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a b s t r a c t

The effect of erythrosine- and LED-mediated photodynamic therapy (PDT) on planktonic

cultures and biofilms of Candida albicans and Candida dubliniensis was evaluated. Planktonic

cultures of standardized suspensions (106 cells/mL) of C. albicans and C. dubliniensis were

treated with erythrosine concentrations of 0.39–200 mM and LEDs in a 96-well microtiter

plate. Biofilms formed by C. albicans and C. dubliniensis in the bottom of a 96-well microtiter

plate were treated with 400 mM erythrosine and LEDs. After PDT, the biofilms were analysed

by scanning electron microscopy (SEM). The antimicrobial effect of PDT against planktonic

cultures and biofilms was verified by counting colony-forming units (CFU/mL), and the data

were submitted to analysis of variance and the Tukey test (P < 0.05). C. albicans and C.

dubliniensis were not detectable after PDT of planktonic cultures with erythrosine concen-

trations of 3.12 mM or higher. The CFU/mL values obtained from biofilms were reduced 0.74

log10 for C. albicans and 0.21 log10 for C. dubliniensis. SEM revealed a decrease in the quantity of

yeasts and hyphae in the biofilm after PDT. In conclusion, C. albicans and C. dubliniensis were

susceptible to erythrosine- and LED-mediated PDT, but the biofilms of both Candida species

were more resistant than their planktonic counterparts.
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1. Introduction

Candida albicans is a commensal yeast from the oral cavity and

is the most virulent species of the genus. A pathogenic phase

that produces superficial to systemic infections by disrupting

the balance between microorganism and host can result from
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alterations in the host environment, such as the use of

immunosuppressive drugs, antibiotics, estrogen or prosthe-

ses, xerostomia and inadequate oral hygiene.1–3

In immunosuppressed individuals, such as those with

acquired immunodeficiency syndrome (AIDS), oral candidosis

is the most common fungal manifestation; 84–100% of HIV-

infected individuals develop at least one episode of colonization
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by Candida spp., and up to 90% develop pseudomembranous

candidiasis.4

The treatment of oral candidosis in HIV-positive individu-

als is complicated by its recurrent nature; previous exposure

reduces its susceptibility to conventional antifungals. C.

albicans and other Candida species can develop resistance to

antifungals used to treat oral candidosis, such as flucona-

zole.5,6

Colonization and infection by yeasts of the Candida genus

are mediated by the formation of a biofilm, which is composed

of a heterogeneous mixture of blastoconidia, pseudohyphae

and hyphae embedded in extracellular polymeric substances

that form channels and pores and exhibit different phenotypic

characteristics than planktonic Candida.7 The extracellular

matrix is composed of polysaccharides, proteins, hexosamine,

uronic acid and DNA to promote biofilm adhesion and

formation, protect the cells from phagocytosis, maintain the

integrity of the biofilm and limit the diffusion of substances.7,8

The biofilms formed by yeasts of the Candida genus are

resistant to a range of chemicals and antifungal agents.

Biofilms of C. albicans and C. parapsilosis are resistant to

fluconazole, voriconazole, amphotericin B, nystatin, ravuco-

nazole, terbinafine and chlorhexidine and are sensitive to

caspofungin, micafungin, amphotericin B lipid complex and

liposomal amphotericin B.9

C. dubliniensis, a species with phenotypic characteristics

similar to those of C. albicans, is isolated predominantly from

the oral cavities of patients with AIDS.6,10 C. dubliniensis

produces a complex mature biofilm composed of the same

fungal morphologies expressed by C. albicans, forming a

multilayer extracellular matrix that acts as a reservoir for

the release of cells into the oral environment. C. dubliniensis

seems to be well-adapted to colonization of the oral cavity,

with important clinical repercussions.11

As fungal infections caused by C. albicans and their reduced

susceptibility to conventional antifungals have increased, the

antifungal potential of photodynamic therapy (PDT) has been

evaluated.12,13 PDT consists of irradiating an administered

photosensitizer, a photosensitive and non-toxic agent, with a

light source of a suitable wavelength. In the presence of

oxygen, reactive oxygen species or free radicals are produced,

causing cell damage by disrupting the cytoplasmic membrane;

the increased permeability causes damage to intracellular

targets and reduces the formation of germ tubes.14–17

The main photosensitizers used in antifungal PDT are

phenothiazine dyes, phthalocyanines and porphyrins associ-

ated with lasers and other non-coherent light sources.12,18–20

Erythrosine has attracted interest as a photosensitizer

because it is not toxic to the host and has already been

approved for use in dentistry.21 Erythrosine is used to detect

dental biofilms. This dye has shown potent photodynamic

activity and can reduce 3.0–3.7 log10 of Streptococcus mutans

biofilm.21,22

Light-emitting diodes (LEDs) have been suggested as

alternative light sources to lasers due to their wider emission

bands, smaller size, reduced weight and cost, greater flexibility

in treatment irradiation time and easy operation.23,24 LEDs are

used in dentistry as bleaching tools that do not damage oral

tissues. LEDs have shown potent activity in PDT and lack of

absence of antimicrobial action alone.19,25,26
In PDT against Candida spp., red and blue LEDs were used

with phenothiazines (methylene blue and toluidine blue) and

Photogem photosensitizers, reducing planktonic cultures by

3.41 log10 and biofilms by less than 1 log10.19,25,26 However, the

effect of erythrosine dye and green LEDs against Candida spp.

has not been described. The aim of this study was to evaluate

the effect of PDT mediated by erythrosine dye and green LEDs

on planktonic cultures and biofilms of C. albicans and C.

dubliniensis.

2. Materials and methods

2.1. Photosensitizer and light source

Erythrosine (Aldrich Chemical Co., Milwaukee, WI, USA) was

used for the sensitization of yeasts. Erythrosine solution was

prepared by dissolving the powdered dye in phosphate-

buffered saline (PBS, pH 7.4) and sterilized by filtration through

0.22-mm pore diameter membranes (MFS, Dublin, CA, EUA).

After filtration, the dye solution was stored in the dark. The

absorption spectrum (400–800 nm) of the erythrosine solution

(1.0 mM in PBS) was verified in a spectrophotometer (Cary 50

Bio, Varian Inc., Palo Alto, CA, USA) coupled to a microcom-

puter.

A green light-emitting diode (LED) (MMOptics, São Carlos,

SP, Brazil) was used as the light source with a wavelength of

532 � 10 nm, an output power of 90 mW, an energy of 16.2 J, a

time of 3 min, a fluence rate of 237 mW cm�2 and a fluence of

42.63 J cm�2. The area irradiated in planktonic cultures and

biofilms was 0.38 cm2.

The temperature at the bottom of the 96-well microtiter

plates (Costar Corning, New York, NY, USA) was monitored

using an infrared thermometer (MX4, Raytek, Sorocaba, SP,

Brazil); no increases in temperature were observed after

irradiation with the LED.

2.2. Photodynamic therapy of planktonic cultures of C.
albicans and C. dubliniensis

Reference strains of C. albicans (ATCC 18804) and C. dubliniensis

(ATCC 7978) were seeded onto Sabouraud dextrose (Himedia,

Mumbai, Maharashtra, India) agar and incubated at 37 8C for

24 h. The microorganisms were then harvested in Sabouraud

dextrose (Himedia) broth and incubated at 37 8C for 16 h.

The microbial growth in the broths was centrifuged at

358 � g for 10 min and washed twice with PBS. The sediments

were resuspended in PBS. Standardized suspensions of each

strain were then prepared at a concentration of 106 cells/mL

with an optical density (OD) of 0.284 in PBS using a

spectrophotometer (B582, Micronal, São Paulo, SP, Brazil) set

to 530 nm.

To establish the death curve for the planktonic cultures,

220 assays with the standardized suspensions of each strain

were performed with erythrosine dye at concentrations of 200,

100, 50, 25, 12.5, 6.25, 3.12, 1.56, 0.78 and 0.39 mM, with 10

assays for each concentration.

The assays were divided into four experimental groups for

each Candida species: treatment with erythrosine at concen-

trations of 200–0.39 mM and LED irradiation (P+L+, n = 100);
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treatment with erythrosine at concentrations of 200–0.39 mM

only (P+L�, n = 100); LED irradiation (P�L+, n = 10); control

group, treated with PBS only (P�L�, n = 10).

A 0.1 mL aliquot of the standardized suspension of each

strain was added to each well of a 96-well flat-bottom

microtiter plate (Costar Corning). The assay groups P+L+

and P+L� received 0.1 mL of each concentration of the

erythrosine solution, whilst the assay groups P�L+ and P�L�
� received 0.1 mL of PBS. The plate was then shaken for 5 min

(pre-irradiation) in an orbital shaker (Solab, Piracicaba, SP,

Brazil). The wells containing the assay groups P+L+ and P�L+

were irradiated according to the protocol described.

After irradiation, serial dilutions were prepared, and

aliquots of 0.1 mL were seeded in duplicate onto Sabouraud

dextrose (Himedia) agar plates and incubated at 37 8C for 48 h.

After incubation, the number of colony-forming units (CFU/

mL) was determined.

2.3. Photodynamic therapy on biofilms of C. albicans and
C. dubliniensis

The methodology described by Seneviratne et al.27 was used

for biofilm growth, with some modifications.

Cultures of C. albicans (ATCC 18804) and C. dubliniensis

(ATCC 7978) that were grown on Sabouraud dextrose

(Himedia) agar at 37 8C for 18 h were harvested in yeast

nitrogen base (YNB, Himedia) supplemented with 50 mM

glucose (Vetec, Duque de Caxias, RJ, Brazil). After an 18-h

incubation at 37 8C, the yeasts were centrifuged at 358 � g for

10 min, washed twice with PBS, resuspended in YNB supple-

mented with 100 mM glucose (Vetec) and adjusted to an

optical density of 0.381 at 530 nm (107 cells/mL) using a

spectrophotometer (B582, Micronal).

A 250 mL aliquot of each suspension was pipetted into each

well of a 96-well flat-bottom microtiter plate (Costar Corning).

The plate was incubated for 1.5 h at 37 8C in a shaker at 75 rpm

(Quimis, Diadema, SP, Brazil) for the initial adhesion phase.

After this period, the wells were washed with 250 mL of PBS to

remove loosely adhered cells. A 250 mL aliquot of YNB

(Himedia) with 100 mM glucose was then pipetted into each

of the washed wells, and the plates were incubated at 37 8C in a

shaker at 75 rpm (Quimis) for 48 h. The broth was changed

every 24 h. The plates with biofilms formed by C. albicans and

C. dubliniensis were then washed with 250 mL of PBS to remove

loosely adhered cells.

The biofilm formed by each strain was immersed in 250 mL

of a solution of 400 mM erythrosine for 5 min (pre-irradiation

time) in an orbital shaker (Solab). The photosensitizer

concentration for biofilms was determined after results

obtained for planktonic cultures and in a pilot study on

biofilms. Subsequently, the suspended plates were irradiated

according to the protocol described (P+L+, n = 10). The effects

of the isolated erythrosine photosensitizer (P+L�, n = 10) and

light source (P�L+, n = 10) and the control group, treated with

PBS in the absence of light (P�L�), were evaluated as well.

After the treatments, the biofilm cells were scraped off the

well wall using a sterile toothpick and transferred to Falcon

tubes containing 10 mL of PBS. To disrupt the biofilms, the

contents of the tubes were homogenized for 30 s using

an ultrasonic homogenizer (Sonoplus HD 2200; Bandelin
Electronic, Berlim, Brandemburgo, Germany) with an output

power of 50 W. The solutions in the Falcon tubes were

considered to be a dilution factor of 10�1. Serial dilutions were

then made using each original 10�1 dilution, and aliquots of

0.1 mL were seeded onto Sabouraud dextrose (Himedia) agar

plates that were then incubated at 37 8C for 48 h. After the

incubation period, the CFU/mL values of each plate were

determined.

The irradiation of planktonic cultures and biofilms was

performed under aseptic conditions in a laminar flow hood in

the dark. During irradiation, the plates were covered with a

black matte screen with an orifice the same size as the wells to

prevent the spread of light to neighbouring wells.

2.4. Scanning electron microscopy (SEM)

Biofilms of C. albicans and C. dubliniensis from the groups P+L+

(n = 2) and P�L� (n = 2) were submitted to SEM analysis.

The biofilms were formed as described above and treated

according to the experimental groups P+L+ and P�L�, but the

biofilms were formed on polystyrene discs approximately

8 mm in diameter that had been previously sterilized in a 20-

kGy gamma radiation chamber (cobalt 60) for 6 h (Embrarad,

São Paulo, SP, Brazil). The discs were placed into 24-well plates

(Costar Corning) in which the volume of suspension, PBS,

broth culture and photosensitizer solution was 1 mL. After

biofilm formation, the discs were transferred to 24-well plates

(Costar Corning), fixed in 2.5% glutaraldehyde for 1 h and

dehydrated in several ethanol washes (10, 25, 50, 75, and 90%

for 20 min and 100% for 1 h). The plates were then incubated at

37 8C for 24 h to dry the discs.

The discs were transferred to aluminium stubs and covered

with gold for 120 s at 40 mA (BAL-TEC 50D 050 Sputter Coater,

Liechtenstein). After metallization, the biofilms were exam-

ined and photographed by SEM (Jeol JSM5600, Tokyo, Japan),

operating at 15 kV in increments of 1000 and 5000 times.

2.5. Statistical analysis

The data for CFU/mL were converted to logarithmic form and

submitted to analysis of variance and the Tukey test. A P

value < 0.05 was statistically significant.

The percentage of CFU/mL reduction for C. albicans and C.

dubliniensis biofilms were calculated, considering the groups

P+L�, P�L+ and P+L+ in relation to the control group (P�L�).

3. Results

The chemical structure and absorption spectrum of the

erythrosine dye are shown in Fig. 1. Erythrosine absorbs

between 460 and 560 nm with an absorbance maximum at

approximately 530 nm.

The death curves obtained for the planktonic cultures of C.

albicans and C. dubliniensis are shown in Fig. 2. The antimicrobial

activity of PDT was photosensitizer concentration-dependent

for planktonic cultures of C. albicans and C. dubliniensis.

For C. albicans, an erythrosine concentration of at least

0.39 mM was required for a statistically significant reduction in

CFU/mL in the P+L+ group relative to the control group (P�L�).



Fig. 1 – Chemical structure and absorption spectrum of the

erythrosine photosensitizer (1.0 mM in PBS).

a r c h i v e s o f o r a l b i o l o g y 5 6 ( 2 0 1 1 ) 1 2 9 9 – 1 3 0 51302
For C. dubliniensis, erythrosine concentrations of 1.56 mM or

higher resulted in a statistically significant reduction in CFU/

mL in the P+L+ group relative to the control group (P�L�).

For both species, PDT eliminated microbial growth when

erythrosine was used at concentrations of 3.12 mM or higher.

PDT mediated by 400 mM erythrosine of biofilms resulted in

0.74 log10 and 0.21 log10 reductions of C. albicans and C.

dubliniensis, respectively (Fig. 3). The differences for the P+L+

groups of both species were statistically significant relative to

the remaining groups (P�L�, P�L+ and P+L�), with P values

relative to the control group of 0.001 for C. albicans and 0.015 for

C. dubliniensis.

SEM revealed that the biofilm of the C. albicans control

group (P�L�) was composed of blastoconidia, pseudohyphae

and hyphae. The characteristics of the biofilm formed by C.

dubliniensis were similar to those of the C. albicans biofilm, but

the C. dubliniensis biofilm exhibited a greater amount of

filamentous forms (Fig. 4-1A–1D). The biofilms exposed to

PDT (P+L+) showed a decrease in fungal structures, and C.

dubliniensis primarily demonstrated a reduction in filamentous

forms (Fig. 4-2A–2D).
Fig. 2 – Means and standard deviations of the CFU/mL (Log) val

albicans and C. dubliniensis exposed to the following treatments:

(P+LS) and erythrosine with LED (P+L+).
4. Discussion

The production of reactive oxygen species by PDT depends on

the interaction the photosensitizer with photons of visible

light of suitable wavelength. For this interaction to occur, the

laser or LED must emit light at a wavelength that the

photosensitizer is able to absorb.28 In the present work, an

LED with an emission of 532 � 10 nm was chosen for the

photodynamic reaction so that the emission of the light source

coincided with the absorption maximum (530 nm) of the

erythrosine photosensitizer.

PDT mediated by erythrosine and LED-irradiation signifi-

cantly reduced planktonic cultures and biofilms of C. albicans

and C. dubliniensis. These results are the first report of

antimicrobial PDT of Candida spp. mediated by erythrosine

and green LEDs.

PDT of C. albicans planktonic cultures reduced cell viability

in a statistically significant manner at the lowest erythrosine

concentration used (0.39 mM), whilst the lowest suitable

concentration for reduction of C. dubliniensis was 1.56 mM.

Both strains were reduced completely at concentrations of

erythrosine 3.12 mM and higher with LED irradiation of 3 min

and a fluence of 42.63 J cm�2.

Candida were previously shown to be completely inacti-

vated when a blue LED (37.5 J cm�2) was used in association

with Photogem (25 mg/mL) on planktonic cultures of reference

and fluconazole-resistant strains of C. albicans and C. glab-

rata.19

In contrast, the present study resulted in a greater

microbial reduction at lower concentrations of photosensitiz-

er than that reported by Peloi et al.25 These authors assessed

the photodynamic action of a methylene blue photosensitizer

at a concentration of 35.2 mM irradiated by a red LED (2–

12 J cm�2) for 10–60 min against planktonic cultures of

Staphylococcus aureus, Escherichia coli and C. albicans, obtaining

reductions of 2.34–3.71, 1.61–3.41 and 2.77–3.87 log10, respec-

tively. However, the fluence of the LED used by Peloi et al.25

was approximately 3.5 times smaller than the fluence of the

LED used here.

We demonstrated greater microbial reductions with a

smaller fluence of LED, irradiation time and dye concentration
ues from the death curves of the planktonic cultures of C.

 PBS control (PSLS), PBS with LED (PSL+), erythrosine only



Fig. 3 – Percentage of reduction, expressed as mean values

(CFU/mL), in the viability of C. albicans and C. dubliniensis

exposed to photosensitizer (P+LS), LED (PSL+) or both

photosensitizer and LED (P+L+) relative to the control

group (PSLS).
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than that reported by Soares et al.,26 who used a red LED with a

fluence of 180 J cm�2 and an irradiation time of 15 min in

association with 25 mM toluidine blue to achieve a 3.41 log10

reduction in fluconazole-resistant and -sensitive Candida

strains. These authors also demonstrated that PDT inhibited

55% of the adhesion of the Candida strains to buccal epithelial

cells, highlighting the important impact of LED in association

with toluidine blue on the inhibition of growth and virulence

factors of the fluconazole-resistant and -sensitive Candida

strains.

The biofilms of C. albicans and C. dubliniensis exposed to PDT

mediated by 400 mM erythrosine and a green LED exhibited

statistically significant reductions in CFU/mL of 0.74 log10 and

0.21 log10, respectively. The result obtained for the C.

dubliniensis biofilms corroborates those described by Dovigo

et al.19 for the PDT of biofilms of C. albicans and C. glabrata,

which were reduced 0.24 log and 0.16 log respectively.

The biofilms of C. albicans and C. dubliniensis were less

susceptible to PDT than their planktonic counterparts, which

could be due to the heterogeneity of the biofilm population,

the restriction of antimicrobial penetration by the extracellu-

lar matrix material, the slower growth rate of the cells in the

biofilms and differences in gene expression levels.11,29

Chabrier-Roselló et al.30 evaluated the effects of Photofrin-

and Hg arc lamp-mediated PDT on biofilms and germ tubes of

C. albicans. The metabolisms of biofilms treated with PDT were
Fig. 4 – Scanning electron microscopy. C. albicans biofilms: PBS c

(P+L+) (2A and 2B); C. dubliniensis biofilms: PSLS (1C and 1D) an
significantly reduced relative to biofilms treated with the

antifungal amphotericin B. The treated germ tubes displayed a

loss of membrane integrity and cell death. The authors

highlighted the potential of PDT as an adjuvant or alternative

treatment against cutaneous and mucocutaneous infections

caused by C. albicans.

SEM of the biofilms of the control group showed a complex

structure formed by blastoconidia, pseudohyphae and hy-

phae, but the extracellular polysaccharide matrix was not

apparent. The absence of the extracellular polysaccharide

matrix is likely due to the fixation process required for SEM.

Fixation can remove the extracellular polysaccharide matrix

and prevent its visualization by microscopy.7,11

The biofilms of the group P+L+, which were exposed to PDT,

displayed a decrease in fungal structures, in agreement with

previous work by Pereira et al.31 They evaluated the effects of

methylene blue (312.6 mM) and an indium–gallium–alumini-

um–phosphide (InGaAlP) laser on single- and multi-species

biofilms formed by C. albicans, S. aureus and S. mutans. A

decrease in cell aggregates was observed in the outer layers of

both biofilms. The multi-species biofilms were more resistant

to PDT, suggesting that biofilm complexity increases resis-

tance to PDT.

SEM revealed a reduction of blastoconidia, pseudohyphae

and hyphae in the C. albicans biofilms submitted to PDT and an

important reduction of hyphae in the C. dubliniensis biofilms.

According to Bliss et al.,32 the filamentous forms of Candida

uptake more photosensitizer and are therefore more sensitive

to Photofrin-mediated PDT than the blastoconidia.

The green LED and the erythrosine photosensitizer used in

the present work did not exhibit cytotoxic effects when used

alone against either planktonic cultures or biofilms of both

species, as shown previously for red and blue LEDs used in

association with erythrosine against microbial cells and

fibroblasts.19,25,26,33,34

C. dubliniensis may be less sensitive to PDT than C. albicans

because this species required higher concentrations of

erythrosine than C. albicans to achieve the same microbial

reduction. The CFU/mL (Log) of C. dubliniensis biofilms were

also reduced less than those of C. albicans biofilms. According

to Paugam et al.,35 C. dubliniensis acquires secondary resistance

to fluconazole more quickly than C. albicans. de Souza et al.36
ontrol (PSLS) (1A and 1B) and 400 mM erythrosine with LED

d P+L+ (2C and 2D).
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have also identified different responses to PDT amongst

different species of Candida, highlighting the need for studies

of the effects of photosensitizers on specific Candida species.

C. albicans and C. dubliniensis were both susceptible to

erythrosine- and LED-mediated PDT. However, biofilm struc-

tures were more resistant to PDT than planktonic cultures for

both species of Candida.
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