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SUMMARY

Invasive lobular carcinoma (ILC) is the second most
prevalent histologic subtype of invasive breast can-
cer. Here, we comprehensively profiled 817 breast
tumors, including 127 ILC, 490 ductal (IDC), and 88
mixed IDC/ILC. Besides E-cadherin loss, the best
known ILC genetic hallmark, we identified mutations
targeting PTEN, TBX3, and FOXA1 as ILC enriched
features. PTEN loss associated with increased AKT
phosphorylation, which was highest in ILC among
all breast cancer subtypes. Spatially clustered
FOXA1 mutations correlated with increased FOXA1
expression and activity. Conversely, GATA3 muta-
tions and high expression characterized luminal A
IDC, suggesting differential modulation of ER activity
in ILC and IDC. Proliferation and immune-related
signatures determined three ILC transcriptional
subtypes associatedwith survival differences. Mixed
IDC/ILC casesweremolecularly classified as ILC-like
506 Cell 163, 506–519, October 8, 2015 ª2015 Elsevier Inc.
and IDC-like revealing no true hybrid features. This
multidimensional molecular atlas sheds new light
on the genetic bases of ILC and provides potential
clinical options.

INTRODUCTION

Invasive lobular carcinoma (ILC) is the second most frequently

diagnosed histologic subtype of invasive breast cancer, consti-

tuting �10%–15% of all cases. The classical form (Foote and

Stewart, 1946) is characterized by small discohesive neoplastic

cells invading the stroma in a single-file pattern. The discohesive

phenotype is due to dysregulation of cell-cell adhesion, primarily

driven by lack of E-cadherin (CDH1) protein expression

observed in �90% of ILCs (McCart Reed et al., 2015; Morrogh

et al., 2012). This feature is the ILC hallmark, and immuno-

histochemistry (IHC) scoring for CDH1 expression is often

used to discriminate between lesions with borderline ductal

versus lobular histological features. ILC variants have also

been described, yet all display loss of E-cadherin expression

(Dabbs et al., 2013).
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Figure 1. Molecular Determinants of Invasive Lobular Breast Cancer

(A) Histopathological breast cancer subtypes: invasive ductal (IDC), invasive lobular (ILC), mixed ductal/lobular (Mixed), and other-type (Other) carcinoma.

PAM50 intrinsic subtypes are not equally distributed across breast cancer subtypes.

(B) Recurrently mutated genes (MutSigCV2) in ILC.

(C) Comparison of the alteration frequency for 153 recurrent genomic alterations in ILC versus IDC.

(D) Comparison of the alteration frequency for 153 recurrent genomic alterations in ILC LumA versus IDC LumA.
Classic ILCs are typically of low histologic grade and low to

intermediate mitotic index. They express estrogen and proges-

terone receptors (ER and PR) and rarely show HER2 protein

overexpression or amplification. These features are generally

associated with a good prognosis, yet some studies suggest

that long-term outcomes of ILC are inferior to stage-matched

invasive ductal carcinoma (IDC) (Pestalozzi et al., 2008). Impor-

tantly, ILC infiltrative growth pattern complicates both physical

exam andmammographic findings and its patterns of metastatic

spread often differ from those of IDC (Arpino et al., 2004).

To date, genomic studies of ILC have provided limited insight

into the biologic underpinnings of this disease, mostly focusing

on mRNA expression and DNA copy-number analysis (McCart

Reed et al., 2015). The first TCGA breast cancer study (Cancer

Genome Atlas, 2012) reported on 466 breast tumors assayed

on six different technology platforms. ILC was represented by

only 36 samples, and no lobular-specific features were noted

besidesmutations and decreasedmRNA and protein expression

of CDH1. Here, we analyzed nearly twice as many breast tumors
from TCGA (n = 817), including 127 ILC. This study identified

multiple genomic alterations that discriminate between ILC and

IDC demonstrating at the molecular level that ILC is a distinct

breast cancer subtype and providing new insight into ILC tumor

biology and therapeutic options.

RESULTS

Genetic Determinants of Invasive Lobular Cancer
A total of 817 breast tumor samples were profiled with five

different platforms as previously described (Cancer Genome

Atlas Research Network, 2014) and 633 cases were also profiled

by reverse-phase protein array (RPPA). A pathology committee

reviewed and classified all tumors into 490 IDC, 127 ILC, 88

cases with mixed IDC and ILC features, and 112 with other

histologies (Table S1). As expected, lobular tumors were pre-

dominantly classified as luminal A (LumA) (Figure 1A) and being

typically ER+ tumors characterized by low levels of proliferation

markers (Table S1). ER status was clinically determined by
Cell 163, 506–519, October 8, 2015 ª2015 Elsevier Inc. 507



immunohistochemistry on 120 of 127 ILC cases, with 94% (n =

113) scoring positively.

Within 127 ILC, we identified 8,173 total coding mutations,

integrating information from both DNA and RNA sequencing

(Wilkerson et al., 2014). Recurrently mutated genes in ILC were

identified by MutSigCV2 (Lawrence et al., 2013) and included

many genes previously implicated in breast cancer (Figure 1B,

Table 1) (Cancer Genome Atlas, 2012). Similarly, recurrent

copy-number alterations in ILC estimated by GISTIC (Mermel

et al., 2011) recapitulated known breast cancer gains and losses,

in particular those observed in ER+/luminal tumors (Figure S1A).

However, the frequency of these alterations (both mutations and

copy-number changes) often differed significantly between IDC

and ILC.

To investigate these differences, we identified recurrent alter-

ations across all 817 samples and separately in ILC and IDC

PAM50 subtypes (luminal A, n = 201, luminal B, n = 122,

HER2-enriched, n = 51, and basal-like, n = 107). In total, we iden-

tified 178 events, including 68mutated genes, 47 regions of gain,

and 63 regions of loss (Table 1 and Table S2). Several of these

had different incidence in ILC and in IDC (Figure 1C, Table S3).

ILC cases were significantly enriched for CDH1 mutations

(63% in ILC versus 2% in IDC, q = 3.94E-53), most of them trun-

cating, andmutations affecting TBX3 (9% versus 2%, q = 0.003),

RUNX1 (10% versus 3%, q = 0.008), PIK3CA (48% versus 33%,

q = 0.02), and FOXA1 (7% versus 2%, q = 0.08). By contrast,

alterations typically observed in ER�/basal-like tumors were

less frequent in ILC, including TP53mutations (8% in ILC versus

44% in IDC, q = 1.9E-14) and focal amplification of MYC

(6% versus 27%, q = 7.42E-7) and CCNE1 (0% versus 7%, q =

0.01). These results partly reflect genetic differences between

ER+/luminal and ER�/basal-like breast cancer, given that ILC

tumors were predominantly LumA. Nonetheless, unexpected

differences did emerge including a lower incidence of GATA3

mutations in ILC compared to IDC (5% in ILC versus 13% in

IDC, q = 0.03) (Figure 1C).

To better identify ILC discriminatory features, we limited our

analyses to LumA samples, representing 41% of IDC (n = 201)

and 83% of ILC (n = 106) (Figure 1D). This analysis confirmed a

high incidence of CDH1 (q = 1.4E-30), TBX3 (q = 0.05), and

FOXA1 (q = 0.065) mutations in ILC, while the frequency of

RUNX1 and PIK3CA mutations was no longer significantly

different. GATA3 mutations (5% ILC versus 20% IDC, q =

0.003) were the second most discriminant event after CDH1mu-

tations, mostly affecting IDC tumors. Interestingly, both FOXA1

and GATA3 are key regulators of ER activity (Liu et al., 2014),

suggesting IDC and ILC may preferentially rely on different

mechanisms to mediate the ER transcriptional program. Finally,

homozygous losses of the PTEN locus (10q23) were more

frequent in ILC (q = 0.035) as were PTEN mutations (8% versus

3%). Collectively, PTEN inactivating alterations were identified

in 14% of LumA ILC versus 3% of LumA IDC (p = 9E-4), making

this the third most discriminant feature between LumA IDC and

LumA ILC (Figure 1D).

E-Cadherin Loss in Invasive Lobular Carcinoma
Loss of the epithelial specific cell-cell adhesion molecule E-cad-

herin (CDH1) is the key hallmark of ILC (Dabbs et al., 2013;
508 Cell 163, 506–519, October 8, 2015 ª2015 Elsevier Inc.
Moll et al., 1993). CDH1 loss is believed to confer the highly dis-

cohesive morphology characteristic of this tumor subtype and is

often associated with tumor invasion and metastasis in other tu-

mor types, including diffuse gastric cancer (Brinck et al., 2004;

Cancer Genome Atlas Research Network, 2014; Richards

et al., 1999). Loss-of-function mutations targetingCDH1 are pre-

sent in 50%–60% of ILC and are believed to be an early event

often observed in matching lobular carcinoma in situ (LCIS)

(McCart Reed et al., 2015). CDH1 mutations typically occur in

combination with chromosome 16q loss, where CDH1 is

located, thus inducing complete loss of the protein.

We identified 108 mutations in the coding sequence of CDH1

in 107/817 patients (63%); 80 of these occurred in ILC cases.

These mutations were rather uniformly distributed along the

coding sequence, and 83% of them were predicted to be

truncating (Figure 2A). CDH1 mutations almost invariably co-

occurred with heterozygous loss of 16q (affecting 89% of

ILC cases) and were associated with downregulation of both

CDH1 transcript and protein levels (Figures 2B and S2A).

By combining somatic mutations, copy-number losses, and

mRNA and low protein expression (the latter when available),

we identified E-cadherin alterations in 120/127 (95%) cases

with DNA and RNA data, and in all 79 cases with DNA, RNA,

and protein data (Figures S2A–SC).

Previous studies reported sporadic cases of multiple cancer

types with high DNA methylation levels at the CDH1 promoter,

suggesting epigenetic silencing as an alternative mechanism

for downregulation of CDH1 (Graff et al., 1997; Richards et al.,

1999; Sarrió et al., 2003; Zou et al., 2009). We analyzed the

DNA methylation levels in breast tumors at CpG sites spanning

from upstream of the CDH1 promoter, across the promoter

CpG island, and extending into the first intron (Figure S2D).

Despite four of these probes matching DNA positions previously

reported as methylated in ILC (Graff et al., 1997; Sarrió et al.,

2003; Zou et al., 2009), we did not detect significant DNA hy-

per-methylation at these probes (Figure S2E), nor in any of the

other CDH1 associated probes analyzed (Figures 2B and S2F

and S2G). Moderately increased methylation was observed in

a few cases near exon 2; however, DNA methylation at this site

correlated with lower tumor purity and increased leukocyte infil-

tration and indeed it mimickedmethylation levels at this CpG site

in normal leukocytes (Figures S2F and S2G). Infinium DNA

methylation results were validated by whole-genome bisulfite

sequencing in five samples (Figure S2H). Altogether, these

data confirm that CDH1 expression was substantially lower in

ILC than in IDC and that this expression difference did not

appear associated with DNAmethylation at the CDH1 promoter.

Our results on 817 invasive breast tumors thus confirmed E-cad-

herin loss as ILC defining molecular feature but do not support

the reported occurrence ofCDH1 epigenetic silencing in invasive

breast cancer. The discrepancy with prior literature may be

attributable in part to the reliance on highly sensitive, but non-

quantitative, methylation-specific PCR assays in past studies

(Herman et al., 1996) and will require further investigation.

FOXA1 Mutations in Breast Cancer
FOXA1 is a key ER transcriptional modulator (Carroll et al., 2005;

Hurtado et al., 2011) coordinating ER DNA binding within a large



Table 1. Recurrently Mutated Genes in Breast Cancer

Gene

ILC (n = 127)

ILC Luminal A

(106) IDC (490)

IDC Luminal A

(201)

IDC Luminal B

(122)

IDC Her2-

enriched (51)

IDC Basal-

like (107)

ALL Breast

Cancer (817)

n q n q n q n q n q n q n q n q

PIK3CA 61 1.02E-12 54 9.18E-13 164 6.09E-13 93 6.79E-13 43 6.76E-13 19 9.14E-13 7 6.22E-02 282 2.54E-13

RUNX1 13 1.02E-12 9 9.18E-13 13 n.s. 9 1.32E-05 3 n.s. 0 n.s. 1 n.s. 32 2.54E-13

CDH1 80 3.40E-12 68 6.12E-12 10 7.63E-03 7 5.33E-02 2 n.s. 0 n.s. 0 n.s. 107 2.54E-13

TP53 10 8.26E-11 6 2.22E-04 215 6.09E-13 28 6.79E-13 52 6.76E-13 37 9.14E-13 92 1.83E-12 280 2.54E-13

TBX3 12 2.54E-08 10 4.01E-06 8 n.s. 5 n.s. 2 n.s. 0 n.s. 1 n.s. 26 1.11E-08

PTEN 9 8.43E-08 8 8.86E-09 27 5.61E-11 6 5.63E-03 11 9.64E-12 4 3.21E-02 6 4.65E-03 42 2.54E-13

FOXA1 9 5.52E-04 9 6.53E-04 11 n.s. 5 n.s. 3 n.s. 2 n.s. 1 n.s. 30 4.52E-13

MAP3K1 7 2.95E-02 6 7.54E-02 40 4.06E-12 33 1.25E-11 2 n.s. 1 n.s. 4 n.s. 69 2.54E-13

GATA3 6 n.s. 5 n.s. 66 6.09E-13 40 6.79E-13 22 6.76E-13 3 n.s. 0 n.s. 96 2.54E-13

AKT1 3 n.s. 3 n.s. 15 5.61E-11 11 1.25E-11 3 5.91E-02 1 n.s. 0 n.s. 20 2.54E-13

NBL1 3 n.s. 2 n.s. 10 1.08E-10 8 2.04E-12 0 n.s. 1 n.s. 1 n.s. 16 5.24E-11

KMT2C 9 n.s. 8 n.s. 37 1.49E-08 17 2.94E-02 12 n.s. 3 n.s. 5 n.s. 64 4.89E-06

DCTD 0 n.s. 0 n.s. 6 1.02E-05 3 1.54E-02 1 n.s. 1 n.s. 0 n.s. 6 7.61E-04

RB1 0 n.s. 0 n.s. 16 1.46E-04 4 n.s. 7 n.s. 1 n.s. 4 n.s. 18 n.s.

SF3B1 4 n.s. 4 n.s. 12 3.20E-04 6 1.12E-03 4 n.s. 1 n.s. 1 n.s. 16 3.68E-04

CBFB 2 n.s. 2 n.s. 15 1.51E-03 13 5.68E-06 1 n.s. 1 n.s. 0 n.s. 24 8.14E-13

ARHGAP35 1 n.s. 1 n.s. 13 1.62E-03 5 n.s. 5 1.24E-02 0 n.s. 3 n.s. 18 7.74E-03

OR9A2 0 n.s. 0 n.s. 5 1.77E-03 2 n.s. 1 n.s. 1 n.s. 1 n.s. 5 6.47E-03

NCOA3 6 n.s. 4 n.s. 24 1.77E-03 7 n.s. 7 n.s. 4 n.s. 6 n.s. 40 3.25E-07

RBMX 2 n.s. 2 n.s. 10 2.83E-03 3 n.s. 2 n.s. 1 n.s. 4 6.27E-02 12 4.01E-08

MAP2K4 2 n.s. 2 n.s. 24 2.83E-03 18 5.29E-12 5 n.s. 1 n.s. 0 n.s. 30 1.37E-05

TROVE2 0 n.s. 0 n.s. 6 4.51E-03 1 n.s. 2 n.s. 1 n.s. 2 n.s. 8 2.77E-03

NADK 0 n.s. 0 n.s. 4 4.51E-03 0 n.s. 4 5.85E-05 0 n.s. 0 n.s. 6 3.61E-03

CASP8 1 n.s. 1 n.s. 9 6.00E-03 2 n.s. 3 n.s. 0 n.s. 3 n.s. 11 1.81E-03

CTSS 0 n.s. 0 n.s. 5 6.00E-03 1 n.s. 2 n.s. 0 n.s. 2 n.s. 5 8.91E-02

ACTL6B 2 n.s. 1 n.s. 5 7.63E-03 2 n.s. 1 n.s. 0 n.s. 2 n.s. 10 7.33E-05

LGALS1 0 n.s. 0 n.s. 4 9.78E-03 2 n.s. 2 n.s. 0 n.s. 0 n.s. 5 6.34E-03

KRAS 2 n.s. 1 n.s. 4 1.54E-02 3 7.32E-03 0 n.s. 0 n.s. 1 n.s. 7 2.49E-04

KCNN3 2 n.s. 2 n.s. 8 1.81E-02 1 n.s. 2 n.s. 2 n.s. 3 2.45E-02 16 4.53E-02

FBXW7 2 n.s. 2 n.s. 6 2.19E-02 0 n.s. 0 n.s. 0 n.s. 6 8.28E-04 11 n.s.

LRIG2 0 n.s. 0 n.s. 4 3.08E-02 2 n.s. 0 n.s. 1 n.s. 1 n.s. 6 n.s.

PIK3R1 0 n.s. 0 n.s. 9 3.08E-02 2 n.s. 3 n.s. 2 n.s. 2 n.s. 13 1.56E-03

PARP4 3 n.s. 3 n.s. 7 3.08E-02 3 n.s. 4 n.s. 0 n.s. 0 n.s. 12 n.s.

ZNF28 3 n.s. 3 n.s. 7 3.25E-02 1 n.s. 5 n.s. 0 n.s. 1 n.s. 11 1.72E-02

HLA-DRB1 0 n.s. 0 n.s. 13 3.52E-02 9 1.49E-02 2 n.s. 0 n.s. 2 n.s. 16 n.s.

ERBB2 5 n.s. 4 n.s. 7 6.42E-02 3 n.s. 1 n.s. 2 n.s. 1 n.s. 18 3.36E-06

ZMYM3 0 n.s. 0 n.s. 9 8.83E-02 3 n.s. 1 n.s. 1 n.s. 4 n.s. 11 n.s.

RAB42 1 n.s. 1 n.s. 2 n.s. 0 n.s. 0 n.s. 0 n.s. 2 6.27E-02 4 1.82E-03

CTCF 0 n.s. 0 n.s. 12 n.s. 9 7.05E-08 1 n.s. 1 n.s. 1 n.s. 18 1.93E-03

ATAD2 0 n.s. 0 n.s. 9 n.s. 2 n.s. 4 7.32E-02 2 n.s. 1 n.s. 12 n.s.

CDKN1B 3 n.s. 2 n.s. 5 n.s. 4 9.59E-02 1 n.s. 0 n.s. 0 n.s. 11 1.14E-03

GRIA2 0 n.s. 0 n.s. 6 n.s. 5 5.33E-02 0 n.s. 0 n.s. 1 n.s. 6 n.s.

NCOR1 8 n.s. 8 n.s. 23 n.s. 12 4.81E-03 7 n.s. 1 n.s. 3 n.s. 39 3.61E-03

HRNR 4 n.s. 4 n.s. 13 n.s. 3 n.s. 3 n.s. 3 n.s. 4 n.s. 23 7.65E-02

GPRIN2 1 n.s. 1 n.s. 6 n.s. 3 n.s. 1 n.s. 0 n.s. 2 n.s. 11 1.16E-05

PAX2 1 n.s. 0 n.s. 2 n.s. 2 n.s. 0 n.s. 0 n.s. 0 n.s. 4 4.80E-02

(Continued on next page)
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Table 1. Continued

Gene

ILC (n = 127)

ILC Luminal A

(106) IDC (490)

IDC Luminal A

(201)

IDC Luminal B

(122)

IDC Her2-

enriched (51)

IDC Basal-

like (107)

ALL Breast

Cancer (817)

n q n q n q n q n q n q n q n q

ACTG1 1 n.s. 1 n.s. 4 n.s. 2 n.s. 0 n.s. 0 n.s. 2 n.s. 8 9.39E-02

AQP12A 0 n.s. 0 n.s. 3 n.s. 1 n.s. 1 n.s. 0 n.s. 1 n.s. 5 2.69E-02

PIK3C3 2 n.s. 2 n.s. 5 n.s. 2 n.s. 0 n.s. 1 n.s. 2 n.s. 11 3.23E-02

MYB 1 n.s. 1 n.s. 7 n.s. 3 n.s. 2 n.s. 0 n.s. 2 n.s. 12 8.91E-02

IRS4 1 n.s. 1 n.s. 6 n.s. 3 n.s. 0 n.s. 0 n.s. 3 n.s. 8 9.38E-02

TBL1XR1 3 n.s. 2 n.s. 3 n.s. 1 n.s. 1 n.s. 1 n.s. 0 n.s. 12 4.71E-04

RPGR 4 n.s. 3 n.s. 11 n.s. 3 n.s. 3 n.s. 2 n.s. 3 n.s. 19 1.26E-03

CCNI 1 n.s. 1 n.s. 2 n.s. 0 n.s. 2 n.s. 0 n.s. 0 n.s. 3 6.93E-02

ARID1A 7 n.s. 5 n.s. 16 n.s. 7 n.s. 4 n.s. 3 n.s. 2 n.s. 33 7.91E-09

CD3EAP 1 n.s. 0 n.s. 2 n.s. 0 n.s. 0 n.s. 0 n.s. 2 n.s. 5 1.29E-02

ADAMTS6 1 n.s. 1 n.s. 3 n.s. 1 n.s. 0 n.s. 0 n.s. 2 n.s. 8 1.81E-03

OR2D2 0 n.s. 0 n.s. 4 n.s. 0 n.s. 3 n.s. 0 n.s. 1 n.s. 5 5.67E-02

TMEM199 0 n.s. 0 n.s. 3 n.s. 0 n.s. 2 n.s. 1 n.s. 0 n.s. 4 3.36E-02

MST1 0 n.s. 0 n.s. 5 n.s. 2 n.s. 2 n.s. 0 n.s. 1 n.s. 7 9.46E-02

RHBG 0 n.s. 0 n.s. 3 n.s. 0 n.s. 0 n.s. 1 n.s. 2 n.s. 4 7.91E-02

ZFP36L1 1 n.s. 1 n.s. 5 n.s. 2 n.s. 2 n.s. 0 n.s. 1 n.s. 8 3.37E-02

TCP11 2 n.s. 0 n.s. 3 n.s. 2 n.s. 0 n.s. 0 n.s. 1 n.s. 6 4.80E-02

CASZ1 4 n.s. 4 n.s. 3 n.s. 0 n.s. 0 n.s. 1 n.s. 2 n.s. 11 2.03E-02

GAL3ST1 1 n.s. 1 n.s. 2 n.s. 0 n.s. 1 n.s. 0 n.s. 1 n.s. 4 7.74E-03

FRMPD2 1 n.s. 1 n.s. 7 n.s. 2 n.s. 4 n.s. 0 n.s. 1 n.s. 9 8.91E-02

GPS2 1 n.s. 1 n.s. 4 n.s. 3 n.s. 0 n.s. 1 n.s. 0 n.s. 8 8.91E-02

ZNF362 0 n.s. 0 n.s. 3 n.s. 3 n.s. 0 n.s. 0 n.s. 0 n.s. 3 8.91E-02

n: number of mutations q: MutSigCV2 q value.
protein complex by modifying chromatin accessibility and medi-

ating long-range DNA interactions (Liu et al., 2014). High FOXA1

expression has been previously reported in breast and prostate

cancer (Habashy et al., 2008; Sahu et al., 2011) and somatic

mutations in the FOXA1 gene have been reported in these tumor

types in about 3%–4% of the cases (Barbieri et al., 2012; Cancer

Genome Atlas, 2012; Robinson et al., 2015).

Here, we observed a total of 33 FOXA1 mutations in 30/817

(3.7%) tumors (Figure 3A), and the large sample set allowed us

to identify regional hotspots in the FOXA1 mutation distribution.

Mutations clustered in the fork-head DNA binding (FK) and

C terminus transactivation domains (Figure 3A). A similar muta-

tional pattern was observed by combining multiple prostate

cancer sequencing studies (Baca et al., 2013; Barbieri et al.,

2012; Grasso et al., 2012; Robinson et al., 2015) (Figure S3A),

and confirmed by the TCGA prostate cancer project (Robinson

et al., 2015). Thus, regional FOXA1mutation hotspots are selec-

tively altered in a tissue-independent fashion.

Eleven FOXA1 mutations were observed in 9/127 (7%) ILC

cases. All FOXA1 mutations in ILC were in the FK domain,

whereas mutations in IDC (n = 11) were observed both in FK

(n = 6) and other structural elements (n = 5), without a specific

preference. The FK domain includes three a helices (H1, H2,

H3), three b strands (S1, S2, S3) and two loops, typically referred

to as ‘‘wings’’ (W1, W2) (Figures 3B and S3B). FOXA1mutations
510 Cell 163, 506–519, October 8, 2015 ª2015 Elsevier Inc.
in FK clustered prevalently in the W2 loop. Notable exceptions

were recurrently mutated residues I176 (n = 4) and D226

(n = 3). These residues are far from W2 in sequence space and

located in different secondary structure elements; however,

they are close (within 5 to 10 Å) to residues in W2 in the 3D space

(Figures 3C, 3D and S3C). In total, 22 out of 25 FK-mutations in

our dataset fall into a restricted 3D space or ‘‘mutation structural

hotspot’’ (MSH) (Figure 3D) indicating a selective pressure for

targeting protein interactions and functions mediated by this

region. Notably, 8/127 ILC cases have FOXA1 mutations within

this MSH compared to 4/490 IDC cases (p = 6E-4), further sup-

porting FOXA1 selected mutations as an ILC feature.

FOXA1 DNA binding occurs mostly through helix H3, that rec-

ognizes the binding motif and is stabilized by interactions medi-

ated by its ‘‘wings’’ (Cirillo and Zaret, 2007; Gajiwala and Burley,

2000; Kohler and Cirillo, 2010). Only a few residues predicted

or experimentally shown to interact with the DNA were mutated

(Figures 3B–3E) suggesting that these events are unlikely to

affect FOXA1 DNA binding. FOXA1 is a pioneer factor that binds

condensed chromatin and triggers DNA demethylation of its

binding sites, making them accessible to transcription factors

such as ER (Cirillo et al., 2002; Sérandour et al., 2011). FOXA1

activity can therefore be estimated by the methylation status of

these sites where occupied FOXA1 DNA binding sites tend to

be demethylated. We analyzed DNA methylation levels of the
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(A) Mutations targeting the CDH1 gene target res-
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predicted to be truncating (red).

(B) Comparison of E-cadherin status between ILC
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of both mRNA [log2(RSEM)] and protein levels.

See also Figures S2A–S2C. Average DNA methyl-
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shows no change in DNA methylation in both ILC

and IDC samples. See also Figures S2D–S2I.
3,976 most variable methylation probes mapping to FOXA1

binding sites (Table S3) and methylated in normal samples

(Ross-Innes et al., 2012; Wang et al., 2012). DNA methylation

of these sites was substantially lower when FOXA1 and ESR1

were highly expressed, while it remained high in FOXA1-negative

cases and adjacent normal tissue (Figure 3F). Inverse correlation

with FOXA1 expression (Pearson’s coefficient r = �0.54) was

specifically observed for DNA methylation at FOXA1 binding

sites. Indeed, no correlation was found with methylation at

2,000 most variable probes with the same methylation level in

normal samples as FOXA1 binding sites (r = 0.07) (Figure 3F).

These data support the hypothesis that FOXA1 mRNA expres-

sion correlates with its activity. FOXA1mutations were positively

associated with its mRNA expression (p = 0.002) andmaintained

a similar anti-correlation with DNAmethylation at FOXA1 binding

sites (Figure 3F). Finally, by examining mRNA expression of

FOXA1 targets, defined as genes with a FOXA1 binding motif

in the promoter or matching the genomic loci covered by the

3,976 methylation probes we analyzed (Table S3), no significant

differences were identified and only a few genes showedmoder-

ate expression changes (Table S4). These data collectively indi-

cate that FOXA1 mutations do not abolish protein function and,

in fact, they may activate alternative mechanisms to affect ER

transcriptional programs.

Differential expression analyses between FOXA1 mutant and

wild-type cases within distinct subsets of samples found consis-

tent upregulation of neuroendocrine secretory proteins SCG1

(CHGB) and SCG2, chemokine-like factor CMTM8, neuroendo-

crine tumor associated transcription factor NKX2-2 and Kalli-

krein serine proteases KLK12, KLK13, and KLK14 (Figure S3D

and Table S5). While the relatively low number of FOXA1 muta-

tions and breast cancer heterogeneity prevented the identifica-

tion of strong transcriptional signals associated with FOXA1mu-

tations, several upregulated targets in FOXA1mutant cases with
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part of them consistently found as signifi-

cant suggests these lesions might drive

novel binding events.

Interestingly, while ILC cases were en-

riched for FOXA1mutations, and in partic-

ular for those targeting the FK domain,

ILC showed significantly fewer GATA3

mutations, another key ER modulator.

Mutations in GATA3 were more frequent

in LumA IDC (Figure 1D) and mutually
exclusive with FOXA1 events. Moreover, LumA ILC tumors

show lower GATA3 mRNA (p = 0.007) and protein (p = 2E-4)

levels than LumA IDC (Figures S3E and S3F). Taken together,

the differential expression patterns and enrichment for hotspot

mutations of GATA3 in IDC and of FOXA1 in ILC, suggest a pref-

erential requirement for distinct ER modulators in ILC and IDC.

Akt Signaling Is Strongly Activated in ILC
PTEN inactivation emerged as a discriminant feature between

luminal A ILC and luminal A IDC. PTEN genetic alterations

across all ILC cases included homozygous deletions (6%) and

somatic mutations (7%), and were largely mutually exclusive

with PIK3CA mutations (48%) (Figure S4A).

Unbiased differential protein expression analysis (Table S6)

based on RPPA data revealed significant lower PTEN protein

expression (p = 4E-4) in LumA ILC compared to LumA IDC (Fig-

ure 4A). Consistent with PTEN function as a negative regulator

of Akt activity (Cantley and Neel, 1999; Song et al., 2012), ILC

tumors also showed significantly increased Akt phosphorylation

at both S473 (p = 0.004) and T308 (p = 7E-5) (Figure 4A). Up-

stream of the Akt pathway, we found significant upregulation

of total EGFR (p = 1E-4) and phospho-EGFR at Y1068 (p =

0.005) and Y1173 (p = 0.007), as well as phospho-STAT3 at

Y705 (p = 7E-4), supporting upregulation of signaling axes

converging on Akt activation (Wu et al., 2013). We also identified

increased phospho-p27 at T157 (p = 0.002), an Akt substrate,

and phospho-p70S6 kinase at T389 (p = 1E-4), a direct mTOR

target. Notably, ILC phospho-Akt levels were comparable with

those typically observed in the more aggressive HER2+ and

ER�/basal-like breast tumors (Figure S4B), which have uniformly

high levels of PI3K/Akt signaling (Cancer Genome Atlas, 2012).

Consistent with these results, we found significant upregulation

of a PI3K/Akt pathway-specific protein and phospho-protein

expression signature (Akbani et al., 2014) in LumA ILC compared
9, October 8, 2015 ª2015 Elsevier Inc. 511
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Figure 3. Recurrent FOXA1 Mutations Cluster in the 3D Space and Correlate with High FOXA1 Activity

(A) Recurrent FOXA1 mutations in 817 breast tumors cluster in the Fork-head DNA binding (FK) domain and in the C terminus trans-activation (TA) domain.

(B) Secondary structure elements of the FK domain are not equally mutated. FOXA1 mutations cluster in the W2 loop and rarely target residues interacting with

the DNA.

(C) Residue-residue minimum distances for all residues in the FK domain using the 3D structure of FOXA3 FK domain (PDB ID: 1VTN). Frequently mutated

residues I176 and D226 are close in the 3D space (but not in the sequence) to the residues in the W2 loop. See also Figure S3C.

(D) 3D structure of the FK domain. Mutations in the W2 loop, in I176, and in D226 form a mutational structural hotspot (MSH).

(E) 3D structure of FK domain bound to the DNA molecule shows mutated residues (red) are not those in contact with the DNA (light blue).

(F) Across all breast cancer subtypes (histopathology and PAM50), FOXA1 mutations are associated with FOXA1 high mRNA expression. FOXA1 mRNA

expression is highly correlated with ER mRNA expression [log2(RSEM)] and anti-correlated with DNA methylation at FOXA1 binding sites consistent with FOXA1

activity. DNA methylation of randomly selected probes was used as control.
to LumA IDC (Figure 4B, Tables S1 and S6). Based on this signa-

ture, we found nearly equivalent levels of PI3K/Akt signaling in

LumA ILC and basal-like and HER2+ IDC (Figure S4C). Finally,

PARADIGM analyses (Vaske et al., 2010) showed increased

activation of Akt signaling in LumA ILC relative to LumA IDC

(Figure 4D).

PTEN protein loss and increased Akt phosphorylation were

observed in association with PTEN genetic alterations, as well

as inmultiple ILCPTENwild-type cases indicating that additional

mechanisms contribute to the activation of the pathway.

While PIK3CA mutations were frequent in LumA ILC tumors,

these mutations were not associated with increased levels of

phospho-Akt or pathway activity in our dataset. Using MEMo
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(Ciriello et al., 2012), we highlighted multiple genetic alterations

converging on Akt/mTOR signaling in 45% of the samples (Fig-

ure S4D, Table S7). Among these, alterations acting upstream

of Akt were identified in 40% of ILC cases and were associated

with increased Akt phosphorylation and PI3K/Akt score (Fig-

ure 4E), providing an apparent molecular explanation for Akt

activation in these samples. Interestingly, these events included

ERBB2 amplification and mutations (Figure 4E), both of which

have been identified in relapsed ILC (Ross et al., 2013).

ILC mRNA Subtypes
Using mRNA-seq expression data from LumA ILC samples

(n = 106), we identified three ILC subtypes termed reactive-like,
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(A) Differential protein and phospho-protein analysis between ILC LumA and IDC LumA reveals significant lower levels of PTEN, and higher levels of Akt, phospho-

Akt, EGFR, phospho-EGFR, phopsho-STAT3, and phospho-p70S6K in ILC LumA.

(B) A PI3K/Akt protein expression signature is significantly upregulated in ILC tumors. See also Figures S4B–S4C.

(C) Mutation and copy-number alterations in PIK3CA and PTEN

(D) PARADIGM identifies increased Akt activity in LumA ILC tumors.

(E) MEMo identified multiple mutually exclusive alterations in ILC converging on Akt signaling and associated with increased phospho-Akt and PI3K/Akt protein

signature in these tumors. Hotspot are defined as follow: PIK3CA E542, E545, Q546, and H1047; ERBB2 L755, I767, V777; AKT1 E17; KRAS G12.
immune-related, and proliferative (Figures S5A–S5I, Table S8).

We then used a 3-class ILC subtype classifier (60 genes, Table

S13) to score all ILC samples in the TCGA (n = 127) (Figure 5A)

and METABRIC (Curtis et al., 2012) datasets (Table S12). Our

analyses identifiedmany significant genomic features that distin-

guished each ILC subtype at the mRNA and protein/phospho-

protein level; but no distinguishing somatic mutations or DNA

copy-number alterations.

Significant analysis of microarray (SAM) analysis (Tusher et al.,

2001) identified 1,277 genes differentially expressed between

ILC subtypes (q = 0) (Figure 5A, Table S8). Of these, 1,005

were highly expressed in reactive-like tumors, which had lower

tumor purity as determined by ABSOLUTE (Carter et al., 2012)

(Figures 5A and S5P), and included genes consistent with

epithelial and stromal-associated signaling including keratin,

kallikrein, and claudin genes as well as the oncogenes EGFR,

MET, PDGFRA, and KIT (Table S8). The remaining 272 genes

were highly expressed in immune-related tumors and include

modulators of immunogenic signaling such as interleukins (IL),

chemokine receptors and ligands, major histocompatibility com-

plex, and tumor necrosis factors, as well as IDO1 and IFNG

(Figure 5A and Table S8). Interestingly, immune activity in this

subset of tumors appears to be predominantly associated with
macrophage-associated signaling as increased levels of CD68

(p < 0.05), macrophage-associated colony stimulating factor

(MacCSF), macrophage-associated TH1 (MacTH1), and T cell

receptor (TCR) gene expression signatures (Iglesia et al., 2014)

were observed in both the TCGA (Figure 5A) and METABRIC

(Figure S5J–S5K) datasets. Finally, proliferative tumors were

defined by low expression of each of these 1,277 genes

(Figure 5A). Intriguingly, in each dataset (Figures 5 and S5K)

proliferative tumors had higher levels of proliferation relative

to reactive-like tumors (TCGA: p = 3.3E-09; METABRIC: p =

0.018) and slightly higher or equivalent levels compared to

immune-related ones (TGCA: p = 0.29; METABRIC: p = 0.008).

Regardless of ILC subtype, ILC tumor proliferation was generally

lower than all IDC subtypes (Figures S5L–S5M).

With respect to previously reported RPPA-based subtypes

(reactive or non-reactive), reactive-like ILC largely, but not

entirely, comprised tumors classified as reactive (Figure 5B;

p < 1E-4), a subgroup characterized by strongmicroenvironment

and/or cancer fibroblast signaling (Cancer Genome Atlas, 2012).

Examining protein and phospho-protein expression differences

between ILC subtypes identified many significant features

(Figure 5B and Table S6). Reactive-like tumors had higher

levels of c-Kit (p = 4E-4), consistent with mRNA expression, total
Cell 163, 506–519, October 8, 2015 ª2015 Elsevier Inc. 513



(p = 0.004) and phosphorylated PKC alpha (S657, p = 0.002);

beta catenin (p = 0.012) and E-cadherin (p = 0.011), although

both beta-catenin and E-cadherin levels are significantly lower

than in all IDC subtypes. Decreased levels were observed

instead for p70S6 kinase (p = 0.017), Raptor (p = 0.027) and

eIF4G (p = 0.024).

Immune-related tumors hadhigher levels of immunemodulator

STAT5 alpha (p = 0.019), PI3K/Akt targets phospho-PRAS40

(T246, p = 0.016) and mTOR (S2448, p = 0.019), and total (p =

0.004) and phospho-MEK1 (S217-S221, p = 0.022). Consistent

with the mRNA proliferation signature, tumors in the proliferative

subtype have increased expression of cell-cycle proteins cyclin

E1 (p = 0.036), FoxM1 (p = 0.019), PCNA (p = 0.019), and prop-

sho-Chk1 (S345, p = 0.038) as well as DNA repair components

Rad50 (p = 0.007), Rad51 (p = 0.007), XRCC1 (p = 0.028), and

BRCA2 (p = 0.038). Decreased expression was observed for

total (p = 0.014) and phospho-MAPK (T202-Y204, p = 0.038),

and phosphorylated MEK1 (S217-S221, p = 0.019), PKC alpha

(S657, p = 0.006), PKC beta (S660, p = 0.037), and Src (Y527,

p = 0.026). Protein pathway signatures (Akbani et al., 2014)

recapitulated these findings with proliferative tumors having

increased levels of the cell cycle (p = 0.005) and DNA damage

response (p = 0.014) signatures and a lower RAS-MAPK signa-

ture (p = 0.031) score (Tables S1 and S6).

Using an integrative genomics approach, PARADIGM pre-

dicted increased activation of the TP53, TP63, TP73 TCF/beta-

catenin PKC, and JUN/FOS pathways in reactive-like tumors;

increased activation of immune-modulators IL12 and IL23,

IL12R and IL23R, JAK2 and TYK2 in immune-related ILCs

(Baay et al., 2011; Duvallet et al., 2011; Strobl et al., 2011),

and decreased activation of each of these pathways along with

lower levels ofMAPK3, RB1, and ERK1 (Figure 5C) in proliferative

ILC tumors.

Lastly, we determined that reactive-like ILC patients had a

significantly better disease-specific (DSS) (p = 0.038, HR: 0.47)

and overall survival (OS) (p = 0.023, HR: 0.50) compared to

proliferative ILC patients in the METABRIC dataset, which has

a median follow-up of 7.2 years (compared to the TCGA median

follow-up of less than 2 years), (Figure 5D). Consistent with

these results, patients with more proliferative lobular tumors

(i.e., greater than the median PAM50 proliferation signature

score) had worse DSS (p = 0.025, HR: 2.0) and a tendency

toward worse OS (p = 0.058, HR: 0.63) compared to patients

with a lower proliferation score (Figures S5N–S5O). No sig-

nificant differences in DSS or OS were identified between

the immune-related subgroup and either the proliferative or

reactive-like subgroup. These results are consistent with previ-

ous studies reporting that the reactive stromal phenotype is

associated with a good prognosis in breast cancer while prolifer-

ation is one of the strongest indicators of worse outcome in

luminal/ER+ breast cancers (Ciriello et al., 2013b).

Tumors with Mixed ILC and IDC Histology
Histologically, �3%–6% of breast tumors present both a ductal

and a lobular component (Figure 6A). Pathologists currently clas-

sify these tumors as mixed ductal/lobular breast carcinoma or

invasive ductal cancers with lobular features (Arps et al., 2013).

There are, however, no defined criteria or uniform terminology
514 Cell 163, 506–519, October 8, 2015 ª2015 Elsevier Inc.
for the classification of mixed tumors and as a consequence

discordant clinical and molecular features have been reported

(Bharat et al., 2009). Molecular profiling has the power to provide

quantitative endpoints to compare the genetics of mixed tumors

with those of pure ILC and IDC. In our dataset, 88/817 tumors

(11%) were classified by as mixed ductal/lobular breast carci-

nomas. We characterized these mixed tumors using multiple

computational approaches integrating different data-types

thus to determine whether they molecularly resembled IDC

(IDC-like), ILC (ILC-like), or neither.

We first analyzed the transcriptional landscape of mixed

tumors using the ISOpure algorithm (Quon et al., 2013), which

deconvolves the transcriptional signal of each queried tumor to

estimate how much of it can be explained by one or more refer-

ence populations and how much is unique. Interestingly, mRNA

expression profiles of all mixed cases could almost completely

be explained by either IDC or ILC reference populations, sug-

gesting that these tumors separate into IDC-like and ILC-like

cases and do not represent a molecularly distinct subtype (Fig-

ure S6A). Based on this analysis, 32/88 mixed cases received

an ILC-score greater than the IDC-score, and were therefore

classified as ILC-like (Figure 6B).

We next evaluated the resemblance of mixed tumors to IDC

and ILC based on the previously determined selected set

of copy-number alterations (CNAs) and mutations (Table S2).

Mixed tumors were enriched for IDC recurrent CNAs and muta-

tions when compared to ILC, and vice versa (Figure S6B),

indicating ILC and IDC genetic alterations were both present in

these tumors, either simultaneously or in separate IDC-like and

ILC-like subgroups. We then compared each mixed tumor to

ILC and IDC based on their genomic features, by adapting the

OncoSign algorithm (Ciriello et al., 2013a). This approach identi-

fied 19 ILC-like mixed samples characterized by ILC genetic

features (Figures 6B and S6D). All CDH1-mutated mixed cases

were classified as ILC-like, indicating CDH1 status as a domi-

nant feature in this analysis. A few CDH1 wild-type mixed cases

were also classified as ILC-like and characterized by ILC-en-

riched events such as mutations in RUNX1 (3/4 mutated cases),

TBX3 (2/4), and FOXA1 (2/6). ILC-enriched alterations did not

co-occur with IDC-enriched ones, further indicating that mixed

tumors can be categorized into ILC-like or IDC-like subgroups

and do not constitute a molecularly distinct subtype.

Finally, we combined 428 CNA, including focal and arm-level

alterations, 409 gene expression modules (Fan et al., 2011;

Gatza et al., 2014) and somatic mutations for 128 genesmutated

in more than 3% of the cases into a single ElasticNet classifier

(Zou and Hastie, 2005). This integrated ElasticNet predictor

identified 27/88 mixed tumors as ILC-like. These were enriched

for the LumA subtype, CDH1 mutations and loss of E-cadherin

mRNA expression (Figures 6B and S6E).

Overall, these approaches were highly concordant (Figures 6B

and S6F) with 24/88 cases (18/57 LumA cases) being called

ILC-like by at least two approaches, and 64 being called IDC-

like (Table S1). ILC-like and IDC-like mixed tumors when

compared to pure ILC and IDC, respectively, do not show signif-

icant enrichment for specific genomic alterations, being mole-

cularly similar to either one or the other subtype. Our analyses

demonstrate that mixed histology tumors overwhelmingly tend
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to resemble either ILC or IDC as opposed to representing a third

distinct group. Moreover, IDC and ILC discriminant molecular

features, in particular CDH1 status, could be used to stratify

mixed tumors into ILC-like and IDC-like tumor subgroups.

DISCUSSION

In this study we provide the most comprehensive molecular

portrait to date of ILC. E-cadherin loss was confirmed the ILC

hallmark lesion, and we could identify CDH1 loss at the DNA,

mRNA, and protein level in almost all ILC cases. Moreover, 12/

27 CDH1 mutations in non-ILC cases occurred in mixed tumors

strongly resembling ILC at the molecular level. Surprisingly, we

did not identify DNA hyper-methylation of the CDH1 promoter

in any breast tumor, suggesting that E-cadherin loss is not epige-

netically driven. In addition, ILC and IDC differed in the FOXA1

and GATA3 mutational spectra, PTEN loss, and Akt activation.

The lower incidence of GATA3 mutations in ILC and lower

GATA3 mRNA and protein expression suggest that in LumA

ILC tumors there is a preferential occupancy of ER in FOXA1

bounded sites (Theodorou et al., 2013). Differential ER activity

is also observed at the protein level where both total ER

(p = 0.005) and phospho-ER (p = 2E-05) levels are reduced in

LumA ILC versus LumA IDC. These findings in the context of

recent data suggesting an improved response to the aromatase

inhibitor letrozole as compared to tamoxifen in ILC (Metzger

et al., 2012; Sikora et al., 2014) warrants further investigation.

The chromatin remodeling factor EP300, also involved in ER

modulation, is able to directly acetylate FOXA1, and EP300

driven acetylation prevents FOXA1 DNA binding, but does not

affect the protein when already bound (Kohler and Cirillo,

2010). Intriguingly, five acetylation sites have been identified in

the wings of the fork-head domain; three of them in W2 (K264,

K267, and K270), where most of our newly observed FOXA1mu-

tations cluster. These observations lead to the hypothesis that

FOXA1 mutations could alter EP300 dependent acetylation of

FOXA1 without affecting EP300 modulation of ER. While a

rigorous evaluation of the role of EP300 in breast cancer and

how FOXA1 mutations interfere with it goes beyond the scope

of this study, FOXA1 mutations, its correlation with FOXA1

expression and lack of DNA methylation at its binding sites,

and exclusivity with GATA3 mutations support these as events

activating FOXA1 function and, thus, ER transcriptional program.

The PI3K/Akt pathway is among the most altered in cancer

providing tumor cells with enhanced growth and survival capa-
Figure 5. ILC Molecular Subtypes

(A) Three molecular subtype of lobular breast cancer were identified based on d

(n = 1277, SAM FDR = 0, upper panel), minor difference in tumor purity measur

proliferation, CD68, Macrophage-associated CSF1, Macrophage–associated TH

proliferative (Pro) and immune-related (IR) subgroups; macrophage associated s

(B) Differences in protein expression profiles as determined by RPPA analysis. The

Exact test) with the RPPA-defined reactive subgroup of breast cancer. Differen

individual proteins (upper panel) as well as for protein expression signatures (lowe

the cell-cycle and DNA damage response pathways and lower levels of Ras-MA

(C) Subgroup-associated signaling features identified by PARADIGM.

(D and E) Reactive-like (n = 55) tumors have significantly better (D) disease specifi

compared to proliferative (n = 44) tumors in the METABRIC cohort.

See also Figure S5.
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bilities. Integrating protein and phospho-protein data with gene

expression and pathway activity signatures, we consistently

identified increased Akt signaling in ILC versus IDC. Notably,

E-cadherin loss has been associated with Akt activation and

EGFR overexpression (Lau et al., 2011; Liu et al., 2013). Lack

of E-cadherin expression, which characterizes almost all ILC

tumors, may thus provide a favorable cellular context for Akt

activation. Recently, PI3K and Akt inhibitors entered clinical

trials for several cancer types including breast cancer. Here

we showed that ILC has on average the highest levels of Akt

activation, measured by phospho-Akt and PI3K/Akt signaling

among all breast cancer subtypes (comparable to IDC basal-

like), making selective inhibition of this pathway in ILC a particu-

larly attractive strategy.

Unbiased characterization of the ILC transcriptome showed

a high degree of internal variability giving rise to three main

subgroups: reactive-like, immune-related, and proliferative.

While additional validation studies will clearly be required, we

do observe increased expression of many druggable path-

ways/targets including increased levels of phospho-mTOR and

phospho-MEK1 expression in the immune-related subgroup

as well as increased SMO and ERK pathway activity in the

reactive-like subgroup. These results, coupled with difference

in clinical outcome, suggest that these subgroups will be impor-

tant for future studies focused on both the clinical and biological

aspects of ILC.

Finally, we showed that mixed ILC/IDC tumors could be

separated into twomajor groupsbasedon theirmolecular resem-

blance to either ILC (ILC-like) or IDC (IDC-like). The ability to clas-

sify cancers with mixed phenotypes based on the underlying

biology has implications for clinical practice as well as furthering

our understanding of the etiology of such lesions. Indeed, ILC

carcinomas often metastasize to body sites not colonized by

IDCs (e.g., gastrointestinal [GI] tract and peritoneal surfaces).

ILC are also typically of low histologic grade andwith low to inter-

mediate mitotic index, thus limiting their response to primary

chemotherapy (Cristofanilli et al., 2005) and their ability to be de-

tected on PET scans. As such, clinicians must be aware of non-

specific symptomatology and favor diagnostic approaches

such as anatomical scanning (CT scan) for ILCs. Finally, the iden-

tification of ILC enriched molecular features may ultimately lead

to the design of ILC-targeted therapies. Amore refined classifica-

tion of mixed cancers as IDC-like or ILC-like will improve our un-

derstanding, detection, and follow-up of the disease, and enable

a more informed and targeted treatment selection.
ifferential gene expression and show unique patterns highly expressed genes

ed by ABSOLUTE, and differences in gene expression signatures measuring

1, and T Cell Receptor Signaling (lower panel). Proliferation is highest in the

ignaling is highest in immune-related tumors.

reactive-like (RL) subgroup shows a significant association (p < 1E-4, Fisher’s

ces in subgroup-specific patterns of protein expression (p < 0.05, t test) for

r panel) were identified. The proliferative subgroup shows higher expression of

PK signaling (p < 0.05).

c (p = 0.038, HR: 0.47, log-rank) and (E) overall survival (p = 0.022, HR = 0.50)
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Figure 6. Molecular Classification of Mixed

Ductal/Lobular Carcinoma

(A) Mixed ductal/lobular tumors present at the

same time both a lobular and ductal component.

(B) We used three algorithmic approaches

(ElasticNet, OncoSign, and ISOpure) to evaluate

the resemblance of mixed tumors to either ILC

(ILC-like) or IDC (IDC-like) based on molecular

features. ILC-IDC scores are shown for all three

approached at the top. See also Figures S6B–S6D.

(C) Genetic alterations enriched in ILC tumors

are frequently found in ILC-like mixed cases

(in particular CDH1 mutations), whereas those

enriched in IDC are more frequent in IDC-like

mixed cases.

(D) ILC-like mixed-cases are characterized by

both low E-cadherin mRNA and protein level.

See also Figure S6E.
This multi-platform study identified numerous molecular fea-

tures discriminating between breast ILC and IDC, demonstrating

different pathways underlying their pathogenesis, defining new

ILC subtypes with different clinical outcomes, and pointing to

previously unrecognized therapeutic possibilities. Importantly,

we provided here a curated and integrated dataset for 817

breast tumors, including the largest collection to date of com-

prehensively profiled ILC. To facilitate the exploration of this

dataset, we created a public web-service (http://cbio.mskcc.

org/cancergenomics/tcga/brca_tcga) organizing all analyses

and data used in this manuscript. We believe this resource will

serve as a reference formany to further advance our understand-

ing of human breast cancers.

EXPERIMENTAL PROCEDURES

Tumor and matched normal specimen were collected as previously described

(CancerGenomeAtlas, 2012). In total 817primary tumor sampleswereassayed

bywhole-exomeDNA sequencing, RNA sequencing, miRNA sequencing, SNP

arrays, and DNA methylation arrays. A subset of 633 samples was assayed by

reverse phase protein array (RPPA). Histological subtypes have been deter-

mined based on consensus by a pathology committee. Intrinsic breast cancer

subtyping was performed on all 817 cases, using the PAM50 classifier (Parker

et al., 2009). Data generation and processing were performed as previously

described (Cancer Genome Atlas Research Network, 2014).

Enrichment analyses for selected events were performed using Fisher’s

exact tests and a binary representation of copy-number alterations and muta-

tions (1 is altered, 0 is wild-type).

DNA methylation of the CDH1 promoter was assessed at probes within a

window 1,500 bp upstream and downstream CDH1 transcription start site

using both HM27 and HM450 data. Whole-genome bisulfite sequencing was

performed to characterize DNA methylation levels at 157 CpGs.

Distances between of FOXA1 mutations have been determined from the

tertiary structure of FOXA3 fork-head domain (PDB ID: 1VTN). Predicted DNA

interactions were derived by WebPDA (http://bioinfozen.uncc.edu/webpda).

Differential expression analyses on RNA-seq data were performed using the

limmavoom package (Law et al., 2014).

Replication Based Normalized (RBN) RPPA data containing expression

levels for 187 protein and phosphorylated proteins for 633 samples were

used for protein differential expression analysis. Differential pathway activity

was assessed by t test.

ILC subtypes were determined using Consensus Cluster Plus Analysis

(Wilkerson and Hayes, 2010) based on the 1,000 most differentially expressed

genes and a classifier was built using ClaNC (Dabney, 2006).
Detailed description of each analysis presented in this study can be found

within the Supplemental Experimental Procedures.
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