

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Some properties of a generalized Hamy symmetric function and its applications

Kaizhong Guan^{a,*}, Ruke Guan^b

^a Research Institute of Mathematics, University of South China, Hengyang, Hunan 421001, China
^b School of Urban Construction, University of South China, Hengyang, Hunan 421001, China

ARTICLE INFO

Article history: Received 28 January 2010 Available online 8 October 2010 Submitted by B.S. Thomson

Keywords: Convexity Schur-convexity Hamy symmetric function Monotonicity Inequality

ABSTRACT

This paper is concerned with the generalized Hamy symmetric function

$$\sum_{n} (x, r; f) = \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq n} f\left(\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}\right).$$

where f is a positive function defined in a subinterval of $(0, +\infty)$. Some properties, including Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity are investigated. As applications, several inequalities are obtained, some of which extend the known ones.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let R_+ denote the set of all positive real numbers and R_+^n its *n*-product. For $\Omega \subseteq R_+^n$, let

$$\ln \Omega = \{ (\ln x_1, \ln x_2, \dots, \ln x_n) \mid x = (x_1, x_2, \dots, x_n) \in \Omega \}$$

and

$$1/\Omega = \{ (1/x_1, 1/x_2, \dots, 1/x_n) \mid x = (x_1, x_2, \dots, x_n) \in \Omega \}.$$

For a positive *n*-tuple $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$, Hamy [12] introduced the symmetric function

$$F_n(x,r) = F_n(x_1, \dots, x_n; r) = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} \left(\prod_{j=1}^r x_{i_j} \right)^{\frac{1}{r}}, \quad r = 1, 2, \dots, n.$$
(1.1)

In Hamy's honor, the above function is called Hamy symmetric function. Corresponding to this function is the *r*-th order Hamy mean

$$\sigma_n(x,r) = \frac{1}{\binom{n}{r}} \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} \left(\prod_{j=1}^r x_{i_j} \right)^{\frac{1}{r}}, \quad r = 1, 2, \dots, n,$$
(1.2)

* Corresponding author.

E-mail address: guan668@yahoo.com.cn (K. Guan).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,$ © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2010.10.014 $\,$

where $\binom{n}{r} = \frac{n!}{(n-r)!r!}$. It is obvious that $\sigma_n(x, 1)$ is the arithmetic mean

$$A_n(x) = A_n(x_1, x_2, \dots, x_n) = \frac{x_1 + x_2 + \dots + x_n}{n}$$

and $\sigma_n(x, n)$ is the geometric mean

$$G_n(x) = G_n(x_1, x_2, \ldots, x_n) = \sqrt[n]{x_1 x_2 \ldots x_n}.$$

There are some papers on Hamy symmetric function and its mean. For example, Hara et al. [13] established the following refinement of the classical arithmetic and geometric means inequality:

$$G_n(x) = \sigma_n(x, n) \leqslant \sigma_n(x, n-1) \leqslant \dots \leqslant \sigma_n(x, 2) \leqslant \sigma_n(x, 1) = A_n(x).$$

$$\tag{1.3}$$

The paper [17] by Ku et al. contains some interesting inequalities including the fact that $(\sigma_n(x, r))^r$ is log-concave. For more details, please refer to the book [6] by Bullen. In 2006, Guan [8] investigated Schur-convexity of Hamy symmetric function $F_n(x, r)$ and some inequalities were also obtained by use of the theory of majorization.

Recently, Guan [9] defined a generalized Hamy symmetric function of the form

$$\sum_{n} (x, r; f) = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} f\left(\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}\right), \quad r = 1, 2, \dots, n,$$
(1.4)

where *f* is a positive function defined in a subinterval of $(0, +\infty)$. The author investigated the geometric Schur-convexity of $\sum_{n} (x, r; f)$ when *f* is a multiplicatively convex function, i.e., *GG*-convex function.

The main purpose of this paper is to investigate further Schur-convexity, geometric Schur-convexity, and harmonic Schur-convexity of $\sum_{n}(x, r; f)$. As applications, some inequalities are established by use of the theory of majorization. Our results improve the known ones.

The notation of Schur-convex function was introduced by I. Schur in 1923 [24]. It has many important applications in analytic inequalities [4,8,10,14,19,25], combinatorial optimization [15], isoperimetric problem for polytopes [27], gamma and digamma functions [20], and other related fields. For a historical development of this kind of functions and the fruitful applications to statistics, economics and other applied fields, refer to the popular book by Marshall and Olkin [19].

Definition 1.1. (See [10,19,24–26].) A real-valued function ϕ defined on a set $\Omega \subseteq \mathbb{R}^n$ $(n \ge 2)$ is said to be a Schur-convex function on Ω if

$$\phi(x_1, x_2, \ldots, x_n) \leqslant \phi(y_1, y_2, \ldots, y_n)$$

for each pair of *n*-tuples $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ on Ω , such that *x* is majorized by *y* (in symbols $x \prec y$), that is,

$$\sum_{i=1}^{m} x_{[i]} \leq \sum_{i=1}^{m} y_{[i]}, \quad m = 1, 2, \dots, n-1, \text{ and } \sum_{i=1}^{n} x_{[i]} = \sum_{i=1}^{n} y_{[i]},$$

where $x_{[i]}$ denotes the *i*th largest component in *x*. ϕ is called Schur-concave if $-\phi$ is Schur-convex.

The notation of geometric convexity was introduced by Montel [22] and investigated by Anderson et al. [3], Guan [11] and Niculescu [23]. The geometric Schur-convexity was investigated by Chu et al. [7], Guan [9], and Niculescu [23]. We also note that the authors use the term "Schur-multiplicative (geometric) convexity". However, we here point out that the term "geometric Schur-convexity" is more appropriate. As a matter of fact, from [7,9,11,22,23], we have no difficulty to find that f being geometric convexity theory means that the function $x \mapsto \log f(e^x)$ is convex and that "Schur-multiplicative (geometric) convexity" of ϕ is equivalent to Schur-convexity of the function $x \mapsto \log \phi(e^x)$, which in turn, for positive functions, is equivalent to Schur-convexity of the function $x \mapsto \log \phi(e^x)$. Thus, we give an alternative definition of geometric Schur-convexity.

Definition 1.2. Let $\Omega \subseteq \mathbb{R}^n_+$ $(n \ge 2)$ be a set. A real-valued function $\phi : \Omega \to \mathbb{R}$ is called a geometrically Schur-convex function on Ω if the function $x \mapsto \phi(e^x)$ is Schur-convex on $\ln \Omega$. ϕ is called geometrically Schur-concave if $-\phi$ is geometrically Schur-convex.

Recently, Xia et al. [26] introduced the notion of harmonically Schur-convex function and some interesting inequalities were obtained.

Definition 1.3. (See [26].) Let $\Omega \subseteq \mathbb{R}^n_+$ ($n \ge 2$) be a set. A real-valued function ϕ defined on Ω is called a harmonically Schurconvex function if the function $x \mapsto \phi(1/x)$ is Schur-convex on $1/\Omega$. ϕ is called a harmonically Schur-concave function on Ω if $-\phi$ is harmonically Schur-convex.

Let M(x, y) and N(x, y) be any two mean functions of two positive numbers $x, y \in R_+$. Anderson et al. [3] introduced the definition of *MN*-convex function as follows.

Definition 1.4. (See [3].) Let $f: I \to R_+$ be continuous, where *I* is a subinterval of $(0, \infty)$. The function *f* is called *MN*-convex (concave) if $f(M(x, y)) \leq (\geq)N(f(x), f(y))$, for all $x, y \in I$.

Remark 1.5. Let A(x, y) (G(x, y), H(x, y)) denote the arithmetic (geometric, harmonic) mean of two positive numbers x, y, it follows from [3] that

(1) *f* is *GG*-convex \Rightarrow *GA*-convex;

(2) f is HH-convex \Rightarrow HG-convex \Rightarrow HA-convex. For concavity, the implications in (1) and (2) are reversed.

2. Lemmas

In order to establish our main results we need several lemmas, which we present in this section. The following lemma is so-called Schur's condition which is very useful for determining whether or not a given function is Schur-convex or Schur-concave.

Lemma 2.1. (See [8,10,19].) Let $\Omega \subseteq \mathbb{R}^n$ be symmetric and convex set with nonempty interior, and let $f : \Omega \to \mathbb{R}$ be differentiable in the interior of Ω and continuous on Ω . Then f is Schur-convex on Ω if and only if f is symmetric on Ω and

$$(x_1 - x_2) \left(\frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2} \right) \ge 0$$
(2.1)

for all $x \in \Omega^0$, where Ω^0 is the interior of Ω .

Schur's condition that guarantees a symmetric function being Schur-concave is the same as (2.1) except the direction of the inequality.

Remark 2.2. From Definitions 1.2 and 1.3, Lemma 2.1 implies the following conclusion (also see [7,9,10,26]).

Let $f(x) = f(x_1, x_2, ..., x_n)$ be symmetric and have continuous partial derivatives on I^n , where I is a subinterval of $(0, \infty)$. Then

(1) $f: I^n \to R$ is a geometrically Schur-convex function if and only if

$$(\ln x_1 - \ln x_2) \left(x_1 \frac{\partial f(x)}{\partial x_1} - x_2 \frac{\partial f(x)}{\partial x_2} \right) \ge 0$$
(2.2)

for all $x \in I^n$, f is geometrically Schur-concave if and only if (2.2) is reversed.

(2) $f: I^n \to R$ is a harmonically Schur-convex function if and only if

$$(x_1 - x_2) \left(x_1^2 \frac{\partial f(x)}{\partial x_1} - x_2^2 \frac{\partial f(x)}{\partial x_2} \right) \ge 0$$
(2.3)

for all $x \in I^n$, f is harmonically Schur-concave if and only if (2.3) is reversed.

Lemma 2.3. (See [19, p. 89].) Let Ω be a symmetric and convex subset of \mathbb{R}^l , and let ϕ be a Schur-convex function defined on Ω with the property for each fixed x_2, \ldots, x_l , the function

 $\phi(z, x_2, \ldots, x_l)$ is convex in z on $\{z \mid (z, x_2, \ldots, x_l) \in \Omega\}$.

Then for any n > l,

$$\psi(x_1,\ldots,x_n)=\sum_{\pi}\phi(x_{\pi(1)},\ldots,x_{\pi(l)})$$

is Schur-convex on $\Omega^* = \{(x_1, \ldots, x_n) \mid (x_{\pi(1)}, \ldots, x_{\pi(l)}) \in \Omega \text{ for all permutations } \pi\}.$

Recall that Anderson et al. [3] investigated the relation between convexity and *GA* (*HA*, *GG*)-convexity for a function defined in (0, b), $0 < b < \infty$. We can establish a more general lemma in a similar way as follows.

Lemma 2.4. Let $I \subseteq R_+$ be an interval and $f : I \to R_+$ be continuous in *I*. Then

- (1) *f* is GA-convex (concave) in *I* if and only if $f(e^x)$ is convex (concave) in $\ln I = {\ln x | x \in I}$;
- (2) *f* is HA-convex (concave) in *I* if and only if f(1/x) is convex (concave) in $1/I = \{\frac{1}{x} | x \in I\}$;
- (3) *f* is GG-convex (concave) in *I* if and only if $\ln f(e^x)$ is convex (concave) in $\ln I = \{\ln x \mid x \in I\}$.

Proof. We only consider the case I = (a, b) $(0 < a < b < \infty)$, since the case where I is another interval is similar if we define $\ln 0 = -\infty$, $\ln(+\infty) = +\infty$, $1/0 = +\infty$ and $1/\infty = 0$.

(1) Let $g(x) = f(e^x)$, and let $x, y \in \ln I = (\ln a, \ln b)$, so $e^x, e^y \in (a, b)$. Then f is GA-convex (concave) in (a, b) if and only if

$$f\left(\sqrt{e^{x}e^{y}}\right) \leq (\geq) \frac{f(e^{x}) + f(e^{y})}{2} \quad \Leftrightarrow \quad g\left(\frac{x+y}{2}\right) \leq (\geq) \frac{g(x) + g(y)}{2},$$

hence the result.

(2) Let g(x) = f(1/x), and let $x, y \in 1/I = (1/b, 1/a)$, so $1/x, 1/y \in (a, b)$. Then f is HA-convex (concave) in (a, b) if and only if

$$f\left(\frac{2}{x+y}\right) \leqslant (\geqslant) \frac{f(1/x) + f(1/y)}{2} \quad \Leftrightarrow \quad g\left(\frac{x+y}{2}\right) \leqslant (\geqslant) \frac{g(x) + g(y)}{2},$$

hence the result.

(3) Let $g(x) = \ln f(e^x)$, and let $x, y \in \ln I = (\ln a, \ln b)$, so $e^x, e^y \in (a, b)$. Then f is GG-convex (concave) in (a, b) if and only if

$$f(\sqrt{e^{x}e^{y}}) \leq (\geq)\sqrt{f(e^{x})f(e^{y})} \quad \Leftrightarrow \quad \ln f(e^{\frac{x+y}{2}}) \leq (\geq)\frac{\ln f(e^{x}) + \ln f(e^{y})}{2}$$
$$\Leftrightarrow \quad g\left(\frac{x+y}{2}\right) \leq (\geq)\frac{g(x) + g(y)}{2},$$

hence the result. \Box

The next result is an immediate consequence of Lemma 2.4.

Corollary 2.5. Let *I* be a subinterval of $(0, \infty)$ and $f: I \to R_+$ have continuous derivatives in *I*. Then

- (1) f is GA-convex (concave) if and only if xf'(x) is increasing (decreasing);
- (2) f is HA-convex (concave) if and only if $x^2 f'(x)$ is increasing (decreasing);
- (3) f is GG-convex (concave) if and only if xf'(x)/f(x) is increasing (decreasing).

Lemma 2.6. (See [10,26].) Assume that $x_i > 0$, i = 1, 2, ..., n, $\sum_{i=1}^n x_i = s$, and $c \ge s$. Then

$$\frac{c-x}{\frac{nc}{s}-1} = \left(\frac{c-x_1}{\frac{nc}{s}-1}, \frac{c-x_1}{\frac{nc}{s}-1}, \dots, \frac{c-x_n}{\frac{nc}{s}-1}\right) \prec (x_1, x_2, \dots, x_n) = x.$$

3. Main results

In this section, we mainly investigate Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity of $\sum_{n} (x, r; f)$. Some relevant results in the literature are generalized and improved.

Theorem 3.1. Let *I* be a subinterval of $(0, +\infty)$ and $f: I \rightarrow R_+$ be a continuous function. Then

- (1) $\sum_{n}(x,r; f)$ is Schur-convex in I^{n} if f is decreasing and AA-convex (usual convex) in I; (2) $\sum_{n}(x,r; f)$ is Schur-concave in I^{n} if f is increasing and AA-concave in I.

Proof. (1) Let $\phi(x_1, ..., x_r) = f(\sqrt[r]{x_1x_2...x_r}), (x_1, x_2, ..., x_r) \in l^r$. From Lemma 2.1 (or Chapter 3, F1 in [19, p. 83]), it follows that the function $\sqrt[1]{x_1x_2...x_r}$ is Schur-concave in I^r , and so $\phi = f(\sqrt[1]{x_1x_2...x_r})$ is Schur-convex for f decreasing. Since f is convex in I, one can easily see that for each fixed x_2, \ldots, x_r , the function ϕ is convex in z on $\{z \mid (z, x_2, \ldots, x_r) \in I^r\}$. It follows from Lemma 2.3 that the function

$$\psi(x_1, x_2, \dots, x_n) = \sum_{\pi} \phi(x_{\pi(1)}, \dots, x_{\pi(r)})$$

is Schur-convex in I^n . Then the function $\sum_n (x, r; f)$ is Schur-convex in I^n since $\sum_n (x, r; f) = \frac{1}{r!} \psi(x_1, x_2, \dots, x_n)$.

(2) If f is increasing and AA-concave in I, then -f is decreasing and AA-convex. By the part (1), the function $-\sum_{n}(x,r;f)$ is Schur-convex and so $\sum_{n}(x,r;f)$ is Schur-concave. The proof is completed.

Corollary 3.2. Assume that $x_i > 0$, i = 1, 2, ..., n, $\alpha \in R$, and set

$$F_n^r(x,\alpha) = \sum_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} \left(\prod_{j=1}^r x_{i_j} \right)^{\frac{\alpha}{r}}, \quad r = 1, 2, \dots, n.$$

We have

(1) if $0 < \alpha \leq 1$, then $F_n^r(x, \alpha)$ is Schur-concave in \mathbb{R}^n_+ ; (2) if $\alpha < 0$, then $F_n^r(x, \alpha)$ is Schur-convex in \mathbb{R}^n_+ .

Proof. Let $f(x) = x^{\alpha}$, $x \in (0, +\infty)$, one can easily verify that f(x) is increasing and AA-concave for $0 < \alpha \leq 1$, and that f(x) is decreasing and AA-convex for $\alpha < 0$. By Theorem 3.1, we can conclude that the results hold and so the proof is completed. \Box

Theorem 3.3. Let $f : I \to R_+$ be a continuous function, where I is a subinterval of $(0, \infty)$. Then

(1) $\sum_{n}(x,r; f)$ is geometrically Schur-convex in I^{n} if f is GA-convex in I; (2) $\sum_{n}(x,r; f)$ is geometrically Schur-concave in I^{n} if f is GA-concave in I.

Proof. (1) By Definition 1.2, we only need to prove that

$$\sum_{n} \left(e^{x}, r; f \right) = \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq n} f\left(e^{\frac{x_{i_1} + \dots + x_{i_r}}{r}} \right)$$

is Schur-convex on $\ln(I^n) = (\ln I)^n$. One can easily see that the function $\phi(x_1, \ldots, x_r) = f(e^{\frac{x_1+\cdots+x_r}{r}})$ is Schur-convex. For each fixed x_2, \ldots, x_r , from Lemma 2.4 it follows that the function $\phi(z, x_2, \ldots, x_r)$ is convex in z on $\{z \mid (z, x_2, \ldots, x_r) \in \ln(I^r)\}$. It follows from Lemma 2.3 that the function

$$\psi(x_1, x_2, \dots, x_n) = \sum_{\pi} \phi(x_{\pi(1)}, \dots, x_{\pi(r)})$$

is Schur-convex in $\ln(I^n)$. This shows that the function $\sum_n (e^x, r; f)$ is Schur-convex in $\ln(I^n)$ since $\sum_n (e^x, r; f) =$ $\frac{1}{r!}\psi(x_1,x_2,\ldots,x_n).$

(2) If f is GA-concave in I, then -f is GA-convex. By the part (1), the function $-\sum_n (x, r; f)$ is geometric Schur-convex and so $\sum_{n}(x, r; f)$ is geometric Schur-concave. The proof is completed. \Box

Remark 3.4. When f is monotonic and GG-convex, Guan [9] proved that $\sum_{n} (x, r; f)$ is geometrically Schur-convex in I^{n} . By Remark 1.5, one can easily see that Theorem 3.3 generalizes Theorem 2.3 in [9].

Theorem 3.5. Let $f: I \to R_+$ be a continuous function, where I is a subinterval of $(0, +\infty)$. Then

(1) $\sum_{n}(x,r; f)$ is harmonically Schur-convex in I^{n} if f is increasing and HA-convex in I; (2) $\sum_{n}(x,r; f)$ is harmonically Schur-concave in I^{n} if f is decreasing and HA-concave in I.

Proof. (1) By Definition 1.3, we need to prove that the function $\sum_{n}(1/x, r; f)$ is Schur-convex in $1/I^n = (1/I)^n$. Note that

$$\sum_{n} (1/x, r; f) = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} f\left(\prod_{j=1}^r \left(\frac{1}{x_{i_j}}\right)^{1/r}\right).$$

Put

$$\varphi(x_1,\ldots,x_r)=f\bigg(\frac{1}{\sqrt[r]{x_1\ldots x_r}}\bigg).$$

Using Lemma 2.1, one can find that $\frac{1}{\sqrt[1]{x_1...x_r}}$ is Schur-convex in $1/l^r = (1/l)^r$, which implies that the function $\varphi(x_1, ..., x_r)$ is Schur-convex if f is increasing. Form Lemma 2.4, for fixed $x_2, ..., x_r$, the function $\varphi(z, x_1, ..., x_r)$ is convex in z. It follows from Lemma 2.3 that the function

$$\psi(x_1, x_2, \ldots, x_n) = \sum_{\pi} \varphi(x_{\pi(1)}, \ldots, x_{\pi(r)})$$

is Schur-convex in $1/I^n$. This implies that the function $\sum_n (1/x, r; f)$ is Schur-convex in $1/I^n$ since $\sum_n (1/x, r; f) = \frac{1}{r!}\psi(x_1, x_2, \dots, x_n)$.

(2) If f is decreasing and *HA*-concave in I, then -f is increasing and *HA*-convex. By the part (1), the function $-\sum_{n}(x, r; f)$ is harmonic Schur-convex and so $\sum_{n}(x, r; f)$ is harmonic Schur-convex. The proof is completed. \Box

Remark 3.6. From Remark 1.5, one can easily find that the conclusion of Theorem 3.5(1) holds if f is increasing and GA-convex. The result in Theorem 3.5(2) is true if f is decreasing and GA-concave.

Using Corollary 2.5, one can easily verify that f(x) = x is increasing and AA-concave, GA-convex, and increasing and HA-convex in R_+ . Using Theorems 3.1, 3.3 and 3.5, respectively, we can establish the following corollary.

Corollary 3.7. Hamy symmetric function $F_n(x, r)$, $r \in \{1, 2, ..., n\}$, is Schur-concave, geometrically Schur-convex, and harmonically Schur-convex in R_{+}^n .

Theorem 3.8. Assume that $f: I \to R_+$ be a real-valued function, where I is a subinterval of $(0, \infty)$, set

$$\sigma_n^r(\mathbf{x}; f) = \frac{1}{\binom{n}{r}} \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} f\left(\prod_{j=1}^r x_{i_j}^{1/r}\right), \quad r = 1, 2, \dots, n,$$

the following statements hold.

(1) If f is GA-convex, then

$$\sigma_n^n(x;f) \leqslant \sigma_n^{n-1}(x;f) \leqslant \dots \leqslant \sigma_n^2(x;f) \leqslant \sigma_n^1(x;f).$$
(3.1)

(2) If f is GA-concave, then the inequality (3.1) is reversed, that is,

$$\sigma_n^n(x;f) \ge \sigma_n^{n-1}(x;f) \ge \dots \ge \sigma_n^2(x;f) \ge \sigma_n^1(x;f).$$
(3.2)

Proof. As the proofs are similar, here we give the proof of (1). Using the same method as in original Hamy's proof for Hamy symmetric function [6], we only need to prove that

$$\sigma_n^{k+1}(x;f) \leqslant \sigma_n^k(x;f), \quad k = 1, 2, \dots, n-1.$$
(3.3)

Since *f* is *GA*-convex, then we have

$$\begin{split} &\sum_{1 \leq i_1 < \cdots < i_{k+1} \leq n} f\left((x_{i_1} x_{i_2} \dots x_{i_{k+1}})^{\frac{1}{k+1}}\right) \\ &= \sum_{1 \leq i_1 < i_2 < \cdots < i_{k+1} \leq n} f\left(\left((x_{i_2} \dots x_{i_{k+1}})^{\frac{1}{k}} (x_{i_1} x_{i_3} \dots x_{i_{k+1}})^{\frac{1}{k}} \dots (x_{i_1} x_{i_2} \dots x_{i_k})^{\frac{1}{k}}\right)^{\frac{1}{k+1}}\right) \\ &\leq \sum_{1 \leq i_1 < \cdots < i_{k+1} \leq n} \frac{1}{k+1} \left\{ f\left((x_{i_2} \dots x_{i_{k+1}})^{\frac{1}{k}}\right) + f\left((x_{i_1} x_{i_3} \dots x_{i_{k+1}})^{\frac{1}{k}}\right) + \cdots + f\left((x_{i_1} x_{i_2} \dots x_{i_k})^{\frac{1}{k}}\right)\right\} \\ &= \frac{n-k}{k+1} \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} f\left((x_{i_1} x_{i_2} \dots x_{i_k})^{\frac{1}{k}}\right), \end{split}$$

which implies that

$$\sigma_n^{k+1}(x;f) = \frac{1}{\binom{n}{k+1}} \sum_{1 \le i_1 < i_2 < \dots < i_{k+1} \le n} f\left((x_{i_1} x_{i_2} \dots x_{i_{k+1}})^{\frac{1}{k+1}} \right)$$
$$\leq \frac{1}{\binom{n}{k+1}} \frac{n-k}{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} f\left((x_{i_1} x_{i_2} \dots x_{i_k})^{\frac{1}{k}} \right)$$
$$= \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} f\left((x_{i_1} x_{i_2} \dots x_{i_k})^{\frac{1}{k}} \right)$$
$$= \sigma_n^k(x;f).$$

This shows that (3.3) holds and so the proof is completed. \Box

Remark 3.9. When f is *GG*-convex, Guan [9] also obtained the inequality (3.1). However, Remark 1.5 implies that Theorem 3.8 generalizes Theorem 2.1 in [9]. And moreover, by the definition of *GA*-convex, we can deduce the following so-called Jensen type inequality for *GA*-convex function

$$f\left(\sqrt[n]{x_1x_2\dots x_n}\right) \leqslant \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}.$$
(3.4)

It is clear that the inequality (3.1) is a refinement of the inequality (3.4).

Since f(x) = x is GA-convex in $(0, +\infty)$. The following conclusion immediately follows from Theorem 3.8.

Corollary 3.10. (See [8,13].) If $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$, then

 $G_n(x) = \sigma_n(x, n) \leqslant \sigma_n(x, n-1) \leqslant \cdots \leqslant \sigma_n(x, 2) \leqslant \sigma_n(x, 1) = A_n(x).$

4. Some applications

In this section, taking particular function f in Theorems 3.1, 3.3, 3.5 and 3.8, we establish some interesting inequalities. Some relevant results in the literature are recovered and generalized.

Theorem 4.1. If $0 < x_i < 1$, i = 1, ..., n, and $k \in \{1, 2, ..., n\}$, then the sequence

$$\frac{k}{\binom{n-1}{k-1}} \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} \frac{\sum_{j=1}^k x_{i_j}}{k - \sum_{j=1}^k x_{i_j}}$$

is non-increasing in $k = 1, 2, \ldots, n$.

Proof. Let $f(t) = \frac{\ln t}{1 - \ln t}$, $t \in (1, e)$. Differentiating it yields

$$f'(t) = \frac{1}{t(1 - \ln t)^2}$$
 and $(tf'(t))' = \frac{2}{t(1 - \ln t)^3}$

This implies that f(t) is GA-convex in (1, e). Using Theorem 3.8 and noting that

$$\sigma_n^k(t; f) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \dots < i_k \le n} \frac{\sum_{j=1}^k \ln t_{i_j}}{k - \sum_{j=1}^k \ln t_{i_j}},$$

one can see that the sequence

$$\frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \dots < i_k \le n} \frac{\sum_{j=1}^k \ln t_{i_j}}{k - \sum_{j=1}^k \ln t_{i_j}}$$

is non-increasing in k = 1, 2, ..., n. This and letting $t_i = e^{x_i} \in (1, e)$, i = 1, 2, ..., n, have completed the proof.

Remark 4.2. With the conditions of Theorem 4.1, Shapiro's inequality [10] reads as follows

$$\sum_{i=1}^{n} \frac{x_i}{1-x_i} \ge \frac{nS_n}{n-S_n},\tag{4.1}$$

where $S_n = \sum_{i=1}^n x_i$, $0 < x_i < 1$, i = 1, ..., n. One can easily see that Theorem 4.1 gives a refinement of Shapiro's inequality (4.1).

The *p*-th power mean of a positive *n*-tuple $x = (x_1, x_2, ..., x_n)$ is

$$M_n^p(x) = \begin{cases} (\frac{x_1^p + x_2^p + \dots + x_n^p}{n})^{1/p}, & p \neq 0, \\ G_n(x), & p = 0. \end{cases}$$

For $0 < x_i \leq 1/2$, i = 1, 2, ..., n, the well-known Ky Fan inequality [5, p. 5] reads as follows

$$\frac{G_n(x)}{G_n(1-x)} \leqslant \frac{A_n(x)}{A_n(1-x)},\tag{4.2}$$

where $1 - x = (1 - x_1, 1 - x_2, ..., 1 - x_n)$. The inequality (4.2) has stimulated many researchers to give new proofs, improvements and generalizations of it. See, for example [1,2,18] and the references cited therein. Now we establish the following Ky Fan type inequalities. **Theorem 4.3.** Let $\sum_{i=1}^{n} x_i = s \leq 1$, $x = (x_1, x_2, ..., x_n) \in (0, 1)^n$ $(n \ge 2)$. If $\alpha \in (-\infty, 0) \cup (0, 1]$, then

$$\left(\frac{F_n^r(x,\alpha)}{F_n^r(1-x,\alpha)}\right)^{1/\alpha} \leqslant \frac{A_n(x)}{A_n(1-x)}, \quad r = 1, 2, \dots, n,$$
(4.3)

where $F_n^r(x, \alpha)$ is defined as Corollary 3.2. In particular,

$$\frac{M_n^{\alpha}(x)}{M_n^{\alpha}(1-x)} \leqslant \frac{A_n(x)}{A_n(1-x)}.$$
(4.4)

Proof. From Lemma 2.6, it follows that

$$\frac{1-x}{n/s-1} = \left(\frac{1-x_1}{n/s-1}, \dots, \frac{1-x_n}{n/s-1}\right) \prec (x_1, x_2, \dots, x_n) = x.$$
(4.5)

(i) When $\alpha < 0$, by Corollary 3.2, $F_n^r(x, \alpha)$ is Schur-convex. This and (4.5) lead to

$$\frac{F_n^r(1-x,\alpha)}{F_n^r(x,\alpha)} \leqslant \left(\frac{n}{s}-1\right)^{\alpha}.$$

This implies (4.3).

(ii) When $0 < \alpha \leq 1$, it follows from Corollary 3.2 that $F_n^r(x, \alpha)$ is Schur-concave. This and (4.5) lead to

$$\frac{F_n^r(1-x,\alpha)}{F_n^r(x,\alpha)} \ge \left(\frac{n}{s}-1\right)^{\alpha}.$$

This also implies (4.3).

The cases (i) and (ii) show that (4.3) holds. Taking r = 1 in (4.3), we can obtain (4.4). The proof is completed.

Remark 4.4. Taking limits in (4.4) as $\alpha \rightarrow 0$ yields

$$\frac{G_n(x)}{G_n(1-x)} \leqslant \frac{A_n(x)}{A_n(1-x)},$$

where $0 < x_i < 1$, i = 1, 2, ..., n, and $\sum_{i=1}^n x_i \leq 1$.

Using Corollary 2.5(1), one can easily verify that the function f(x) = 1/x is GA-convex in R_+ . Theorem 3.8 immediately gives us the following result which was established by Hara et al. [13].

Theorem 4.5. (See [13].) If $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$, $H_n(x) = n / \sum_{i=1}^n (1/x_i)$, and $r \in \{1, 2, ..., n\}$, then the sequence

$$u(H, G, x; r) = \left(\frac{1}{\binom{n}{r}} \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} \frac{1}{(\prod_{j=1}^r x_{i_j})^{1/r}}\right)^{-1}$$

is non-decreasing with respect to k ($1 \le k \le n$), that is,

$$H_n(x) = u(H, G, x; 1) \le u(H, G, x; 2) \le \dots \le u(H, G, x; n-1) \le u(H, G, x; n) = G_n(x).$$
(4.6)

Hara et al. [13] also established a more general result than those of Corollary 3.10 and Theorem 4.5 by use of the *p*-th power mean $M_n^p(x)$. Fix $n \in N$, $x = (x_1, x_2, ..., x_n) \in \mathbb{R}_+^n$ and choose *k* with $1 \le k \le n$. For any $s, t \in \mathbb{R}$, let

$$u(s, t, x; k) = M_{\binom{n}{k}}^{s} \left(M_{k}^{t}(x_{1}, \dots, x_{k}), \dots, M_{k}^{t}(x_{n-k+1}, \dots, x_{n}) \right)$$
$$= \left\{ \frac{1}{\binom{n}{k}} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} \left(\frac{x_{i_{1}}^{t} + x_{i_{2}}^{t} + \dots + x_{i_{k}}^{t}}{k} \right)^{s/t} \right\}^{1/s},$$

the authors investigated the monotonicity of u(s, t, x; k) with respect to k. Here we give an alternative proof.

Theorem 4.6. (See [13].) If $s \le t$, then the sequence u(s, t, x; k) is non-decreasing with respect to k with $1 \le k \le n$.

Proof. If s = 0 and t = 0, then $u(s, t, x; k) = (\prod_{i=1}^{n} x_i)^{1/n}$ for k = 1, 2, ..., n. The result is obvious. If $s \neq 0$ and t = 0, one can prove the result as Corollary 3.10 does by taking $f(x) = x^s$, $x \in R_+$. Now we consider the case $s \neq 0$ and $t \neq 0$. To this end, let $f(y) = (\ln y)^{s/t}$, $y \in (1, \infty)$. Differentiating it yields

$$\left(yf'(y)\right)' = \frac{s}{t}\left(\frac{s}{t} - 1\right)(\ln y)^{\frac{s}{t} - 1}.$$

Consider the following three possible cases.

Case 1. If $0 < s \le t$, then the function *f* is *GA*-concave from Corollary 2.5(1). It follows from Theorem 3.8 that the sequence

$$\sigma_n^k(y; f) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} f\left(\prod_{j=1}^k y_{i_j}^{1/k}\right) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \left(\frac{\ln y_{i_1} + \dots + \ln y_{i_k}}{k}\right)^{s/t}$$

is non-decreasing in k. For $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$, letting $y_i = \exp(x_i^t)$, i = 1, 2, ..., n, and noticing that s > 0, we conclude that u(s, t, x; k) is also non-decreasing with respect to k.

Case 2. If $s \le t < 0$, then the function f is GA-convex by Corollary 2.5(1). It follows from Theorem 3.8 that the sequence

$$\sigma_n^k(y;f) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} f\left(\prod_{j=1}^k y_{i_j}^{1/k}\right) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \left(\frac{\ln y_{i_1} + \dots + \ln y_{i_k}}{k}\right)^{s/i_k}$$

is non-increasing in k. Taking $y_i = \exp(x_i^t)$, i = 1, 2, ..., n, and noticing that s < 0, we conclude that u(s, t, x; k) is non-decreasing with respect to k.

Case 3. If s < 0 < t, then the function f is *GA*-convex from Corollary 2.5(1). Using the same method as Case 2 does, we can also conclude that u(s, t, x; k) is non-decreasing with respect to k. The proof is completed. \Box

Theorem 4.7.

(1) If $x = (x_1, x_2, ..., x_n) \in (0, 1)^n$ and $r \in \{1, 2, ..., n\}$, then

$$\frac{1}{\binom{n}{r}} \sum_{1 \leqslant i_1 < i_2 < \dots < i_r \leqslant n} \frac{\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}}{1 + \prod_{j=1}^r x_{i_j}^{\frac{1}{r}}} \geqslant \frac{G_n(x)}{1 + G_n(x)},\tag{4.7}$$

$$\frac{1}{\binom{n}{r}} \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} \frac{1}{1 + \prod_{j=1}^r x_{i_j}^{\frac{1}{r}}} \le \frac{1}{1 + G_n(x)}.$$
(4.8)

(2) If $x = (x_1, x_2, ..., x_n) \in [1, \infty)^n$ and $r \in \{1, 2, ..., n\}$, then

$$\frac{1}{\binom{n}{r}} \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq n} \frac{\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}}{1 + \prod_{j=1}^r x_{i_j}^{\frac{1}{r}}} \leq \frac{G_n(x)}{1 + G_n(x)},\tag{4.9}$$

$$\frac{1}{\binom{n}{r}} \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} \frac{1}{1 + \prod_{j=1}^r x_{i_j}^{\frac{1}{r}}} \ge \frac{1}{1 + G_n(x)}.$$
(4.10)

Proof. We clearly see that

 $\left(\ln G_n(x), \ln G_n(x), \dots, \ln G_n(x)\right) \prec (\ln x_1, \ln x_2, \dots, \ln x_n).$ (4.11)

Let $f(x) = \frac{x}{1+x}$ and $g(x) = \frac{1}{1+x}$, $x \in (0, \infty)$. Directly computing gives us

$$\left(xf'(x)\right)' = \frac{1-x}{(1+x)^3},\tag{4.12}$$

and

$$(xg'(x))' = \frac{x-1}{(1+x)^3}.$$
(4.13)

Thus, (4.12) and Corollary 2.5(1) show that f(x) is GA-convex for $x \in (0, 1)$ and GA-concave for $x \in [1, \infty)$. Therefore, Theorem 3.3 and (4.11) lead to (4.7) and (4.9).

On the other hand, (4.13) and Corollary 2.5(1) show that g(x) is *GA*-concave for $x \in (0, 1)$ and *GA*-convex for $x \in [1, \infty)$. Thus, Theorem 3.3 and (4.11) lead to (4.8) and (4.10). The proof is completed. \Box

If we take r = 1 in Theorem 4.7, then we get the following corollary.

Corollary 4.8. If $x = (x_1, x_2, ..., x_n) \in [1, \infty)^n$, then

(1)
$$A_n\left(\frac{x}{1+x}\right) \leqslant \frac{G_n(x)}{1+G_n(x)},$$
 (4.14)

(2)
$$A_n\left(\frac{1}{1+x}\right) \ge \frac{1}{1+G_n(x)}.$$
 (4.15)

Both (4.14) and (4.15) are reversed if $x = (x_1, x_2, ..., x_n) \in (0, 1)^n$.

Theorem 4.9. If $x = (x_1, ..., x_n) \in \mathbb{R}^n_+$, $H_n(x) = n / \sum_{i=1}^n (1/x_i)$, and $k \in \{1, 2, ..., n\}$, then

$$\frac{1}{1+A_n(x)} \leq \frac{1}{\binom{n}{k}} \sum_{1 \leq i_1 < \dots < i_k \leq n} \frac{1}{1+(\prod_{j=1}^k x_{i_j})^{1/k}} \leq \frac{1}{1+H_n(x)}, \quad k = 1, 2, \dots, n.$$
(4.16)

Proof. One can easily verify that the function $f(x) = \frac{1}{1+x}$, $x \in (0, \infty)$, is decreasing and AA-convex. Therefore, from Theorem 3.1, we can see that

$$\sum_{n} (x, k; f) = \sum_{1 \leq i_1 < \dots < i_k \leq n} \frac{1}{1 + (\prod_{j=1}^k x_{i_j})^{1/k}}$$

is Schur-convex. This and the expression $(A_n(x), A_n(x), \dots, A_n(x)) \prec (x_1, \dots, x_n)$ imply the left inequality in (4.16). On the other hand, straightforward calculation gives us

$$f'(x) = -\frac{1}{(1+x)^2}$$
 and $(x^2 f'(x))' = -\frac{2x}{(1+x)^3}$

This together with Corollary 2.5(2) shows that f(x) is decreasing and HA-concave in R_{\perp}^{n} . One can easily see that

$$\left(\frac{1}{H_n(x)}, \frac{1}{H_n(x)}, \dots, \frac{1}{H_n(x)}\right) \prec \left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) = \frac{1}{x}.$$
(4.17)

Thus, the right inequality in (4.16) immediately follows from Theorem 3.5 and (4.17). The proof is completed. \Box

Remark 4.10.

(1) Taking k = 1 in (4.16), we obtain

$$\frac{1}{1+A_n(x)} \le \frac{1}{n} \sum_{i=1}^n \frac{1}{1+x_i} \le \frac{1}{1+H_n(x)}.$$
(4.18)

This inequality is also produced from the last formula by the end of [21].

(2) Using the expression $(x_1, x_2, ..., x_n) \prec (S_n, 0, ..., 0)$ (see [19, p. 133].) and Theorem 3.1, we also obtain

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+x_{i}}\leqslant 1-\frac{S_{n}}{n(1+S_{n})},$$
(4.19)

where $S_n = \sum_{i=1}^n x_i$, $x_i > 0$, i = 1, ..., n. This inequality was proposed by Janous [16]. (3) It is natural to ask which is sharper between the inequality (4.19) and the right inequality in (4.18). It is uncertain. As a matter of fact, if x = (1/2, 2), then we have $\frac{1}{1+H_n(x)} = \frac{5}{9} < 1 - \frac{S_n}{n(1+S_n)} = \frac{9}{14}$. If x = (1/4, 1/10), we obtain $\frac{1}{1+H_n(x)} = \frac{7}{8} > 1 - \frac{S_n}{n(1+S_n)} = \frac{47}{54}$.

Theorem 4.11. *If* $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$ and $r \in \{1, 2, ..., n\}$, then

$$\frac{H_n(x)}{1+H_n(x)} \leq \frac{1}{\binom{n}{r}} \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq n} \frac{\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}}{1+\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}} \leq \frac{A_n(x)}{1+A_n(x)}.$$
(4.20)

In particular,

$$\frac{H_n(x)}{1+H_n(x)} \leqslant A_n\left(\frac{x}{1+x}\right) \leqslant \frac{A_n(x)}{1+A_n(x)}.$$
(4.21)

Proof. Let $f(x) = \frac{x}{1+x}$, directly computing yields

$$f'(x) = \frac{1}{(1+x)^2}, \qquad f''(x) = -\frac{2}{(1+x)^3}, \qquad \left(x^2 f'(x)\right)' = \frac{2x}{(1+x)^3}.$$
(4.22)

This together with Corollary 2.5(2) implies that f(x) is increasing and *HA*-convex in R_+ . Using (4.17) and Theorem 3.5, we arrive at the left inequality in (4.20). From (4.22), one can easily see that f(x) is also increasing and *AA*-concave. Thus, Theorem 3.1 and the expression $(A_n(x), \ldots, A_n(x)) \prec (x_1, \ldots, x_n)$ implies the right inequality in (4.20). Taking r = 1 in (4.20) leads to (4.21) and so the proof is completed. \Box

Using Theorems 4.7 and 4.11, we obtain the following results.

Corollary 4.12. If $x = (x_1, x_2, ..., x_n) \in (0, 1)^n$ and $r \in \{1, 2, ..., n\}$, then

$$\frac{G_n(x)}{1+G_n(x)} \leq \frac{1}{\binom{n}{r}} \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq n} \frac{\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}}{1+\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}} \leq \frac{A_n(x)}{1+A_n(x)}.$$
(4.23)

In particular,

$$\frac{G_n(x)}{1+G_n(x)} \leqslant A_n\left(\frac{x}{1+x}\right) \leqslant \frac{A_n(x)}{1+A_n(x)}.$$
(4.24)

Corollary 4.13. *If* $x = (x_1, x_2, ..., x_n) \in [1, \infty)^n$ and $r \in \{1, 2, ..., n\}$, then

$$\frac{H_n(x)}{1+H_n(x)} \leq \frac{1}{\binom{n}{r}} \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq n} \frac{\prod_{j=1}^r x_{i_j}^{\bar{r}}}{1+\prod_{j=1}^r x_{i_j}^{\frac{1}{r}}} \leq \frac{G_n(x)}{1+G_n(x)}.$$
(4.25)

In particular,

$$\frac{H_n(x)}{1+H_n(x)} \leqslant A_n\left(\frac{x}{1+x}\right) \leqslant \frac{G_n(x)}{1+G_n(x)}.$$
(4.26)

Acknowledgment

The authors are very grateful to the referee for his (her) suggestions for the improvement of this paper.

References

- [1] H. Alzer, On an inequality of Ky Fan, J. Math. Anal. Appl. 137 (1989) 168-173.
- [2] H. Alzer, The inequality of Ky Fan and related results, Acta Appl. Math. 38 (1995) 305-354.
- [3] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294-1308.
- [4] J.S. Aujla, F.C. Silva, Weak majorization inequalities and convex function, Linear Algebra Appl. 369 (2003) 217-233.
- [5] E.F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1961.
- [6] P.S. Bullen, Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
- [7] Y. Chu, X. Zhang, G. Wang, The Schur geometrical convexity of the extended mean values, J. Convex Anal. 4 (2008) 707–718.
- [8] K.Z. Guan, The Hamy symmetric function and its generalization, Math. Inequal. Appl. 4 (2006) 797-805.
- [9] K.Z. Guan, A class of symmetric functions for multiplicatively convex function, Math. Inequal. Appl. 4 (2007) 745-753.
- [10] K.Z. Guan, Some properties of a class of symmetric functions, J. Math. Anal. Appl. 336 (2007) 70-80.
- [11] K.Z. Guan, Multiplicative convexity and its applications, J. Math. Anal. Appl. 362 (2010) 156-166.
- [12] M. Hamy, Sur le théorème de la moyenne, Bull. Sci. Math. 14 (2) (1890) 103-104.
- [13] T. Hara, M. Uchiyama, S. Takahasi, A refinement of various mean inequalities, J. Inequal. Appl. 2 (1998) 387-395.

- [14] G.H. Hardy, J.E. Littlewood, D. Pólya, Some simple inequalities satisfied by convex functions, Mess. Math. 58 (1929) 145–152.
- [15] F.K. Hwang, U.G. Rothblum, Partition-optimization with Schur convex sum objective functions, SIAM J. Discrete Math. 3 (2004) 512–524.
- [16] W. Janous, Aufgabe 845, Elem. Math. 36 (1981) 100-101.
- [17] H.T. Ku, M.C. Ku, X.M. Zhang, Inequalities for symmetric means, symmetric harmonic means and theirs applications, Bull. Austral. Math. Soc. 56 (1997) 409–420.
- [18] N. Levinson, Generalization of an inequality of Ky Fan, J. Math. Anal. Appl. 8 (1964) 133-134.
- [19] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Application, Academic Press, New York, 1979.
- [20] M. Merkle, Convexity, Schur-convexity and bounds for the gamma function involving the digamma function, Rocky Mountain J. Math. 3 (1998) 1053-1066.
- [21] M. Merkle, Reciprocally convex functions, J. Math. Anal. Appl. 293 (2004) 210-218.
- [22] P. Montel, Sur les fonctions convexes et les fonctions sousharmoniques, J. Math. 9 (1928) 29-60.
- [23] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 2 (2003) 155-167.
- [24] I. Schur, Über eine klasse von mittelbildungen mit anwebdungen auf die determinantentheorie, Sitzunsber. Berlin. Math. Ges. 22 (1923) 9-20.
- [25] C. Stepolhkepniak, An effective characterization of Schur-convex functions with applications, J. Convex Anal. 1 (2007) 103-108.
- [26] W.F. Xia, Y.M. Chu, Schur-convexity for a class of symmetric functions and its applications, J. Inequal. Appl. 2009 (2009), Article ID 493759, 15 pages. [27] X.M. Zhang, Schur convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc. 2 (1998) 461–470.