we only need to prove that

σ k+1
n (x; f ) � σ k

n (x; f ), k = 1,2, . . . ,n − 1. (3.3)

Since f is GA-convex, then we have∑
1�i1<···<ik+1�n

f
(
(xi1 xi2 . . . xik+1)

1
k+1

)

=
∑

1�i1<i2<···<ik+1�n

f
((

(xi2 . . . xik+1)
1
k (xi1 xi3 . . . xik+1)

1
k . . . (xi1 xi2 . . . xik )

1
k
) 1

k+1
)

�
∑

1�i1<···<ik+1�n

1

k + 1

{
f
(
(xi2 . . . xik+1)

1
k
) + f

(
(xi1 xi3 . . . xik+1)

1
k
) + · · · + f

(
(xi1 xi2 . . . xik )

1
k
)}

= n − k

k + 1

∑
1�i1<i2<···<ik�n

f
(
(xi1 xi2 . . . xik )

1
k
)
,

which implies that

σ k+1
n (x; f ) = 1

( n
k+1)

∑
1�i1<i2<···<ik+1�n

f
(
(xi1 xi2 . . . xik+1)

1
k+1

)

� 1

( n
k+1)

n − k

k + 1

∑
1�i1<i2<···<ik�n

f
(
(xi1 xi2 . . . xik )

1
k
)

= 1

(n
k)

∑
1�i1<i2<···<ik�n

f
(
(xi1 xi2 . . . xik )

1
k
)

= σ k
n (x; f ).

This shows that (3.3) holds and so the proof is completed. �
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Remark 3.9. When f is GG-convex, Guan [9] also obtained the inequality (3.1). However, Remark 1.5 implies that Theo-
rem 3.8 generalizes Theorem 2.1 in [9]. And moreover, by the definition of GA-convex, we can deduce the following so-called
Jensen type inequality for GA-convex function

f
(

n
√

x1x2 . . . xn
)
� f (x1) + f (x2) + · · · + f (xn)

n
. (3.4)

It is clear that the inequality (3.1) is a refinement of the inequality (3.4).

Since f (x) = x is GA-convex in (0,+∞). The following conclusion immediately follows from Theorem 3.8.

Corollary 3.10. (See [8,13].) If x = (x1, x2, . . . , xn) ∈ Rn+, then

Gn(x) = σn(x,n) � σn(x,n − 1) � · · · � σn(x,2) � σn(x,1) = An(x).

4. Some applications

In this section, taking particular function f in Theorems 3.1, 3.3, 3.5 and 3.8, we establish some interesting inequalities.
Some relevant results in the literature are recovered and generalized.

Theorem 4.1. If 0 < xi < 1, i = 1, . . . ,n, and k ∈ {1,2, . . . ,n}, then the sequence

k

(n−1
k−1)

∑
1�i1<···<ik�n

∑k
j=1 xi j

k − ∑k
j=1 xi j

is non-increasing in k = 1,2, . . . ,n.

Proof. Let f (t) = ln t
1−ln t , t ∈ (1, e). Differentiating it yields

f ′(t) = 1

t(1 − ln t)2
and

(
t f ′(t)

)′ = 2

t(1 − ln t)3
.

This implies that f (t) is GA-convex in (1, e). Using Theorem 3.8 and noting that

σ k
n (t; f ) = 1

(n
k)

∑
1�i1<···<ik�n

∑k
j=1 ln ti j

k − ∑k
j=1 ln ti j

,

one can see that the sequence

1

(n
k)

∑
1�i1<···<ik�n

∑k
j=1 ln ti j

k − ∑k
j=1 ln ti j

is non-increasing in k = 1,2, . . . ,n. This and letting ti = exi ∈ (1, e), i = 1,2, . . . ,n, have completed the proof. �
Remark 4.2. With the conditions of Theorem 4.1, Shapiro’s inequality [10] reads as follows

n∑
i=1

xi

1 − xi
� nSn

n − Sn
, (4.1)

where Sn = ∑n
i=1 xi , 0 < xi < 1, i = 1, . . . ,n. One can easily see that Theorem 4.1 gives a refinement of Shapiro’s inequal-

ity (4.1).

The p-th power mean of a positive n-tuple x = (x1, x2, . . . , xn) is

M p
n (x) =

{
(

xp
1 +xp

2 +···+xp
n

n )1/p, p = 0,

Gn(x), p = 0.

For 0 < xi � 1/2, i = 1,2, . . . ,n, the well-known Ky Fan inequality [5, p. 5] reads as follows

Gn(x)

Gn(1 − x)
� An(x)

An(1 − x)
, (4.2)

where 1 − x = (1 − x1,1 − x2, . . . ,1 − xn). The inequality (4.2) has stimulated many researchers to give new proofs, improve-
ments and generalizations of it. See, for example [1,2,18] and the references cited therein. Now we establish the following
Ky Fan type inequalities.
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Theorem 4.3. Let
∑n

i=1 xi = s � 1, x = (x1, x2, . . . , xn) ∈ (0,1)n (n � 2). If α ∈ (−∞,0) ∪ (0,1], then

(
F r

n(x,α)

F r
n(1 − x,α)

)1/α

� An(x)

An(1 − x)
, r = 1,2, . . . ,n, (4.3)

where F r
n(x,α) is defined as Corollary 3.2. In particular,

Mα
n (x)

Mα
n (1 − x)

� An(x)

An(1 − x)
. (4.4)

Proof. From Lemma 2.6, it follows that

1 − x

n/s − 1
=

(
1 − x1

n/s − 1
, . . . ,

1 − xn

n/s − 1

)
≺ (x1, x2, . . . , xn) = x. (4.5)

(i) When α < 0, by Corollary 3.2, F r
n(x,α) is Schur-convex. This and (4.5) lead to

F r
n(1 − x,α)

F r
n(x,α)

�
(

n

s
− 1

)α

.

This implies (4.3).
(ii) When 0 < α � 1, it follows from Corollary 3.2 that F r

n(x,α) is Schur-concave. This and (4.5) lead to

F r
n(1 − x,α)

F r
n(x,α)

�
(

n

s
− 1

)α

.

This also implies (4.3).
The cases (i) and (ii) show that (4.3) holds. Taking r = 1 in (4.3), we can obtain (4.4). The proof is completed. �

Remark 4.4. Taking limits in (4.4) as α → 0 yields

Gn(x)

Gn(1 − x)
� An(x)

An(1 − x)
,

where 0 < xi < 1, i = 1,2, . . . ,n, and
∑n

i=1 xi � 1.

Using Corollary 2.5(1), one can easily verify that the function f (x) = 1/x is GA-convex in R+ . Theorem 3.8 immediately
gives us the following result which was established by Hara et al. [13].

Theorem 4.5. (See [13].) If x = (x1, x2, . . . , xn) ∈ Rn+ , Hn(x) = n/
∑n

i=1(1/xi), and r ∈ {1,2, . . . ,n}, then the sequence

u(H, G, x; r) =
(

1

(n
r )

∑
1�i1<i2<···<ir�n

1

(
∏r

j=1 xi j )
1/r

)−1

,

is non-decreasing with respect to k (1 � k � n), that is,

Hn(x) = u(H, G, x;1) � u(H, G, x;2) � · · · � u(H, G, x;n − 1) � u(H, G, x;n) = Gn(x). (4.6)

Hara et al. [13] also established a more general result than those of Corollary 3.10 and Theorem 4.5 by use of the p-th
power mean M p

n (x). Fix n ∈ N , x = (x1, x2, . . . , xn) ∈ Rn+ and choose k with 1 � k � n. For any s, t ∈ R , let

u(s, t, x;k) = Ms
(n
k )

(
Mt

k(x1, . . . , xk), . . . , Mt
k(xn−k+1, . . . , xn)

)
=

{
1

(n
k)

∑
1�i1<i2<···<ik�n

( xt
i1

+ xt
i2

+ · · · + xt
ik

k

)s/t}1/s

,

the authors investigated the monotonicity of u(s, t, x;k) with respect to k. Here we give an alternative proof.

Theorem 4.6. (See [13].) If s � t, then the sequence u(s, t, x;k) is non-decreasing with respect to k with 1 � k � n.
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Proof. If s = 0 and t = 0, then u(s, t, x;k) = (
∏n

i=1 xi)
1/n for k = 1,2, . . . ,n. The result is obvious. If s = 0 and t = 0, one can

prove the result as Corollary 3.10 does by taking f (x) = xs , x ∈ R+ . Now we consider the case s = 0 and t = 0. To this end,
let f (y) = (ln y)s/t , y ∈ (1,∞). Differentiating it yields

(
yf ′(y)

)′ = s

t

(
s

t
− 1

)
(ln y)

s
t −1.

Consider the following three possible cases.

Case 1. If 0 < s � t , then the function f is GA-concave from Corollary 2.5(1). It follows from Theorem 3.8 that the sequence

σ k
n (y; f ) = 1

(n
k)

∑
1�i1<i2<···<ik�n

f

(
k∏

j=1

y1/k
i j

)
= 1

(n
k)

∑
1�i1<i2<···<ik�n

(
ln yi1 + · · · + ln yik

k

)s/t

is non-decreasing in k. For x = (x1, x2, . . . , xn) ∈ Rn+ , letting yi = exp(xt
i ), i = 1,2, . . . ,n, and noticing that s > 0, we conclude

that u(s, t, x;k) is also non-decreasing with respect to k.

Case 2. If s � t < 0, then the function f is GA-convex by Corollary 2.5(1). It follows from Theorem 3.8 that the sequence

σ k
n (y; f ) = 1

(n
k)

∑
1�i1<i2<···<ik�n

f

(
k∏

j=1

y1/k
i j

)
= 1

(n
k)

∑
1�i1<i2<···<ik�n

(
ln yi1 + · · · + ln yik

k

)s/t

is non-increasing in k. Taking yi = exp(xt
i ), i = 1,2, . . . ,n, and noticing that s < 0, we conclude that u(s, t, x;k) is non-

decreasing with respect to k.

Case 3. If s < 0 < t , then the function f is GA-convex from Corollary 2.5(1). Using the same method as Case 2 does, we can
also conclude that u(s, t, x;k) is non-decreasing with respect to k. The proof is completed. �
Theorem 4.7.

(1) If x = (x1, x2, . . . , xn) ∈ (0,1)n and r ∈ {1,2, . . . ,n}, then

1

(n
r )

∑
1�i1<i2<···<ir�n

∏r
j=1 x

1
r
i j

1 + ∏r
j=1 x

1
r
i j

� Gn(x)

1 + Gn(x)
, (4.7)

1

(n
r )

∑
1�i1<i2<···<ir�n

1

1 + ∏r
j=1 x

1
r
i j

� 1

1 + Gn(x)
. (4.8)

(2) If x = (x1, x2, . . . , xn) ∈ [1,∞)n and r ∈ {1,2, . . . ,n}, then

1

(n
r )

∑
1�i1<i2<···<ir�n

∏r
j=1 x

1
r
i j

1 + ∏r
j=1 x

1
r
i j

� Gn(x)

1 + Gn(x)
, (4.9)

1

(n
r )

∑
1�i1<i2<···<ir�n

1

1 + ∏r
j=1 x

1
r
i j

� 1

1 + Gn(x)
. (4.10)

Proof. We clearly see that(
ln Gn(x), ln Gn(x), . . . , ln Gn(x)

) ≺ (ln x1, ln x2, . . . , ln xn). (4.11)

Let f (x) = x
1+x and g(x) = 1

1+x , x ∈ (0,∞). Directly computing gives us

(
xf ′(x)

)′ = 1 − x

(1 + x)3
, (4.12)

and (
xg′(x)

)′ = x − 1
3
. (4.13)
(1 + x)
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Thus, (4.12) and Corollary 2.5(1) show that f (x) is GA-convex for x ∈ (0,1) and GA-concave for x ∈ [1,∞). Therefore, Theo-
rem 3.3 and (4.11) lead to (4.7) and (4.9).

On the other hand, (4.13) and Corollary 2.5(1) show that g(x) is GA-concave for x ∈ (0,1) and GA-convex for x ∈ [1,∞).
Thus, Theorem 3.3 and (4.11) lead to (4.8) and (4.10). The proof is completed. �

If we take r = 1 in Theorem 4.7, then we get the following corollary.

Corollary 4.8. If x = (x1, x2, . . . , xn) ∈ [1,∞)n, then

(1) An

(
x

1 + x

)
� Gn(x)

1 + Gn(x)
, (4.14)

(2) An

(
1

1 + x

)
� 1

1 + Gn(x)
. (4.15)

Both (4.14) and (4.15) are reversed if x = (x1, x2, . . . , xn) ∈ (0,1)n.

Theorem 4.9. If x = (x1, . . . , xn) ∈ Rn+ , Hn(x) = n/
∑n

i=1(1/xi), and k ∈ {1,2, . . . ,n}, then

1

1 + An(x)
� 1

(n
k)

∑
1�i1<···<ik�n

1

1 + (
∏k

j=1 xi j )
1/k

� 1

1 + Hn(x)
, k = 1,2, . . . ,n. (4.16)

Proof. One can easily verify that the function f (x) = 1
1+x , x ∈ (0,∞), is decreasing and AA-convex. Therefore, from Theo-

rem 3.1, we can see that

∑
n
(x,k; f ) =

∑
1�i1<···<ik�n

1

1 + (
∏k

j=1 xi j )
1/k

is Schur-convex. This and the expression (An(x), An(x), . . . , An(x)) ≺ (x1, . . . , xn) imply the left inequality in (4.16). On the
other hand, straightforward calculation gives us

f ′(x) = − 1

(1 + x)2
and

(
x2 f ′(x)

)′ = − 2x

(1 + x)3
.

This together with Corollary 2.5(2) shows that f (x) is decreasing and HA-concave in Rn+ . One can easily see that(
1

Hn(x)
,

1

Hn(x)
, . . . ,

1

Hn(x)

)
≺

(
1

x1
,

1

x2
, . . . ,

1

xn

)
= 1

x
. (4.17)

Thus, the right inequality in (4.16) immediately follows from Theorem 3.5 and (4.17). The proof is completed. �
Remark 4.10.

(1) Taking k = 1 in (4.16), we obtain

1

1 + An(x)
� 1

n

n∑
i=1

1

1 + xi
� 1

1 + Hn(x)
. (4.18)

This inequality is also produced from the last formula by the end of [21].
(2) Using the expression (x1, x2, . . . , xn) ≺ (Sn,0, . . . ,0) (see [19, p. 133].) and Theorem 3.1, we also obtain

1

n

n∑
i=1

1

1 + xi
� 1 − Sn

n(1 + Sn)
, (4.19)

where Sn = ∑n
i=1 xi , xi > 0, i = 1, . . . ,n. This inequality was proposed by Janous [16].

(3) It is natural to ask which is sharper between the inequality (4.19) and the right inequality in (4.18). It is uncertain. As a
matter of fact, if x = (1/2,2), then we have 1

1+Hn(x) = 5
9 < 1 − Sn

n(1+Sn)
= 9

14 . If x = (1/4,1/10), we obtain 1
1+Hn(x) = 7

8 >

1 − Sn
n(1+Sn)

= 47
54 .
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Theorem 4.11. If x = (x1, x2, . . . , xn) ∈ Rn+ and r ∈ {1,2, . . . ,n}, then

Hn(x)

1 + Hn(x)
� 1

(n
r )

∑
1�i1<i2<···<ir�n

∏r
j=1 x

1
r
i j

1 + ∏r
j=1 x

1
r
i j

� An(x)

1 + An(x)
. (4.20)

In particular,

Hn(x)

1 + Hn(x)
� An

(
x

1 + x

)
� An(x)

1 + An(x)
. (4.21)

Proof. Let f (x) = x
1+x , directly computing yields

f ′(x) = 1

(1 + x)2
, f ′′(x) = − 2

(1 + x)3
,

(
x2 f ′(x)

)′ = 2x

(1 + x)3
. (4.22)

This together with Corollary 2.5(2) implies that f (x) is increasing and HA-convex in R+ . Using (4.17) and Theorem 3.5, we
arrive at the left inequality in (4.20). From (4.22), one can easily see that f (x) is also increasing and AA-concave. Thus,
Theorem 3.1 and the expression (An(x), . . . , An(x)) ≺ (x1, . . . , xn) implies the right inequality in (4.20). Taking r = 1 in (4.20)
leads to (4.21) and so the proof is completed. �

Using Theorems 4.7 and 4.11, we obtain the following results.

Corollary 4.12. If x = (x1, x2, . . . , xn) ∈ (0,1)n and r ∈ {1,2, . . . ,n}, then

Gn(x)

1 + Gn(x)
� 1

(n
r )

∑
1�i1<i2<···<ir�n

∏r
j=1 x

1
r
i j

1 + ∏r
j=1 x

1
r
i j

� An(x)

1 + An(x)
. (4.23)

In particular,

Gn(x)

1 + Gn(x)
� An

(
x

1 + x

)
� An(x)

1 + An(x)
. (4.24)

Corollary 4.13. If x = (x1, x2, . . . , xn) ∈ [1,∞)n and r ∈ {1,2, . . . ,n}, then

Hn(x)

1 + Hn(x)
� 1

(n
r )

∑
1�i1<i2<···<ir�n

∏r
j=1 x

1
r
i j

1 + ∏r
j=1 x

1
r
i j

� Gn(x)

1 + Gn(x)
. (4.25)

In particular,

Hn(x)

1 + Hn(x)
� An

(
x

1 + x

)
� Gn(x)

1 + Gn(x)
. (4.26)
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