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Abstract

We construct examples of essential maps of finite complgxeé — Y which are trivial of order
> n. This latter condition implies that for any spaée with cone length< n, the induced map
f«+=0:[K, X]— [K, Y]. The main result establishes a connection between the skeleta of the infinite
dimensional domains of essential phantom maps and the finite dimensional domains of maps which
are trivial of order> n. In particular, there are essential maybsEZi ((CP’/SZ) — M(Z/p*,2 +3)
which are trivial of ordeg> n.
0 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let f: X — Y be a map and consider the claSsf) of all spacesK such thatf o h
is homotopic to the constant magdor every maph : K — X. The larger the clask(f),
the more nearly trivial we consider the mg@po be. We are interested in finding essential
mapsf : X — Y such that the class§(f) is large. For example, i£(f) contains all finite
dimensional complexes, thefiis a phantom map. However, ff is an essential phantom
map, then the domaiX must be infinite dimensional. In this note we study analogs of
phantom maps between finite complexes—that is, we study essentialfmaps> Y of
finite complexes for whicliC(f) contains a large class of finite dimensional spaces.

A natural first step is to search for maps X — Y for which KC(f) containsS” for each
n > 0, or equivalently, such that,(f) = 0:7m.(X) — 7.(Y). We say that such a map is
trivial of order at least 1. There are numerous examples of maps of this kind—for example,
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the canonical quotient may x X — X A X. To extend this notion, we will define what it
means for a map to be trivial of order at least

A (spherica) cone length decomposition of lengthfer a connected spack is a
sequence of cofibrations

Si—> Li— Liy1, 0<i<n,

where S; is a wedge of sphered,o = % (i.e., Lo is contractible) andL, = K. The
(spherica) cone length ofK, denoted dlK), is defined as follows: iK is contractible, set
cl(K) = 0; otherwise, dlK) is the smallest integer such that there exists a cone length
decomposition ofK with lengthz. If instead we require thatg = K, L, = * and that
eachs; be connected, then we havesplierica) killing length decomposition of length
The (spherical) killing length oK, written kI(K), is defined analogously. It is shown in
[2] that kI(K) < cl(K) for any spaceK . Furthermore, any cellular decomposition of an
n-dimensional compleX is a cone length decomposition of length at mastherefore,

if K is ann-dimensional complex, then{&) < cl(K) < n.

These definitions suggest two numerical homotopy invariants of nfiaps— Y. We
write T,(f) > nif f oh >~ % forevery map:: K — X with cl(K) < n. Similarly, we write
Te(f) = nif foh~xforevery maph: K — X with kI(K) < n, and say thaf is trivial
of order at least:. This includes the particular case mentioned abgvis: trivial of order
at least 1 in this latter sense if and onlyndf(f) = 0. Since k{K) < cl(K) for all K, it
follows thatT; (f) < T.(f). Moreover, if f is trivial of order at leask, then f o h >~ « for
anyh: K — X with K anr-dimensional complex. It follows that X is ann-dimensional
complex, then no essential mgp X — Y can be trivial of order at least

Killing length is also related to the weak category of a space. The reduced)-fold
diagonal map

n+1 factors

—_—
dps1: X > XAXA--AX=X0HD

is the composite of the diagon&l— X”*+1 with the projectionx”*1 — Xx+D onto the
smash product. We say w¢at) < n if d,11 >~ *, i.e., if d,11 is homotopic tox. We have
the following commutative diagram for any mapS” — X

s" h X

dzi J/dz
hAh

S"AST—————X AKX

Since wcatS™) = 1 for eachn > 1, it follows thatT,.(d2) > T (d2) > 1. We will show how
this example can be greatly generalized.

The inequalities wcaK) < cat(K) < cl(K) [6] and kI(K) < cl(K) do not directly
imply any relation between killing length and weak category, but our first result shows
that such a relation does exist.

Proposition 1. If K is a space wittkl(K) = m, thenwcat K) < 2.
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This allows us to produce a large family of examples of essential maps between finite
complexes which are trivial of order at least

Example 2. Let X be a finite complex with wcgk) > 2. Thendo: X — X@) is
essential and it follows from the naturality of the reduced diagonal that it is trivial of order
at least:. Since wcatCP') = 7, we can takeX = CP?".

In these examplesf: X — Y is an essential map with, () > n, and wcatX) > 2".

Furthermore, iff: X — Y is essential and(f) > n, then we must have KX) > n.

In view of Proposition 1, it is reasonable ask whether WXat> 2" wheneverX is a

finite complex that is the domain of an essential map which is trivial of order at least

n. In the special case = 1, the answer is no: in [3] we constructed essential maps
f:X%(CP /5% — S° which are trivial of order at least 1, and weaE(CP'/S?)) = 1
because it is a suspension. There remains the question: is there an upper bound on the
triviality of an essential map of finite complexes whose domain is a suspension?

In this note we show that the answer to this more general question is again no. We refine
and expand the examples of [3] by constructing, for eacmapsf with T, (f) > n and
domain a suspension of a finite complex. Since every mapTjyith n is trivial of order at
least 1, this provides many more examples of the type considered in [3].

These new examples are closely related to phantom maps. Our main result (Theorem 3)
forges a link between the infinite dimensional domains of phantom maps and finite
complexes which are domains of maps with> n. In fact, these finite complexes are
quite common—they lurk among the skeleta of most familiar infinite dimensional spaces.

Let M (G, m) denote the Moore space with homoloGyin dimensiornm. We write X
for the k-skeleton of the CW compleX and X, for the p-localization of the spac¥.

Theorem 3. Let X be al-connected CW complex of finite type, Jet- 3 be a prime
and letn > 1. Assume that there is an essential phantom B&px — S(2[§')‘+Z)+l where

k,l > 1. Then, for each < [, there are positive integers=t(n), s = s(n) and a map
fiXi /X — M(Z/p*, 2k +1)

such thatx? f: X2 (X,/Xa) — M(Z/p*, 2(k + i) + 1) is essential and trivial of order
at leastn.

To show that the theorem is not vacuous, and to give the desired examples, we recall
the following basic result from the theory of phantom maps (see [19, Theorem D] and [10,
Theorems 5.2 and 5.4]). Léi, denote the Sullivap-completion of the spack [16], and
write Ph(X, Y) C [X, Y] for the set of phantom maps fromto Y.

Theorem. Let X be al-connected CW complex of finite type. If the pointed mapping space

map.(X, S 2401y is weakly contractible, then

2(k+D+1\ _ 2(k+D+17 ~ 72(k+1)  v.
Ph(X, S, ") =[X, 80,7 = HHED (X R).
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The mapping space condition holds for any infinite loop space or for any suspension of
such a space [11, Theorem 2]. Thus Theorem 3 applies, for example XvhetiP>*, and
we conclude that there are essential maps

22 (CP/S?) — M(Z/p*, 2 +3)

which are trivial of order at least. Other examples can be obtained by applying
Theorem 3 to the classifying spaBé;, whereG is any simply connected Lie group [10,
Theorem 5.6]. In particular, it follows that for artyl, m,n > 1 there are essential maps
f:BU@m);/BU(m)2 — $%+1 such thatz? f is essential and trivial of order at least
foreachi <.

For information about the cone length and killing length of spaces in a more general
context, we refer the reader to [5,2,3]. The invarigfitand 7 introduced in this paper
are closely related to the the essential category weight of a map (also known as the strict
category weight), as studied in [15,13]. In fact, a m@pX — Y has essential category
weight at least, written E(f) > n, if f o h >~ x for any maph: K — X with cat k) < n.
Since catK) < cl(K), E(f) is a lower bound fof,. ( f).

2. Proofs

In this section, we prove Proposition 1 and Theorem 3. In Section 2.1 we establish
Proposition 1. We then give some definitions and lemmas which are used in Section 2.3 to
prove Theorem 3.

We only consider based spaces of the homotopy type of 1-connected CW complexes.
We use localization techniques, and writeX — X,y for the natural map fronX to its
localization at the primep. We refer to [9] for the standard properties of localization.

2.1. Proof of Propositiod

We proceed by induction. If kKK) = 0, thenK is contractible and the result follows.
Assume that the result is known for all spaces with killing length less thaand
that ki(K) = m. Write s Kk 55 L for the first step in a minimal killing length
decomposition forK, so k(L) =m — 1. Sinced> o j ~*:S — K A K, there is a map
8:L — K A K such thatd, >~ § o k. Thus we have the homotopy commutative diagram

d dom—1 m
K g KAK 2 K@
\ T’S TSle)
dom—12=%
L om—1 L(szl)

Since k(L) = m — 1, the inductive hypothesis shows that. 1+ ~ x:L — L@, and
thereforaizm = d2m71d2 ~%x' K — K(Zm) O
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2.2. Lemmas

We begin with a lemma which will allow us to modify a given killing length decompo-
sition.

Lemma4 [14]. Let

ko

So Jo Lo L1

Sy J1 L1 k1
be two cofibrations in whicl§p and S1 are wedges of sphereSg is (n — 1)-connected,
Lo and S1 are n-connected and., is (n + 1)-connected. Then there is another pair of
cofibrations

L;

_ k _
So J0 Lo 2 L1

k1

El L Zl Lo

whereSo and S are wedges of sphereSg is n-connected and; andL; are both(n + 1)-
connected.

Proof. Write So = T v U whereT is the subwedge consisting of alispheres inSp and
U is the complementary subwedge. Singgr ~ *, L1 >~ YT Vv C whereC is the cofiber
of the mapjo|y. Notice thatC is n-connected.

Write S1 =V v W, whereV is the subwedge of alln + 1)-spheres andV is the
complementary subwedge. Applyirf, .1 to the second cofibration, we obtain the exact
sequence

Hp1(V)——————Hp 1 (XT VO ———Hy11(L2) =0

Thusj = j1|ly:V — X T v C is surjective onH,, 1 and hence otr,, ;1. Letbs, ..., b; €
m.4+1(X T) be the standard generators, and chegse. ., a; € 7,+1(V) such thatj, (a;) =
b; for eachi. Thenthe map = (as, ..., ax): XT — V satisfiesj os =iz, the inclusion
of XT into XT v C. The long homology exact sequence of the cofibration

i
VRN
2T \% A

N

wherej = psr o j and psr projectsX T v C onto X7, induces the split short exact
sequence

Jx

O——H 1 (XT)————Hp1(V)———H;11(A)——0
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Thus A has the homotopy type of a wedge @f+ 1)-spheres and there is a homotopy
equivalenceds,t): XT v A— V forsomemap:A — V.
With these identifications, the following diagram commutes

VvW— s yTVvC

(s,t)vidT
STVAvW—208 ey
whereg: Av W — XT v C is some map. Thus we have a square of cofibrations

>T T e
]
STvAvw) - e o,
AV W peos C Lo

We have now constructed the following pair of cofibrations

U Jolu Lo C

Avw—Le8 C Lo

It remains to move theA term in the second cofibration to the first cofibration. By
definition, U is n-connected so the mam — C is surjective int,11. SinceA is a wedge
of (n + 1)-spheres, the mapc o g|4 : A — C lifts through/: A — L.

Finally, the desired pair of cofibrations is obtained as followsSlgt= U v A, j, =
(jO|U’lP and let L; be the cofiber ofjy; let S = W and let j; be the composite
wPEEY € < Iy Itis a simple matter to verify that the cofiber gf is homotopy
equivalenttaly. O

Proposition 5. Letc > 2 and letK be a(c — 1)-connected CW complex wikh(K) = m.
Then
(a) K has a minimal killing length decomposition in which ea¢landL; is (c —1+1i)-
connecteg
(b) for eachg > 0, kI(K,) <m + 2;
(c) foreachg > 0, kKI(K/K,) < 2m + 2.

Proof. LetS; N L; L Li+1,0<i < m, be aminimal killing length decomposition for
K—thatis,Lo =K, L,, = %, ands; is a wedge of spheres for each

We observe that, to prove (a), it is enough to show tkahas a minimal Kkilling
length decomposition in whickg is (¢ — 1)-connected and; andL; arec-connected for
i > 0. Then (a) follows on applying this to the resultihg and its minimal killing length
decomposition of lengtlz — 1, and then applying it to the resultidg and its minimal
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killing length decomposition of lengtix — 2, and so on. Let be the greatest integer for
which Sg is (k — 1)-connected and; andL; arek-connected foi > 0. We want to show
there is a killing length decomposition & with k > ¢. Assume thak < c. Leti denote
the greatest index for whick or L; is not(k 4+ 1)-connected. If > 0 then we have a pair
of cofibrations

Sic1 Lia L;

Si L; Lit1
in which S;_1 is (k — 1)-connectedS; and L,_1 arek-connected, and.; 1 is (k + 1)-
connected. By Lemma 4, these cofibrations can be replaced by the cofibrations

Si—l Li_1 Z,'

S; L; Ly

in which S;_1 is k-connected and.; and S; are (k + 1)-connected. Continuing in this
way, we eventually obtain a spherical killing length decomposition in which &aeimd

L;, i >0, is (k + 1)-connected. Applying Lemma 4 to the first two cofibrations in this
decomposition shows that there is a killing length decompositidgh with Sy k-connected
andS; andL; (k + 1)-connected for all > 0. This shows that there is a minimal killing
length decomposition fak in which Sg is (¢ — 1)-connected and; andL; arec-connected
fori > 0.

Now we prove (b). LetS; be the subwedge of; consisting of the spheres with
dimension at mosy, let Lo = K, and letjy:So — Lo be a lift of Jols,» which exists
by cellular approximation. Defing; to be the cofiber of,. Thus, we have a diagram of
cofibration sequences

EO Zo Zl
So Lo L

In this diagram[ is a subcomplex of.1 which contains thg-skeleton of;. By cellular
approximation, we may liftj1|g, : S1 — L1 to a mapj;:S1 — L1. Continuing in this
way, we obtain cofibration sequencgs— L; — L;,1 for each 0<i < m in which each
inclusionL; — L; is a(q — 1)-equivalence. Sincg,, = x, L, is (¢ — 1)-connected. Now
L, is (g + 1)-dimensional by construction, which shows tliat has killing length at most
2. Append the two cofibrations of a killing length decompositiorLgf to the previously
constructed sequence of cofibrations to obtain a killing length decomposition &y,
with lengthm + 2.

Finally, we prove (c). The cofibratiok — K/K, — YK, yields the inequality
kI(K/K,) < KI(K) +KI(¥K,) by [3, Theorem 3.4]. Since KEK,;) <kI(K,) the result
follows from part (b). O
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If p>3isanodd prime, thei’;;"* is a homotopy commutative, homotopy associative

H-space [1]. Hencek,, 521 is a p-local Abelian group for any finite complex . Our
next lemma provides an upper bound on the exponent of this group, and may be interesting

in its own right.

Lemma6. Let K be a(2k + 1)-connected finite complagx > 1) with kI(K) = m and let
p > 3 be aprime. Thefk, S(2[’,‘)+1] is a finite Abelian group with exponent dividipg~.

Proof. We work by induction on KIK). If kl(K) = 0, then K is contractible so the
conclusion is obvious. Now assume the result is known for any space with killing length
less tharmm. By Lemma 4 we may find a minimal killing length decomposition #6r1in
which all terms are2k + 1)-connected. If\/ $"i — K — L is the first step in such a
decomposition, then kL) < m. From the exact sequence

VS

(L, S2k+l]

2k+1
(K. Sy )

(p)

we see thatk, S(ZI',‘;Ll] is a finite group with exponent at most the product of the exponents

of [\/ §™, 21 andL, S75]. By the inductive hypothesis applied foand a result of

Cohen et al. [7], this product is at magstpk"—D = pmk . o
The following well-known lemma will be used in the proof of Lemma 8.

Lemma 7. Let A—">BL>C be a cofibration and letf: X — B be any map. If
jo f~xthenthereisamap: XX - YA suchthat¥ios >~ X f.

Proof. Sincej o f ~ %, the composite factors throughX, the cone ornX. Thus we may
construct a homotopy commutative ladder of cofibrations

id

X cx X X
1 | b |
B / C TA Zi B 0

Armed with this lemma, we give a criterion which guarantees that certain fhajis—
§%+1 remain essential when composed with the standard inclusion mapitt «—
M(Z/]p*, 2k + 1).

Lemma 8. Let X be a finite complex and lét: X — 5%+ be a map such that for some
odd primep, A o X2h € [£2X, S(2[’,‘)+3] is nontrivial and has finite order divisible by.
Then the composite

X h e — M(Z/p*, 2k + 1)

is essential for sufficiently large
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Proof. Consider the diagram

A 2k+1
S2k+1 - & 00 S S(p)

R

X S2k+l A S2]<+l

()
N ‘sJ/ l(ls)w)

M(Z/p*, 2k +1) ——=M(Z/p*, 2k + 1)

in which the vertical sequences are cofibrations ghdenotes the map with degreé. If

tsoh > x, then(is)pyoroh = %, and sa¥ (A o h) lifts through the map?* : S(2[’;)+2 — S(2[’;)+2

by Lemma 7. Suspending once more, we obtain the lift indicated by the dashed line in the
diagram

2k+3
- 7S(P)

—
_
- ;
— )
— p
—
_
_

2y G243 g2k+3
TX T SHT x S

The torsion subgroup ofx2x, 7] is a finite Abelian p-group, and so it has an

exponentp®. If s > e, then o X2h ~ x, which is a contradiction, and sg o 4 is
essential. O

2.3. Proof of Theorer8

LetG denote the towef{ (X2 X,), Sf;')‘ﬂ)*l]}. Since Pix? X, S(zl()';*”“) is naturally
isomorphic to lint G, the towerg cannot be Mittag-Leffler [4]. This means that the index
of Im([Z(XZX,), S(ZIE')‘H)H]) CIZ(ZZXy), S(ZIEI)‘H)H] (which is finite by [12, Proposi-
tion 0]) is unbounded asincreases. Let be the rank of the grou (2% X o), S(ZIEI)‘”)“],
let T be its torsion subgroup, and write

and

Z, = Im([Z% X0, T3] = [Z2 (X, Xa0), ST ).

Chooser large enough that the index of, € [22’+1X2k,5(21§’)‘+”+1] is divisible by

p(@1+D*&+D+D 7| Then the quotientx 21X, S(ZIEI)‘H)H]/A,T is an Abelian group
which is generated by a set of at mostlements and which has order divisible by
p (22 k+D+D) gGince there is a surjection of finite groups

~ 2 1 2 1
ZI o~ [22]+1X2k9 S(Igl)(+l)+ ]/At N [EZZ_HLXZ[{, S(ISI)C+I)+ ]/AIT,

it follows that Z, also contains elements of order divisible pif'+2*+D+1,



212 M. Arkowitz, J. Strom / Topology and its Applications 125 (2002) 203-213

The commutativity of the diagram

[ZX,, Soy N ————[Z Xax, SO 1————[X:/ Xat, ST

2(k+1)+1 2(k+1)+1 2(k+1)+1
(2252, SOV T[22+ Xy, SO T[22 (X0 X2, SCy

clearly shows thatz, < Im(x?) c [EZI(X,/sz),Sf[E')‘H)H]. Thus there is a map

g X/ Xz — SZ such thatz?g has finite order divisible by @2 *+)+1 Notice
thatg itself also must have finite order since it is an element of the finite gifhupnd so
2 ¢ has finite order divisible by@+2%*+)+1 for 0 < i < 1.

Since the compositioho X2 (p@1+2(k+D ¢ o) has finite order divisible by, Lemma 8,
applied tox2¢—Dg shows that, o p(@+2*+) o 3:20-1) 4 j5 essential if is large enough.
Fix such ary and definef = i, 0 p@+2*+) 5 o ThusX? f is essential for eachQ i < .

Finally, we demonstrate that, forQi < [ — 1, the essential map? f is trivial of order
at leastr. Let kI(K) <n and leth: K — X% (X,/X2) be any map. Sinc&?% (X,/ X )
is 2(k + i)-connected} factors through: K /Kogviy — 2% X/ X2, Since % g has
finite order, the induced homomorphistii)+1(Z% g) = 0. Thereforex? g o i can be
extended to a map: K /Ko 4i)+1 —> SZ("J”)J”1 as in the diagram

EZif

2k+i)+1_ p@HAEHD oyl
Kt 52, X)L g

h n

M

*
K/ Ko(riy—= K/ Ko(eviy+1
where we have abbreviated = M (Z/p®, 2(k + i) + 1). By Proposition 5(c) we have
KI(K /K2gtiyr1) < 2n 4 2, 50 p@H2E+D oy ~ 5 by Lemma 6. ThusS? f o h ~ x,
which shows thatz? f is trivial of order at least and completes the proof.O
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