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Abstract

A formula for the large-degree asymptotics of Koornwinder’s multivariate Askey—Wilson polynomials is pre-
sented. In the special case of a single variable, this asymptotic formula agrees with the known leading asymptotics
of the Askey—Wilson polynomials determined by Ismail and Wilson.
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1. Introduction

The Koornwinder polynomialfl2] are a family of basic hypergeometric orthogonal polynomials in
several variables, unifying the (univariate) Askey—Wilson polynoniiHlsand the (multivariate) Mac-
donald polynomials associated with the classical root sysfg&jsThe polynomials in question form the
top of a hierarchy of classical orthogonal polynomials in several varig/&20} this hierarchy should
be looked upon as a multivariate generalization of the celebrated Askey-s¢héditie

In recent years, a significant part of the theory surrounding the Askey—Wilson polynomials has been
extended to the multivariate level of the Koornwinder polynonif3,8,12-17,19,21]rhis note aims to
add further onto the current body of knowledge concerning the Koornwinder polynomials, by providing
a formula describing their leading asymptotics as the degree tends to infinity. For the Askey—-Wilson
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polynomials, such large-degree asymptotics was computed some time[A0b (leading asymptotics)

and in[9] (full asymptotic expansion); for the Macdonald polynomials, the leading term of the asymptotics
was determined recently [d8] (for typeAroot systems) and if] (for arbitraryreducedoot systems).

The asymptotic formula presented below follows by specialization of a more general result describing
the leading asymptotics of orthogonal polynomials in several variables with hyperoctahedral symmetry
(associated with theonreducedoot systems)7].

In the one-variable case, our asymptotic formula coincides formally with the expression for the leading
asymptotics of the Askey—Wilson polynomials due to Ismail and Wi[40h However, while Ismail and
Wilson considered pointwise convergence, here we rather study the strong convergence of the polynomials
in a Hilbert space sense. The proof of our asymptotic formula becomes particularly simple in the one-
variable context and will be treated here in further detail.

2. Koornwinder polynomials

The hyperoctahedral group is given by the semidirect progiwet(Z2)" of the symmetric group of
N lettersX y and theN-fold product of the cyclic group of order twfy. The hyperoctahedral monomial
symmetric functions

mi(xt, .. xN) = Y explieriaxe + - +ieninysy), A€ 4, 1)

gEX N
6'/'6{1.71}

indexed by the partitions
A=z nzia> - 2in >0}, 2
form a basis for the space of even- and permutation-invariant Fourier polynomials on the torus

[RN

Ty = ——.
R

®3)

This monomial basis inherits a partial order from the followinygperoctahedral dominance orderiiod
the partitions:

VijueAd: i=»u<=l1+--+hzm+- -+, fork=1... N. (4)

The Koornwinder polynomials arise by applying a Gram—Schmidt type procedure to the partially ordered
monomial basi®:;, 1 € A with respect to a suitable orthogonality measnren T .
To be more specific, let us consider the following factorized weight function on theTgrus

1
C2NNVG(x1, ..., xN) C(—x1, ..., —xN)

()

A(x1, ..., xN)
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where

[1 (g0 e 10— g

(x1,..., xXN) = (e—i(xj+x1<)’ e—i()Cj—xk); D oo

1<j<k<N

4 —ix;.
8 1—[ [[Fo1te 5 g) oo (©)

—2ix;.
léjéN (e Ix]»‘])oo

(with the standard conventions for theshifted factorials(z; ¢)o =[], —o(1 — z¢™) and(z1, z2, . . .,
25 Qoo =21 §)oo(22, @)oo -+ (215 §) o). HEre and below it is always assumed that the nqraed the
parametersand:., r =1, ..., 4 lie in the domain

O<g<l1l —-1<t,t,<1. (7)

These parameter restrictions ensure in particular that the weight furcisgrositive and smooth ohy .
The standard inner product of the Hilbert spdc&T v, (27) ¥ Adx) is given by

1 S
<fsg>A: N/ f(xl,...,_XN)g(.X]_,...,)CN)A(X]_,...,XN)d)C]_"'dXN (8)
(2n) TN
(whereg(x1, ..., xy) denotes the complex conjugategfi, ..., xy)).
The (normalizedKoornwinder polynomialsre now defined as the polynomials of the fdif]
Py(x1,...,xN) = Z aymy(xy, ..., xn), A€ (9)
HeAUXA

with coefficientsz;, € C such that

(wherea;; is chosen positive by convention).

It is obvious from this definition that the polynomials are orthogonal with respect to the inner
product(-, -), when comparable in the partial order. A fundamental result of Koornwinder states that
in fact (P;, P,), = O for all partitionsi # u [12]. In other words, the Koornwinder polynomiafy,

/. € A constitute an orthonormal basis for the hyperoctahedral-symmetric sector of the Hilbert space
L2(Ty, (2n) N Adx).

3. Asymptotic formula

The leading asymptotics of the Koornwinder polynonialx1, . . ., xy), as the partitiori € 4 grows
to infinity, turns out to be governed by the functions
P°(x1,...,xN)
= Z C(6171X61, - - - ENANXGy) eXp(isl)legl + -+ iSN;ungN) (12)
gEXN

sje{L—l)
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with €(x1, ..., xy) taken from Eq. (6). To formulate the precise result, we define
Noe mi S 12
m() = min (= 2j+1) (12)

(with the convention thaty_ 1 :=0) and, for a functiorf in the Hilbert space.?(T y, (2r)~" Adx) we
denote its norm by f|la :=+/(f, f)a-

Theorem 1(Asymptotic formulp Lete be(any valug in the interval(0, log(1/¢)). Then
O(e—am(l)/Z)
Oy e~#m)y

(with both error bounds holding simultaneously

1P, — PXlla= { asm(l) — oo

The asymptotic formula states that the Koornwinder polynorjatonverges (exponentially fast) to
the asymptotic functio®® (in the strong Hilbert space sense), when the pgrtsf the partition/. grow
to infinity in such away that; — 2, — oo for j < k. This result follows by specialization of an analogous
asymptotic formula, valid for more general multivariate orthogonal polynomials with hyperoctahedral
symmetry associated to a rather broad class of factorized analytic weight functions on thExtgvilis

4. The caseN = 1: Askey—Wilson polynomials

It is instructive to exhibit the contents of the theorem in further detailNo= 1. Koornwinder’s
polynomials then specialize to the Askey—Wilson polynom{iaj§1]

Pux) =, P pp(x), LeN (13)
with
(t1t2t3129%; @) oo
Vi= —1 1 ¢ ’ (14)
(111213149 L @) 0@ Dol T1< oy <4150 Do
(1112, 1113, 11145 @) ¢ —t ntotstagt, €%, ne x
t1(t1tat3taq®=; q)y 1112, 1113, 1114
where
S n
ai, ..., as (ai,...,as59), 2
sPs—1 ( i q, z) = .
P bl"'~’bs—1 }’;} (bla--'abs—l; Q)n (Qaq)n
The corresponding asymptotic functions are given by
PX(x) = c(x)€" + c(—x)e ', (16)
4 —ix.
_q (e
() = Hr=a 0 oo (17)

(e—Zix; ) oo
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The orthogonality relations for the Askey—Wilson polynomials become in this notdtjbh]
O e 0 ift#m
— P, P,(x) —— = . ’ 18
= | PR o {1 fezm (18)
The asymptotic formula in the theorem above now states that (upon taking the square)
dx
c(x)c(—x)

with ¢ € (0, log(1/¢)). The fact that the normalized Askey—Wilson polynonftatends to the asymptotic
function P* for £ — oo in the strong Hilbert space sense is in agreement with the formula for the
pointwise asymptotics of the Askey—Wilson polynomials foun{Bii0].

1 (= .
= / |Pe(x) — PO (x)]? = 0% %" ast — oo, (19)
T Jo

5. Proof of the asymptotic formulafor N =1

The proof of the asymptotic formula in the theorem, patterned @ffeisimplifies considerably for
N = 1. We will close by briefly detailing this simplified proof. For further simplicity, our discussion is
limited to the verification of the @#) estimate for the error term (corresponding to the®”("/?)
estimate in the theorem) rather than the shargéf€® %) estimate given in Eq. (19) (which corresponds
to the Q) e~ estimate in the theorem).

It is clear that the desired asymptotic formula follows from the asymptotic estimates

1PElla = 1+ O(e™), (20)

(P, Po)p=1+0(™"), (21)
for ¢ — oo. Indeed, from these estimates it is immediate that

1Pe = PO = (Pe. Poda — (Pe. POV — (PY°, Po)a + (PE°, PP)p = O(e™),

which amounts to Eq. (19) with the(@e~2%¢) error bound on the right-hand side replaced by & @)
error bound.
To infer the estimates in Egs. (20), (21), we first observe that foD

1 2n ein
:2_77: o c(—x)

0 ifk<t,

1 ifk=¢. (22)

(P, mi)a @ +e ) de = {
Notice in this connection that the evaluation of the integral in Eq. (22) readily follows from the fact that
1/c(—x) has a uniformly converging Fourier series expansion of the fosdI -, ¢,€”* (whence the
constant term in the Fourier series expansion of the integrand is equal t& &foand equal to 1 for
k=2).

Next, we rewrite the asymptotic function as

6(x)ei(l+l)x _ é(_x)e—i(l+1)x
gx _ gix

PE(x) = (23)
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4 B
[_1te™" @)oo
(96727 @)oo
It is not difficult to see that the functici(x) has a Fourier series expansion of the form

ex) =1+ Z ¢, e inx

n>1

c(x) =

(24)

with coefficientst, that are Qe~*"/2) asn — oo (since the function in question is holomorphic in the
lower half-plane Inix) <log(g—%/?) and it converges to 1 for Itx) — —o0). Let Pg”(x) denote the
truncated asymptotic function obtained by replaatag) (24) in P°(x) (23) by its Fourier polynomial
of degree 2

étl’(x)ei(l—l—l)x _ ’\tl’(_x)e—i(l—l-l)x

2¢
P ) = & e LM =1+ ; cue .

Since|é(x) — ¢ (x)| = O(e™#), it readily follows that
| P — Pfla=0(e"%) ast — oo. (25)

We are now in the position to derive the estimates in Egs. (20) and (21). Indeed, from Eq. (22) and the
fact that the truncated asymptotic funcUBﬁ (x) is a monic polynomial of degre(in €* + e ™), itis
clear that{(P;°, P")A = 1. Hence, we have that

1 1
1P Ia — = (P, P — Pl
¢ IPEla ~ I1PX®Ia ¢ 70" A

Eq. (295 .
<P = Plla = O™,

which implies Eqg. (20). Furthermore, once more invoking of Eq. (22) combined with the orthonormality
of the normalized Askey—Wilson polynomial (x) (13)—(15) reveals thatP°, Py), = 1/( Ptr Pe)a
(=age >0, cf. Egs. (9), (10)). Hence, we have that

1

(P°, P)p— ———
¢ (PS°, Py)a

= (P — P, Py)a

Eq_(25)

<P — Pfflia O(e™*),

which implies Eq. (21).
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