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An explicit expression is obtained for the generating series for the number of
ramified coverings of the sphere by the torus, with elementary branch points and
prescribed ramification type over infinity. This proves a conjecture of Goulden,
Jackson, and Vainshtein for the explicit number of such coverings. � 1999
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1. INTRODUCTION

Let X be a compact connected Riemann surface of genus g�0.
A ramified covering of S2 of degree n by X is a non-constant meromorphic
function f : X � S2 such that | f &1(q)|=n for all but a finite number of
points q # S2, which are called branch points. Two ramified coverings f1 and
f2 of S2 by X are said to be equivalent if there is a homeomorphism
? : X � X such that f1= f2 b ?. A ramified covering f is said to be simple
if | f &1(q)|=n&1 for each branch point of f, and is almost simple if
| f &1(q)|=n&1 for each branch point with the possible exception of a
single point, that is denoted by �. The preimages of � are the poles of f.
If :1 , ..., :m are the orders of the poles of f, where :1� } } } �:m�1, then
:=(:1 , ..., :m) is a partition of n and is called the ramification type of f.

Let + (g)
m (:) be the number of almost simple ramified coverings of S2 by

X with ramification type :. The problem of determining an (explicit)
expression for + (g)

m (:) is called the Hurwitz Enumeration Problem. The pur-
pose of this paper is to prove the following result for the torus, giving an
explicit expression for + (1)

m (:) for an arbitrary partition :=(:1 , ..., :m).
Theorem 1.1 was previously conjectured by Goulden et al. in [4] where it
was proved for all partitions : with m�6, and for the particular partition
(1m), for any m�1. Let C: be the conjugacy class of the symmetric group
Sn on n symbols indexed by the partition : of n.
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Theorem 1.1.

+ (1)
m (:)=

|C: |
24 n !

(n+m)! \`
m

i=1

::i
i

(:i&1)!+\nm&nm&1& :
m

i=2

(i&2)! ei nm&i+
where ei is the ith elementary symmetric function in :1 , ..., :m and
e1=:1+ } } } +:m=n.

Previously Hurwitz [5] had stated that, for the sphere,

+ (0)
m (:)=

|C: |
n !

(n+m&2)! nm&3 \`
m

i=1

::i
i

(:i&1)!+ . (1)

A proof was of this sketched by Hurwitz [5]. It was first proved by
Goulden and Jackson [2] (see also Strehl [6]). The approach developed
by Hurwitz is outlined in the next section.

Very recently Vakil [7] has given an independent proof of Theorem 1.1.
He develops, by techniques in algebraic geometry, and solves a recurrence
equation that is completely different in character from the one obtained
from the differential equation in this paper.

2. HURWITZ'S COMBINATORIALIZATION OF RAMIFIED
COVERINGS

Hurwitz's approach was to represent a ramified covering f of S2, with
ramification type :, by a combinatorial datum (_1 , ..., _r) consisting of
transpositions in Sn , whose product ? is in C: , such that (_1 , ..., _r) acts
transitively on the set [1, ..., n] of sheet labels and that r=n+m+
2(g&1), where m=l(:), the length of :. The latter condition is a conse-
quence of the Riemann-Hurwitz formula. Under this combinatorialization
he showed that

+(g)
m (:)=

|C: |
n !

cg(:),

where cg(:) is the number of such factorizations of an arbitrary but fixed
? # C: . He studied the effect of multiplication by _r on _1 } } } _r&1 to derive
a recurrence equation for cg(:). The difficulty with Hurwitz's approach is
that the recurrence equations for cg(:) are intractable in all but a small
number of special cases.

It appears that his approach can be made more tractable by the intro-
duction of cut operators and join operators that have been developed for
combinatorial purposes by Goulden [1], Goulden and Jackson [2], and
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Goulden et al. [4]. These are partial differential operators in indeter-
minates p1 , p2 , ... that take account of the enumerative consequences of the
multiplication by _r on \=_1 } } } _r&1 , when summed over all such
ordered transitive factorizations. There are two cases. The action of _r on
\ is either to join an i-cycle and a j-cycle of \ to produce an i+ j-cycle, or
to cut an i+ j-cycle of \ to produce an i-cycle and a j-cycle. In the first case
the operators are the join operators

pi+ j
�2

�pi �pj
and pi+ j \ �

�pi +\
�

�p j+ ,

and in the second case the operator is the cut operator

pi pj
�

�pi+ j
.

A ``cut-and-join'' analysis of the action of _r on \ therefore leads to a non-
homogeneous partial differential equation in a countably infinite number of
variables (indeterminates) for the generating series 8 for cg(:). The type of
8 is determined by the combinatorial properties of the cut-and-join
analysis.

The advantage of this approach to the Hurwitz Enumeration Problem is
that it facilitates the transformation of the differential equation for 8 by an
implicit change of variables. The series that is involved with this transfor-
mation is denoted by s=s(x, p) throughout, where p=( p1 , p2 , ...), and
appears to be fundamental to the problem.

3. THE DIFFERENTIAL EQUATION

Let p:= p:1
} } } p:m

where :=(:1 , ..., :m). Let

8(u, x, z, p)= :

g�0
n, m�1

:

l(:)=m
: |&n

|C: | cg(:)
un+m+2(g&1)

(n+m+2(g&1))!
xn

n !
z gp: , (2)

the generating series for cg(:), where : |&n signifies that : is a partition of
n. It was shown in [4] that f =8(u, 1, z, p) satisfies the partial differential
equation

�f
�u

=
1
2

:
i, j�1

\ijp i+ jz
�2f

�pi �pj
+ijpi+j

�f
�pi

�f
�pj

+(i+j) pi pj
�f

�pi+j+ . (3)

248 GOULDEN AND JACKSON



By replacing pi by xipi for i�1 it is readily seen that f =8(u, x, z, p)
satisfies (3). But 8(u, x, z, p) # Q[u, z, p][[x]], and it is also readily seen
that (3) has a unique solution in this ring.

Let Fi (x, p)=[zi] 8(1, x, z, p) for i=0, 1, where [zi] f denotes the
coefficient of zi in the formal power series f. Then F0 is the generating series
for the numbers c0(:), which have been determined by Hurwitz, so F0 is
known. F1 is the generating series for c1(:). The next result gives the linear
first order partial differential equation for F1 that is induced by restricting
(3) above to terms of degree at most one in z.

Lemma 3.1. The series f =F1 satisfies the partial differential equation

T0 f &T1=0, (4)

where

T0=x
�

�x
+ :

i�1

p i
�

�pi
& :

i, j�1

ijpi+ j
�F0

�pi

�
�p j

&
1
2

:
i, j�1

(i+j ) pi pj
�

�p i+j
,

T1=
1
2

:
i, j�1

ijpi+ j
�2F0

�pi �p j
.

Proof. Clearly, from (3),

u
�

�u
[z] 8=[z] \x

�
�x

+ :
i�1

pi
�

�pi+ 8.

The result follows by applying [z] to (3). K

We now turn our attention to solving this partial differential equation.
Let

G1(x, p)=
1

24
:

n, m�1

:

l(:)=m
: |&n

|C: | \`
m

i=1

::i
i

(: i&1)!+

_\nm&nm&1& :
m

i=2

(i&2)! ei nm&i+ xn

n !
p: . (5)

Since (3) has a unique solution in Q[u, z, p] [[x]], then (4) has a unique
solution in Q[p] [[x]]. To establish Theorem 1.1 it therefore suffices to
show that f =G1 satisfies (4) (note that G1 has a constant term of 0, so the
initial condition is satisfied).
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4. THE GENERATING SERIES G1

To obtain a convenient form for G1 the following lemma is required that
expresses the elementary symmetric function ek(*) as the coefficient in a
formal power series. For a partition :=(:1 , ..., :r) let mi denote the
number of occurrences of i in :, and we may therefore write :=(1m1 } } } rmr).
Let �(:)=>r

i=1 i mimi !. Let P denote the set of all partitions with the null
partition adjoined.

Lemma 4.1. For any nonnegative integer k and partition *,

ek(*)=
�(*)
k !

[ p*]( p1+ p2+ } } } )k :
: # P

p:

�(:)
.

Proof. First

:
: # P

p:

�(:)
= :

m1 , m2 , ...�0

pm1
1

1m1m1 !
pm2

2

2m2m2 !
} } }

and

( p1+ p2+ } } } )k= :

i1+i2+ } } } =k
i1 , i2 , ...�0

k!
p i1

1 p i2
2 } } }

i1 ! i2 ! } } }
.

If *=(1 j1 2 j2 ...), then �(*)=1 j1j1 ! 2 j2j2 ! } } } so

�(*)
k !

[ p*]( p1+ p2+ } } } )k :
: # P

p:

�(:)
= :

i1+i2+ } } } =k
m1 , i1 , m2 , i2 , ...�0

\j1

i1+ 1i1 \j2

i2+ 2i2 } } } ,

where the sum is further constrained by i1+m1= j1 , i2+m2= j2 , ... . Then

�(*)
k !

[ p*]( p1+ p2+ } } } )k :
: # P

p:

�(:)
=[tk](1+t) j1 (1+2t) j2 (1+3t) j3 } } }

=ek((1 j12 j2 } } } ))

and the result follows. K

Let

�i (x, p)= :
r�1

ri&1ar prxr, (6)
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where i is an integer and ar=rr�(r&1)!, for r�1. Let s#s(x, p) be the
unique solution of the functional equation

s=xe�0(s, p) (7)

in the ring Q[p] [[x]]. An explicit series expansion of s can be obtained
by Lagrange's Implicit Function Theorem (see [3, Sect. 1.2], for example).
Let �i denote �i (s, p). The next result gives an expression for G1 explicitly
in terms of s, and indicates the fundamental importance of the series s to
the solution of the partial differential equation given in (3).

Theorem 4.2.

G1(x, p)= 1
24 log(1&�1)&1& 1

24 �0 .

Proof. For a partition :=(:1 , ..., :m), let a:=a:1
} } } a:m

and

g(x, p)= :
n�1

:

l(:)=m
: |&n

nm&1

�(:)
a: p:xn,

a constituent of the series G1 given in (5), since �(:)=n !�|C: |. It is easily
shown that

x
�g
�x

= :
n�1

xn[tn] en�0(t, p)

so, by Lagrange's Implicit Function Theorem,

x
�g
�x

=
�1

1&�1

.

But, from (7),

x
�s
�x

=
s

1&�1

(8)

and from (6),

��i

�s
=

1
s

�i+1 .

Then x�(g&�0)��x=0 and, since g(0, p)=0, it follows that g(x, p)=�0 .
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Next we consider the terms of G1 in (5) that are not included in g(x, p).
First, note that

:
% # P

p%

�(%)
=exp :

i�1

pi

i
,

so, replacing pi by ntpi ai for i�1 in Lemma 4.1, we have

�(:)
k !

[ p:tn](e�0(t, p))n �k
1(t, p)=nm&ka: ek(:),

where m=l(:). Then

a:nm& :
k�2

(k&2)! nm&ka:ek(:)

=�(:)[ p: tn] \1& :
k�2

1
k(k&1)

�k
1(t, p)+ (e�0(t, p))n

=�(:)[ p:xn]
1

1&�1 \1& :
k�2

1
k(k&1)

�k
1+

by Lagrange's Implicit Function Theorem, for n�1. Then

a:nm& :
k�2

(k&2)! nm&ka:ek(:)=�(:)[ p:xn](1+log(1&�1)&1).

The result follows by combining the two expressions that have been
obtained and by using the fact that G1(0, p)=0. K

5. THE PROOF OF THEOREM 1.1

The remaining portion of the paper is concerned with the proof of
Theorem 1.1.

Proof. Our strategy is to show that the expression for G1 given in
Theorem 4.2 satisfies the partial differential equation given in (4). We begin
by considering the derivatives that are required in the determination of
T0G1&T1 . From the functional equation (7)

�s
�pk

=
1
k

ak sk+1

1&�1

. (9)
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Then, for k�1,

��j

�pk
=k j&1ak sk+

ak

k
�j+1sk

1&�1

. (10)

The only derivatives of F0 that are needed are

�F0

�pk
=

ak

k3 sk&
ak

k2 :
r�1

ar pr
sk+r

k+r
, (11)

from Proposition 3.1 of [2] and, from (9) and (11),

�2F0

�pi �pj
=

ai a j

ij
s i+ j

i+ j
, (12)

for i, j�1. For completeness we note that, from Proposition 3.1 of [2],

\x
�

�x+
2

F0=�0 .

The derivatives of G1 that are needed are, from (9),

x
�G1

�x
=

1
24 \

�2

(1&�1)2&
�1

1&�1+ (13)

and, from (10), for k�1,

�G1

�pk
=

1
24

ak
sk

1&�1

+
1

24
ak

k
sk \ �2

(1&�1)2&
1

1&�1+ . (14)

Then from Lemma 3.1 and expressions (11), (12), (13), and (14) it follows
that

24(1&�1)2 (T0G1&T1)=�2(1+�0)&�0(1&�1)&12(1&�1)2 A

&(1&�1) B+(1&�1) C&(�1+�2&1) D

+(�1+�2&1) E, (15)

where

A= :
i, j�1

ai aj

i+ j
pi+ j si+ j,

B= :
i, j�1

iai a j

j 2 pi+ jsi+ j,
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C= :
i, j, m�1

ia i aj am

j( j+m)
p i+ jpm si+ j+m&

1

2
:

i, j�1

(i+ j) ai+ j pi pj si+ j,

D= :
i, j�1

ai aj

j 2 pi+ jsi+ j,

E= :
i, j, m�1

ai aj am

j( j+m)
pi+ jpmsi+ j+m&

1

2
:

i, j�1

ai+ j pi pj si+ j.

When the expression (15) is transformed by replacing pi si by qi , for
i�1, it is immediately seen to be a polynomial in q1 , q2 , ... of degree 3 with
rational coefficients. If Ui denotes the degree i part of the expression, for
i=1, ..., 3, the transformed expression can be written in the form

24(1&�1)2 (T0G1&T1)=U1+U2+U3 ,

where

U1=�2&�0&12A&B+D,

U2=�0(�1+�2)+24�1A+�1B+C&(�1+�2) D&E,

U3= &12�2
1 A&�1C+(�1+�2) E.

Then Ui # Hi[q1 , q2 , ...], the set of homogeneous polynomials of degree i
in q1 , q2 , ... . Let

|1, ..., i : Hi[q1 , q2 , ...] [ Q[x1 , x2 , ...]

be the symmetrization operation defined by

|1, ..., i (q:1
} } } q:i

)= :
? # Si

x:1
?(1) } } } x:i

?(i) ,

extended linearly to Hi[q1 , q2 , ...]. Then |1, ..., i f =0 implies that f =0 for
f # Hi[q1 , q2 , ...].

We therefore prove that Ui=0 by proving that |1, ..., i Ui=0, for
i=1, 2, 3. To determine the action of the symmetrization operator on
A, ..., E it is convenient to introduce the series w=w(x) as the unique
solution of the functional equation

w=xew (16)

in the ring Q[[x]]. By Lagrange's Implicit Function Theorem we have

w= :
n�1

nn&1

n!
xn.
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Now let wi=w(xi) and w ( j)
i =(xi ���xi)

j w i . Then, from (16),

w (1)
i =

w i

1&wi
, w (2)

i =
wi

(1&wi)
3 , w (3)

i =
wi+2w2

i

(1&wi)
5 . (17)

The action of the symmetrizing operator on A, ..., E and their products
with �i can be determined in terms of these as follows.

It is readily seen that

|1(�m)=w (m+1)
1 , m�&1.

For |1(A), using (17), we have

|1(A)= :
k�1

xk
1

k
[xk

1](w (2)
1 )2=|

x1

0
(w (2)

1 )2 dx1

x1

=|
w1

0

w1

(1&w1)5 dw1

so, by rearrangement

|1(A)= 1
12 ((1&w1) w (3)

1 +w1w (2)
1 &w (1)

1 ).

Trivially,

|1(B)=w (3)
1 w1 .

Next, |1, 2(C ) is the symmetrization of

:
i, j, m�1

ia i a j am

j( j+m)
x i+ j

1 xm
2 &

1
2

:
i, j�1

(i+ j) ai+ j x i
1 x j

2

with respect to x1 and x2 . Now

:
i, j, m�1

iai aj am

j( j+m)
x i+ j

1 xm
2 =w (3)

1 :
m�1

amxm
2 :

j�1

aj

j
x j

1

j+m

=w (3)
1 :

m�1

am xm
2

1
xm

1
|

x1

0
w (1)

1 xm&1
1 dx1 .

But, from (17), and integrating by parts, we obtain

|
x1

0
w (1)

1 xm&1
1 dx1=|

w1

0
wm

1 e&mw1 dw1=
1

am \1&xm
1 :

m

i=1

mm&i

(m&i)!
1

w i
1+&

xm
1

m
.
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Thus

:
i, j, m�1

iai aj am

j( j+m)
x i+ j

1 xm
2

=w (3)
1 \ x2

x1&x2

& :
m�1

xm
2 :

m

i=1

mm&i

(m&i)!
1

w i
1

&w (1)
2 +

=w (3)
1 \ x2

x1&x2

& :
m�1

xm
2 [tm] emt \\1&

t
w1 +

&1

&1+&w (1)
2 +

=w (3)
1 \ x2

x1&x2

&
w2

w1&w2

1
1&w2

&w (1)
2 +

by the Lagrange Implicit Function Theorem. Moreover, it is easily seen
that

:
i, j�1

(i+ j) ai+ j x i
1x j

2=
x2w (3)

1 &x1w (3)
2

x1&x2

.

Thus, by symmetrizing the indicated linear combination of these sums, we
have

|1, 2(C )= &w (3)
1 w (1)

2 &w (1)
1 w (3)

2 &
w(3)

1 w (1)
2 &w (1)

1 w (3)
2

w1&w2

.

Trivially,

|1(D)=w (2)
1 w1 .

Finally, |1, 2(E ) is obtained in a fashion similar to |1, 2(C ). The
expression is

|1, 2(E )= &w (2)
1 w (1)

2 &w (1)
1 w (2)

2 &
w(2)

1 w (1)
2 &w (1)

1 w (2)
2

w1&w2

.

These results may be combined to give expressions for the symmetriza-
tions of U1 , U2 , U3 as follows.

For the term of degree one,

|1(U1)=w (3)
1 &w (1)

1 &((1&w1) w(3)
1 +w1w (2)

1 &w (1)
1 )&w (3)

1 w1+w (2)
1 w1 .
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For the term of degree two, after rearrangement,

|1, 2(U2)=(w (2)
1 w (3)

2 +w (3)
1 w (2)

2 )(2&w1&w2)+w (2)
1 w (2)

2 (w1+w2)

&
w (3)

1 w (1)
2 &w (1)

1 w (3)
2

w1&w2

+
w (2)

1 w (1)
2 &w (1)

1 w (2)
2

w1&w2

.

When multiplied by w1&w2 and a suitable power of (1&w1)&1 and
(1&w2)&1 this becomes a polynomial in w1 and w2 that is identically zero.

For the term of degree three, after rearrangement,

|1, 2, 3(U3)=
1

w2&w3

(w (2)
1 (w (3)

2 w (1)
3 &w (1)

2 w (3)
3 )

&(w (2)
1 +w (3)

1 )(w (2)
2 w (1)

3 &w (1)
2 w (2)

3 ))

+
1

w1&w3

(w (2)
2 (w (3)

1 w (1)
3 &w (1)

1 w (3)
3 )

&(w (2)
2 +w (3)

2 )(w (2)
1 w (1)

3 &w (1)
1 w (2)

3 ))

+
1

w1&w2

(w (2)
3 (w (3)

1 w (1)
2 &w (1)

1 w (3)
2 )

&(w (2)
3 +w (3)

3 )(w (2)
1 w (1)

2 &w (1)
1 w (2)

2 ))

&2w (2)
1 w (2)

2 w (3)
3 (1&w3)&2w (2)

1 w (2)
3 w (3)

2 (1&w2)

&2w (2)
2 w (2)

3 w (3)
1 (1&w1)&2w (2)

1 w (2)
2 w (2)

3 (w1+w2+w3).

When multiplied by (w1&w2)(w2&w3)(w1&w3) and a suitable power of
(1&w1)&1, (1&w2)&1 and (1&w3)&1 this becomes a polynomial in w1 , w2

and w3 that is identically zero.
It is quickly seen that |1(U1) is zero. For both |1, 2(U2) and |1, 2, 3(U3),

however, the polynomial expressions were sufficiently large that it was
convenient to use Maple to carry out the routine simplification of this
stage.

Thus the symmetrization of 24(1&�1)2 (T0G1&T1)=0 so T0G1&
T1=0. It follows from Lemma 3.1 that F1=G1 and this completes the
proof of Theorem 1.1. K
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