
Topology and its Applications 125 (2002) 203–213

Nearly trivial homotopy classes between finite complexes
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Abstract

We construct examples of essential maps of finite complexesf :X→ Y which are trivial of order
� n. This latter condition implies that for any spaceK with cone length� n, the induced map
f∗ = 0 :[K,X] → [K,Y ]. The main result establishes a connection between the skeleta of the infinite
dimensional domains of essential phantom maps and the finite dimensional domains of maps which
are trivial of order� n. In particular, there are essential mapsf :Σ2i(CP t /S2)→M(Z/ps,2l+ 3)
which are trivial of order� n.
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let f :X → Y be a map and consider the classK(f ) of all spacesK such thatf ◦ h
is homotopic to the constant map∗ for every maph :K →X. The larger the classK(f ),
the more nearly trivial we consider the mapf to be. We are interested in finding essential
mapsf :X→ Y such that the classK(f ) is large. For example, ifK(f ) contains all finite
dimensional complexes, thenf is a phantom map. However, iff is an essential phantom
map, then the domainX must be infinite dimensional. In this note we study analogs of
phantom maps between finite complexes—that is, we study essential mapsf :X → Y of
finite complexes for whichK(f ) contains a large class of finite dimensional spaces.

A natural first step is to search for mapsf :X→ Y for whichK(f ) containsSn for each
n � 0, or equivalently, such thatπ∗(f )= 0 :π∗(X) → π∗(Y ). We say that such a map is
trivial of order at least 1. There are numerous examples of maps of this kind—for example,
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the canonical quotient mapX×X→X ∧X. To extend this notion, we will define what it
means for a map to be trivial of order at leastn.

A (spherical) cone length decomposition of length nfor a connected spaceK is a
sequence of cofibrations

Si → Li →Li+1, 0 � i < n,

where Si is a wedge of spheres,L0 ≡ ∗ (i.e., L0 is contractible) andLn ≡ K. The
(spherical) cone length ofK, denoted cl(K), is defined as follows: ifK is contractible, set
cl(K)= 0; otherwise, cl(K) is the smallest integern such that there exists a cone length
decomposition ofK with lengthn. If instead we require thatL0 ≡ K, Ln ≡ ∗ and that
eachSi be connected, then we have a (spherical) killing length decomposition of lengthn.
The (spherical) killing length ofK, written kl(K), is defined analogously. It is shown in
[2] that kl(K) � cl(K) for any spaceK. Furthermore, any cellular decomposition of an
n-dimensional complexK is a cone length decomposition of length at mostn. Therefore,
if K is ann-dimensional complex, then kl(K)� cl(K)� n.

These definitions suggest two numerical homotopy invariants of mapsf :X → Y . We
write Tc(f )� n if f ◦h� ∗ for every maph :K →X with cl(K)� n. Similarly, we write
Tk(f )� n if f ◦ h� ∗ for every maph :K →X with kl(K)� n, and say thatf is trivial
of order at leastn. This includes the particular case mentioned above:f is trivial of order
at least 1 in this latter sense if and only ifπ∗(f ) = 0. Since kl(K) � cl(K) for all K, it
follows thatTk(f )� Tc(f ). Moreover, iff is trivial of order at leastn, thenf ◦ h� ∗ for
anyh :K →X withK ann-dimensional complex. It follows that ifX is ann-dimensional
complex, then no essential mapf :X→ Y can be trivial of order at leastn.

Killing length is also related to the weak category of a space. The reduced(n+ 1)-fold
diagonal map

dn+1 :X→
n+1 factors︷ ︸︸ ︷

X ∧X ∧ · · · ∧X =X(n+1)

is the composite of the diagonalX→Xn+1 with the projectionXn+1 →X(n+1) onto the
smash product. We say wcat(K)� n if dn+1 � ∗, i.e., if dn+1 is homotopic to∗. We have
the following commutative diagram for any maph :Sn →X

Sn
h

d2

X

d2

Sn ∧ Sn h∧h
X ∧X

Since wcat(Sn)= 1 for eachn� 1, it follows thatTc(d2)� Tk(d2)� 1. We will show how
this example can be greatly generalized.

The inequalities wcat(K) � cat(K) � cl(K) [6] and kl(K) � cl(K) do not directly
imply any relation between killing length and weak category, but our first result shows
that such a relation does exist.

Proposition 1. If K is a space withkl(K)=m, thenwcat(K) < 2m.
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This allows us to produce a large family of examples of essential maps between finite
complexes which are trivial of order at leastn.

Example 2. Let X be a finite complex with wcat(X) � 2n. Then d2n :X → X(2
n) is

essential and it follows from the naturality of the reduced diagonal that it is trivial of order
at leastn. Since wcat(CPt )= t , we can takeX = CP2n .

In these examples,f :X → Y is an essential map withTk(f ) � n, and wcat(X) � 2n.
Furthermore, iff :X → Y is essential andTk(f ) � n, then we must have kl(X) > n.
In view of Proposition 1, it is reasonable ask whether wcat(X) � 2n wheneverX is a
finite complex that is the domain of an essential map which is trivial of order at least
n. In the special casen = 1, the answer is no: in [3] we constructed essential maps
f :Σ2(CPt /S2) → S5 which are trivial of order at least 1, and wcat(Σ2(CPt /S2)) = 1
because it is a suspension. There remains the question: is there an upper bound on the
triviality of an essential map of finite complexes whose domain is a suspension?

In this note we show that the answer to this more general question is again no. We refine
and expand the examples of [3] by constructing, for eachn, mapsf with Tk(f )� n and
domain a suspension of a finite complex. Since every map withTk � n is trivial of order at
least 1, this provides many more examples of the type considered in [3].

These new examples are closely related to phantom maps. Our main result (Theorem 3)
forges a link between the infinite dimensional domains of phantom maps and finite
complexes which are domains of maps withTk � n. In fact, these finite complexes are
quite common—they lurk among the skeleta of most familiar infinite dimensional spaces.

LetM(G,m) denote the Moore space with homologyG in dimensionm. We writeXk
for thek-skeleton of the CW complexX andX(p) for thep-localization of the spaceX.

Theorem 3. Let X be a 1-connected CW complex of finite type, letp > 3 be a prime
and letn � 1. Assume that there is an essential phantom mapΣ2lX → S

2(k+l)+1
(p) where

k, l � 1. Then, for eachi < l, there are positive integerst = t (n), s = s(n) and a map

f :Xt/X2k →M
(
Z/ps ,2k+ 1

)

such thatΣ2if :Σ2i (Xt/X2k)→M(Z/ps,2(k + i)+ 1) is essential and trivial of order
at leastn.

To show that the theorem is not vacuous, and to give the desired examples, we recall
the following basic result from the theory of phantom maps (see [19, Theorem D] and [10,
Theorems 5.2 and 5.4]). Let̂Yp denote the Sullivanp-completion of the spaceY [16], and
write Ph(X,Y )⊆ [X,Y ] for the set of phantom maps fromX to Y .

Theorem. LetX be a1-connected CW complex of finite type. If the pointed mapping space
map∗(X, Ŝ

2(k+l)+1
p ) is weakly contractible, then

Ph
(
X,S

2(k+l)+1
(p)

) = [
X,S

2(k+l)+1
(p)

] ∼=H 2(k+l)(X;R).
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The mapping space condition holds for any infinite loop space or for any suspension of
such a space [11, Theorem 2]. Thus Theorem 3 applies, for example, whenX = CP∞, and
we conclude that there are essential maps

Σ2l(
CPt /S2) →M

(
Z/ps,2l + 3

)

which are trivial of order at leastn. Other examples can be obtained by applying
Theorem 3 to the classifying spaceBG, whereG is any simply connected Lie group [10,
Theorem 5.6]. In particular, it follows that for anyk, l,m,n � 1 there are essential maps
f : BU(m)t/BU(m)2k → S2k+1 such thatΣ2if is essential and trivial of order at leastn
for eachi < l.

For information about the cone length and killing length of spaces in a more general
context, we refer the reader to [5,2,3]. The invariantsTc andTk introduced in this paper
are closely related to the the essential category weight of a map (also known as the strict
category weight), as studied in [15,13]. In fact, a mapf :X → Y has essential category
weight at leastn, writtenE(f )� n, if f ◦ h� ∗ for any maph :K →X with cat(K)� n.
Since cat(K)� cl(K), E(f ) is a lower bound forTc(f ).

2. Proofs

In this section, we prove Proposition 1 and Theorem 3. In Section 2.1 we establish
Proposition 1. We then give some definitions and lemmas which are used in Section 2.3 to
prove Theorem 3.

We only consider based spaces of the homotopy type of 1-connected CW complexes.
We use localization techniques, and writeλ :X→X(p) for the natural map fromX to its
localization at the primep. We refer to [9] for the standard properties of localization.

2.1. Proof of Proposition1

We proceed by induction. If kl(K) = 0, thenK is contractible and the result follows.
Assume that the result is known for all spaces with killing length less thanm and
that kl(K) = m. Write S

j−→K
k−→L for the first step in a minimal killing length

decomposition forK, so kl(L) = m − 1. Sinced2 ◦ j � ∗ :S → K ∧ K, there is a map
δ :L→K ∧K such thatd2 � δ ◦ k. Thus we have the homotopy commutative diagram

K
d2

k

K ∧K d2m−1
K(2m)

L

δ

d2m−1�∗
L(2

m−1)

δ(2
m−1)

Since kl(L) = m − 1, the inductive hypothesis shows thatd2m−1 � ∗ :L→ L(2
m−1), and

therefored2m = d2m−1d2 � ∗ :K →K(2m). ✷
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2.2. Lemmas

We begin with a lemma which will allow us to modify a given killing length decompo-
sition.

Lemma 4 [14]. Let

S0
j0

L0
k0

L1

S1
j1

L1
k1

L2

be two cofibrations in whichS0 and S1 are wedges of spheres,S0 is (n − 1)-connected,
L0 and S1 are n-connected andL2 is (n + 1)-connected. Then there is another pair of
cofibrations

S0
j0

L0
k0

L1

S1
j1

L1
k1

L2

whereS0 andS1 are wedges of spheres,S0 is n-connected andS1 andL1 are both(n+1)-
connected.

Proof. Write S0 = T ∨ U whereT is the subwedge consisting of alln-spheres inS0 and
U is the complementary subwedge. Sincej0|T � ∗, L1 �ΣT ∨C whereC is the cofiber
of the mapj0|U . Notice thatC is n-connected.

Write S1 = V ∨ W , whereV is the subwedge of all(n + 1)-spheres andW is the
complementary subwedge. ApplyingHn+1 to the second cofibration, we obtain the exact
sequence

Hn+1(V ) Hn+1(ΣT ∨C) Hn+1(L2)= 0

Thusj = j1|V :V →ΣT ∨ C is surjective onHn+1 and hence onπn+1. Let b1, . . . , bk ∈
πn+1(ΣT ) be the standard generators, and choosea1, . . . , ak ∈ πn+1(V ) such thatj∗(ai)=
bi for eachi. Then the maps = (a1, . . . , ak) :ΣT → V satisfiesj ◦ s = iΣT , the inclusion
of ΣT intoΣT ∨C. The long homology exact sequence of the cofibration

ΣT s V

j

A

wherej = pΣT ◦ j andpΣT projectsΣT ∨ C ontoΣT , induces the split short exact
sequence

0 Hn+1(ΣT ) s∗ Hn+1(V )

j∗

Hn+1(A) 0
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ThusA has the homotopy type of a wedge of(n + 1)-spheres and there is a homotopy
equivalence(s, t) :ΣT ∨A→ V for some mapt :A→ V .

With these identifications, the following diagram commutes

V ∨W j1
ΣT ∨C

ΣT ∨A∨W
(s,t)∨id

(iΣT ,g)
ΣT ∨C

whereg :A∨W →ΣT ∨C is some map. Thus we have a square of cofibrations

ΣT

i

ΣT

iΣT

∗

ΣT ∨ (A∨W) (iΣT ,g)
ΣT ∨C L2

A∨W pC◦g
C L2

We have now constructed the following pair of cofibrations

U
j0|U

L0 C

A∨W pC◦g
C L2

It remains to move theA term in the second cofibration to the first cofibration. By
definition,U is n-connected so the mapL0 →C is surjective inπn+1. SinceA is a wedge
of (n+ 1)-spheres, the mappC ◦ g|A :A→C lifts throughl :A→ L0.

Finally, the desired pair of cofibrations is obtained as follows: letS0 = U ∨ A, j0 =
(j0|U , l) and let L1 be the cofiber ofj0; let S1 = W and let j1 be the composite
W

pC◦g|W−→ C ↪→ L1. It is a simple matter to verify that the cofiber ofj1 is homotopy
equivalent toL2. ✷
Proposition 5. Let c� 2 and letK be a(c− 1)-connected CW complex withkl(K)=m.
Then

(a) K has a minimal killing length decomposition in which eachSi andLi is (c−1+ i)-
connected;

(b) for eachq � 0, kl(Kq)�m+ 2;
(c) for eachq � 0, kl(K/Kq)� 2m+ 2.

Proof. Let Si
ji−→Li

ki−→Li+1, 0� i < m, be a minimal killing length decomposition for
K—that is,L0 ≡K, Lm ≡ ∗, andSi is a wedge of spheres for eachi.

We observe that, to prove (a), it is enough to show thatK has a minimal killing
length decomposition in whichS0 is (c− 1)-connected andSi andLi arec-connected for
i > 0. Then (a) follows on applying this to the resultingL1 and its minimal killing length
decomposition of lengthm− 1, and then applying it to the resultingL2 and its minimal
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killing length decomposition of lengthm− 2, and so on. Letk be the greatest integer for
whichS0 is (k − 1)-connected andSi andLi arek-connected fori > 0. We want to show
there is a killing length decomposition ofK with k � c. Assume thatk < c. Let i denote
the greatest index for whichSi orLi is not(k+ 1)-connected. Ifi > 0 then we have a pair
of cofibrations

Si−1 Li−1 Li

Si Li Li+1

in which Si−1 is (k − 1)-connected,Si andLi−1 arek-connected, andLi+1 is (k + 1)-
connected. By Lemma 4, these cofibrations can be replaced by the cofibrations

Si−1 Li−1 Li

Si Li L2

in which Si−1 is k-connected andLi andSi are (k + 1)-connected. Continuing in this
way, we eventually obtain a spherical killing length decomposition in which eachSi and
Li , i > 0, is (k + 1)-connected. Applying Lemma 4 to the first two cofibrations in this
decomposition shows that there is a killing length decomposition ofK with S0 k-connected
andSi andLi (k + 1)-connected for alli > 0. This shows that there is a minimal killing
length decomposition forK in whichS0 is (c−1)-connected andSi andLi arec-connected
for i > 0.

Now we prove (b). LetSi be the subwedge ofSi consisting of the spheres with
dimension at mostq , let L0 = Kq and letj0 :S0 → L0 be a lift of j0|S0

, which exists

by cellular approximation. DefineL1 to be the cofiber ofj0. Thus, we have a diagram of
cofibration sequences

S0 L0 L1

S0 L0 L1

In this diagram,L1 is a subcomplex ofL1 which contains theq-skeleton ofL1. By cellular
approximation, we may liftj1|S1

:S1 → L1 to a mapj1 :S1 → L1. Continuing in this

way, we obtain cofibration sequencesSi → Li → Li+1 for each 0� i < m in which each
inclusionLi → Li is a(q − 1)-equivalence. SinceLm ≡ ∗, Lm is (q − 1)-connected. Now
Lm is (q+1)-dimensional by construction, which shows thatLm has killing length at most
2. Append the two cofibrations of a killing length decomposition ofLm to the previously
constructed sequence ofm cofibrations to obtain a killing length decomposition forKq
with lengthm+ 2.

Finally, we prove (c). The cofibrationK → K/Kq → ΣKq yields the inequality
kl(K/Kq) � kl(K)+ kl(ΣKq) by [3, Theorem 3.4]. Since kl(ΣKq) � kl(Kq) the result
follows from part (b). ✷
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If p > 3 is an odd prime, thenS2k+1
(p) is a homotopy commutative, homotopy associative

H-space [1]. Hence[K,S2k+1
(p) ] is ap-local Abelian group for any finite complexK. Our

next lemma provides an upper bound on the exponent of this group, and may be interesting
in its own right.

Lemma 6. LetK be a(2k + 1)-connected finite complex(k � 1) with kl(K)=m and let
p > 3 be a prime. Then[K,S2k+1

(p) ] is a finite Abelian group with exponent dividingpmk .

Proof. We work by induction on kl(K). If kl (K) = 0, thenK is contractible so the
conclusion is obvious. Now assume the result is known for any space with killing length
less thanm. By Lemma 4 we may find a minimal killing length decomposition forK in
which all terms are(2k + 1)-connected. If

∨
Sni → K → L is the first step in such a

decomposition, then kl(L) <m. From the exact sequence

[∨Sni , S2k+1
(p) ] [K,S2k+1

(p) ] [L,S2k+1
(p) ]

we see that[K,S2k+1
(p) ] is a finite group with exponent at most the product of the exponents

of [∨Sni , S2k+1
(p) ] and[L,S2k+1

(p) ]. By the inductive hypothesis applied toL and a result of

Cohen et al. [7], this product is at mostpkpk(m−1) = pmk . ✷
The following well-known lemma will be used in the proof of Lemma 8.

Lemma 7. Let A
i−→B

j−→C be a cofibration and letf :X → B be any map. If
j ◦ f � ∗, then there is a maps :ΣX→ΣA such thatΣi ◦ s �Σf .

Proof. Sincej ◦ f � ∗, the composite factors throughCX, the cone onX. Thus we may
construct a homotopy commutative ladder of cofibrations

X

f

CX ΣX
id

s

ΣX

Σf

B
j

C ΣA
Σi

ΣB ✷
Armed with this lemma, we give a criterion which guarantees that certain mapsf :X→

S2k+1 remain essential when composed with the standard inclusion mapιs :S2k+1 ↪→
M(Z/ps,2k+ 1).

Lemma 8. LetX be a finite complex and leth :X→ S2k+1 be a map such that for some
odd primep, λ ◦ Σ2h ∈ [Σ2X,S2k+3

(p) ] is nontrivial and has finite order divisible byp.
Then the composite

X
h

S2k+1 ιs
M(Z/ps,2k + 1)

is essential for sufficiently larges.
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Proof. Consider the diagram

S2k+1

ps

λ S2k+1
(p)

ps

X
h

ιs◦h

S2k+1

ιs

λ S2k+1
(p)

(ιs)(p)

M(Z/ps,2k+ 1) =
M(Z/ps,2k + 1)

in which the vertical sequences are cofibrations andps denotes the map with degreeps . If
ιs ◦h� ∗, then(ιs)(p)◦λ◦h� ∗, and soΣ(λ◦h) lifts through the mapps :S2k+2

(p) → S2k+2
(p)

by Lemma 7. Suspending once more, we obtain the lift indicated by the dashed line in the
diagram

S2k+3
(p)

ps

Σ2X
Σ2h

S2k+3
λ

S2k+3
(p) .

The torsion subgroup of[Σ2X,S2k+3
(p) ] is a finite Abelianp-group, and so it has an

exponentpe . If s � e, then λ ◦ Σ2h � ∗, which is a contradiction, and soιs ◦ h is
essential. ✷
2.3. Proof of Theorem3

LetG denote the tower{[Σ(Σ2lXt ), S
2(k+l)+1
(p) ]}. Since Ph(Σ2lX,S

2(k+l)+1
(p) ) is naturally

isomorphic to lim1G, the towerG cannot be Mittag-Leffler [4]. This means that the index

of Im([Σ(Σ2lXt ), S
2(k+l)+1
(p) ])⊆ [Σ(Σ2lX2k), S

2(k+l)+1
(p) ] (which is finite by [12, Proposi-

tion 0]) is unbounded ast increases. Letr be the rank of the group[Σ(Σ2lX2k), S
2(k+l)+1
(p) ],

let T be its torsion subgroup, and write

At = Im
([
Σ2l+1Xt ,S

2(k+l)+1
(p)

] → [
Σ2l+1X2k, S

2(k+l)+1
(p)

])

and

Zt = Im
([
Σ2l+1X2k, S

2(k+l)+1
(p)

] → [
Σ2l (Xt /X2k), S

2(k+l)+1
(p)

])
.

Chooset large enough that the index ofAt ⊆ [Σ2l+1X2k, S
2(k+l)+1
(p) ] is divisible by

pr((2n+2)(k+l)+1)|T |. Then the quotient[Σ2l+1X2k, S
2(k+l)+1
(p) ]/AtT is an Abelian group

which is generated by a set of at mostr elements and which has order divisible by
pr((2n+2)(k+l)+1). Since there is a surjection of finite groups

Zt ∼=
[
Σ2l+1X2k, S

2(k+l)+1
(p)

]
/At →

[
Σ2l+1X2k, S

2(k+l)+1
(p)

]
/AtT ,

it follows thatZt also contains elements of order divisible byp(2n+2)(k+l)+1.
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The commutativity of the diagram

[ΣXt ,S2k+1
(p) ]
Σ2l

[ΣX2k, S
2k+1
(p) ]

Σ2l∼=

[Xt/X2k, S
2k+1
(p) ]

Σ2l

[Σ2l+1Xt,S
2(k+l)+1
(p) ] [Σ2l+1X2k, S

2(k+l)+1
(p) ] [Σ2l (Xt/X2k), S

2(k+l)+1
(p) ]

clearly shows thatZt ⊆ Im(Σ2l) ⊆ [Σ2l (Xt/X2k), S
2(k+l)+1
(p) ]. Thus there is a map

g :Xt/X2k → S2k+1
(p) such thatΣ2lg has finite order divisible byp(2n+2)(k+l)+1. Notice

thatg itself also must have finite order since it is an element of the finite groupZt , and so
Σ2ig has finite order divisible byp(2n+2)(k+l)+1 for 0 � i � l.

Since the compositionλ◦Σ2l (p(2n+2)(k+l)◦g) has finite order divisible byp, Lemma 8,
applied toΣ2(l−1)g, shows thatιs ◦p(2n+2)(k+l) ◦Σ2(l−1)g is essential ifs is large enough.
Fix such ans and definef = ιs ◦p(2n+2)(k+l)◦g. ThusΣ2if is essential for each 0� i < l.

Finally, we demonstrate that, for 0� i < l−1, the essential mapΣ2if is trivial of order
at leastn. Let kl(K)� n and leth :K →Σ2i (Xt/X2k) be any map. SinceΣ2i (Xt/X2k)

is 2(k + i)-connected,h factors throughh :K/K2(k+i) → Σ2iXt /X2k. SinceΣ2ig has
finite order, the induced homomorphismπ2(k+i)+1(Σ

2ig)= 0. ThereforeΣ2ig ◦ h can be

extended to a map̃h :K/K2(k+i)+1 → S
2(k+i)+1
(p) as in the diagram

K
h
Σ2i (Xt/X2k)

Σ2i g

Σ2if

S
2(k+i)+1
(p)

p(2n+2)(k+l)
S

2(k+i)+1
(p) ιs

M

K/K2(k+i)

h

K/K2(k+i)+1

h̃

∗

where we have abbreviatedM = M(Z/ps ,2(k + i) + 1). By Proposition 5(c) we have
kl(K/K2(k+i)+1) � 2n + 2, sop(2n+2)(k+l) ◦ h̃ � ∗ by Lemma 6. ThusΣ2if ◦ h � ∗,
which shows thatΣ2if is trivial of order at leastn and completes the proof.✷
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