An asymptotic formula for the Koornwinder polynomials ${ }^{2 \pi}$

J.F. van Diejen
Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
Received 25 October 2003; received in revised form 22 April 2004

Abstract

A formula for the large-degree asymptotics of Koornwinder's multivariate Askey-Wilson polynomials is presented. In the special case of a single variable, this asymptotic formula agrees with the known leading asymptotics of the Askey-Wilson polynomials determined by Ismail and Wilson.

© 2004 Elsevier B.V. All rights reserved.
Keywords: (Multivariate) Orthogonal Polynomials; Asymptotics
MSC: 33D45; 33D52; 41A60

1. Introduction

The Koornwinder polynomials [12] are a family of basic hypergeometric orthogonal polynomials in several variables, unifying the (univariate) Askey-Wilson polynomials [1] and the (multivariate) Macdonald polynomials associated with the classical root systems [13]. The polynomials in question form the top of a hierarchy of classical orthogonal polynomials in several variables [4,5,20]; this hierarchy should be looked upon as a multivariate generalization of the celebrated Askey-scheme [1,11].

In recent years, a significant part of the theory surrounding the Askey-Wilson polynomials has been extended to the multivariate level of the Koornwinder polynomials [2,3,8,12-17,19,21]. This note aims to add further onto the current body of knowledge concerning the Koornwinder polynomials, by providing a formula describing their leading asymptotics as the degree tends to infinity. For the Askey-Wilson

[^0]polynomials, such large-degree asymptotics was computed some time ago in [10] (leading asymptotics) and in [9] (full asymptotic expansion); for the Macdonald polynomials, the leading term of the asymptotics was determined recently in [18] (for type A root systems) and in [6] (for arbitrary reduced root systems). The asymptotic formula presented below follows by specialization of a more general result describing the leading asymptotics of orthogonal polynomials in several variables with hyperoctahedral symmetry (associated with the nonreduced root systems) [7].

In the one-variable case, our asymptotic formula coincides formally with the expression for the leading asymptotics of the Askey-Wilson polynomials due to Ismail and Wilson [10]. However, while Ismail and Wilson considered pointwise convergence, here we rather study the strong convergence of the polynomials in a Hilbert space sense. The proof of our asymptotic formula becomes particularly simple in the onevariable context and will be treated here in further detail.

2. Koornwinder polynomials

The hyperoctahedral group is given by the semidirect product $\Sigma_{N} \ltimes\left(\mathbb{Z}_{2}\right)^{N}$ of the symmetric group of N letters Σ_{N} and the N-fold product of the cyclic group of order two \mathbb{Z}_{2}. The hyperoctahedral monomial symmetric functions

$$
\begin{equation*}
m_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\sum_{\substack{\sigma \in \Sigma_{N} \\ \varepsilon_{j} \in\{1,-1\}}} \exp \left(\mathrm{i} \varepsilon_{1} \lambda_{1} x_{\sigma_{1}}+\cdots+\mathrm{i} \varepsilon_{N} \lambda_{N} x_{\sigma_{N}}\right), \quad \lambda \in \Lambda, \tag{1}
\end{equation*}
$$

indexed by the partitions

$$
\begin{equation*}
\Lambda=\left\{\lambda \in \mathbb{Z}^{N} \mid \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{N} \geqslant 0\right\} \tag{2}
\end{equation*}
$$

form a basis for the space of even- and permutation-invariant Fourier polynomials on the torus

$$
\begin{equation*}
\mathbb{T}_{N}=\frac{\mathbb{R}^{N}}{(2 \pi \mathbb{Z})^{N}} \tag{3}
\end{equation*}
$$

This monomial basis inherits a partial order from the following hyperoctahedral dominance ordering of the partitions:

$$
\begin{equation*}
\forall \lambda, \mu \in \Lambda: \quad \lambda \succeq \mu \Longleftrightarrow \lambda_{1}+\cdots+\lambda_{k} \geqslant \mu_{1}+\cdots+\mu_{k}, \quad \text { for } k=1, \ldots, N . \tag{4}
\end{equation*}
$$

The Koornwinder polynomials arise by applying a Gram-Schmidt type procedure to the partially ordered monomial basis $m_{\lambda}, \lambda \in \Lambda$ with respect to a suitable orthogonality measure Δ on \mathbb{T}_{N}.

To be more specific, let us consider the following factorized weight function on the torus \mathbb{T}_{N}

$$
\begin{equation*}
\Delta\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{2^{N} N!\mathscr{C}\left(x_{1}, \ldots, x_{N}\right) \mathscr{C}\left(-x_{1}, \ldots,-x_{N}\right)} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
\mathscr{C}\left(x_{1}, \ldots, x_{N}\right)= & \prod_{1 \leqslant j<k \leqslant N} \frac{\left(t \mathrm{e}^{-\mathrm{i}\left(x_{j}+x_{k}\right)}, t \mathrm{e}^{-\mathrm{i}\left(x_{j}-x_{k}\right)} ; q\right)_{\infty}}{\left(\mathrm{e}^{-\mathrm{i}\left(x_{j}+x_{k}\right)}, \mathrm{e}^{-\mathrm{i}\left(x_{j}-x_{k}\right)} ; q\right)_{\infty}} \\
& \times \prod_{1 \leqslant j \leqslant N} \frac{\prod_{r=1}^{4}\left(t_{r} \mathrm{e}^{-\mathrm{i} x_{j}} ; q\right)_{\infty}}{\left(\mathrm{e}^{-2 \mathrm{i} x_{j}} ; q\right)_{\infty}} \tag{6}
\end{align*}
$$

(with the standard conventions for the q-shifted factorials $(z ; q)_{\infty}:=\prod_{m=0}^{\infty}\left(1-z q^{m}\right)$ and $\left(z_{1}, z_{2}, \ldots\right.$, $\left.\left.z_{k} ; q\right)_{\infty}:=\left(z_{1} ; q\right)_{\infty}\left(z_{2}, q\right)_{\infty} \cdots\left(z_{k} ; q\right)_{\infty}\right)$. Here and below it is always assumed that the nome q and the parameters t and $t_{r}, r=1, \ldots, 4$ lie in the domain

$$
\begin{equation*}
0<q<1, \quad-1<t, t_{r}<1 \tag{7}
\end{equation*}
$$

These parameter restrictions ensure in particular that the weight function Δ is positive and smooth on \mathbb{T}_{N}. The standard inner product of the Hilbert space $L^{2}\left(\mathbb{T}_{N},(2 \pi)^{-N} \Delta \mathrm{~d} \mathbf{x}\right)$ is given by

$$
\begin{equation*}
\langle f, g\rangle_{\Delta}=\frac{1}{(2 \pi)^{N}} \int_{\mathbb{T}_{N}} f\left(x_{1}, \ldots, x_{N}\right) \overline{g\left(x_{1}, \ldots, x_{N}\right)} \Delta\left(x_{1}, \ldots, x_{N}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N} \tag{8}
\end{equation*}
$$

(where $\overline{g\left(x_{1}, \ldots, x_{N}\right)}$ denotes the complex conjugate of $g\left(x_{1}, \ldots, x_{N}\right)$).
The (normalized) Koornwinder polynomials are now defined as the polynomials of the form [12]

$$
\begin{equation*}
P_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\sum_{\mu \in \Lambda, \mu \leq \lambda} a_{\lambda \mu} m_{\mu}\left(x_{1}, \ldots, x_{N}\right), \quad \lambda \in \Lambda \tag{9}
\end{equation*}
$$

with coefficients $a_{\lambda \mu} \in \mathbb{C}$ such that

$$
\begin{equation*}
\left\langle P_{\lambda}, m_{\mu}\right\rangle_{\Delta}=0 \quad \text { if } \mu \prec \lambda \quad \text { and } \quad\left\langle P_{\lambda}, P_{\lambda}\right\rangle_{\Delta}=1 \tag{10}
\end{equation*}
$$

(where $a_{\lambda \lambda}$ is chosen positive by convention).
It is obvious from this definition that the polynomials P_{λ} are orthogonal with respect to the inner product $\langle\cdot, \cdot\rangle_{\Delta}$ when comparable in the partial order. A fundamental result of Koornwinder states that in fact $\left\langle P_{\lambda}, P_{\mu}\right\rangle_{\Delta}=0$ for all partitions $\lambda \neq \mu$ [12]. In other words, the Koornwinder polynomials P_{λ}, $\lambda \in \Lambda$ constitute an orthonormal basis for the hyperoctahedral-symmetric sector of the Hilbert space $L^{2}\left(\mathbb{T}_{N},(2 \pi)^{-N} \Delta \mathrm{~d} \mathbf{x}\right)$.

3. Asymptotic formula

The leading asymptotics of the Koornwinder polynomial $P_{\lambda}\left(x_{1}, \ldots, x_{N}\right)$, as the partition $\lambda \in \Lambda$ grows to infinity, turns out to be governed by the functions

$$
\begin{align*}
& P_{\lambda}^{\infty}\left(x_{1}, \ldots, x_{N}\right) \\
& \quad=\sum_{\substack{\left.\sigma \in \Sigma_{N} \\
\varepsilon_{j} \in 11,-1\right\}}} \mathscr{C}\left(\varepsilon_{1} \lambda_{1} x_{\sigma_{1}}, \ldots, \varepsilon_{N} \lambda_{N} x_{\sigma_{N}}\right) \exp \left(\mathrm{i} \varepsilon_{1} \lambda_{1} x_{\sigma_{1}}+\cdots+\mathrm{i} \varepsilon_{N} \lambda_{N} x_{\sigma_{N}}\right) \tag{11}
\end{align*}
$$

with $\mathscr{C}\left(x_{1}, \ldots, x_{N}\right)$ taken from Eq. (6). To formulate the precise result, we define

$$
\begin{equation*}
m(\lambda):=\min _{j=1, \ldots, N}\left(\lambda_{j}-\lambda_{j+1}\right) \tag{12}
\end{equation*}
$$

(with the convention that $\lambda_{N+1}:=0$) and, for a function f in the Hilbert space $L^{2}\left(\mathbb{T}_{N},(2 \pi)^{-N} \Delta \mathrm{~d} \mathbf{x}\right)$ we denote its norm by $\|f\|_{\Delta}:=\sqrt{\langle f, f\rangle_{\Delta}}$.

Theorem 1 (Asymptotic formula). Let ε be (any value) in the interval $(0, \log (1 / q))$. Then

$$
\left\|P_{\lambda}-P_{\lambda}^{\infty}\right\|_{\Delta}=\left\{\begin{array}{l}
\mathrm{O}\left(\mathrm{e}^{-\varepsilon m(\lambda) / 2}\right) \\
\mathrm{O}\left(\lambda_{1}^{N} \mathrm{e}^{-\varepsilon m(\lambda)}\right)
\end{array} \quad \text { as } m(\lambda) \rightarrow \infty\right.
$$

(with both error bounds holding simultaneously).
The asymptotic formula states that the Koornwinder polynomial P_{λ} converges (exponentially fast) to the asymptotic function P_{λ}^{∞} (in the strong Hilbert space sense), when the parts λ_{j} of the partition λ grow to infinity in such a way that $\lambda_{j}-\lambda_{k} \rightarrow \infty$ for $j<k$. This result follows by specialization of an analogous asymptotic formula, valid for more general multivariate orthogonal polynomials with hyperoctahedral symmetry associated to a rather broad class of factorized analytic weight functions on the torus \mathbb{T}_{N} [7].

4. The case $N=1$: Askey-Wilson polynomials

It is instructive to exhibit the contents of the theorem in further detail for $N=1$. Koornwinder's polynomials then specialize to the Askey-Wilson polynomials [1,11]

$$
\begin{equation*}
P_{\ell}(x)=\mathcal{N}_{\ell}^{-1 / 2} p_{\ell}(x), \quad \ell \in \mathbb{N} \tag{13}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathscr{N}_{l}=\frac{\left(t_{1} t_{2} t_{3} t_{4} q^{2 \ell} ; q\right)_{\infty}}{\left(t_{1} t_{2} t_{3} t_{4} q^{\ell-1} ; q\right)_{\ell}\left(q^{\ell+1} ; q\right)_{\infty} \prod_{1 \leqslant r<s \leqslant 4}\left(t_{r} t_{s} q^{\ell} ; q\right)_{\infty}}, \tag{14}\\
& p_{\ell}(x)=\frac{\left(t_{1} t_{2}, t_{1} t_{3}, t_{1} t_{4} ; q\right)_{\ell}}{t_{1}^{\ell}\left(t_{1} t_{2} t_{3} t_{4} q^{\ell-1} ; q\right)_{\ell}} 4 \Phi_{3}\left(\begin{array}{c}
q^{-\ell}, t_{1} t_{2} t_{3} t_{4} q^{\ell}, t_{1} \mathrm{e}^{\mathrm{i} x}, t_{1} \mathrm{e}^{-\mathrm{i} x} \\
t_{1} t_{2}, t_{1} t_{3}, t_{1} t_{4}
\end{array} ; q, q\right) \tag{15}
\end{align*}
$$

where

$$
{ }_{s} \Phi_{s-1}\left(\begin{array}{c}
a_{1}, \ldots, a_{s} \\
b_{1}, \ldots, b_{s-1}
\end{array} ; q, z\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{s} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{s-1} ; q\right)_{n}} \frac{z^{n}}{(q ; q)_{n}} .
$$

The corresponding asymptotic functions are given by

$$
\begin{align*}
& P_{\ell}^{\infty}(x)=c(x) \mathrm{e}^{\mathrm{i} \ell x}+c(-x) \mathrm{e}^{-\mathrm{i} \ell x} \tag{16}\\
& c(x)=\frac{\prod_{r=1}^{4}\left(t_{r} \mathrm{e}^{-\mathrm{i} x} ; q\right)_{\infty}}{\left(\mathrm{e}^{-2 \mathrm{i} x} ; q\right)_{\infty}} \tag{17}
\end{align*}
$$

The orthogonality relations for the Askey-Wilson polynomials become in this notation $[1,11]$

$$
\frac{1}{4 \pi} \int_{0}^{2 \pi} P_{\ell}(x) \overline{P_{m}(x)} \frac{\mathrm{d} x}{c(x) c(-x)}= \begin{cases}0 & \text { if } \ell \neq m \tag{18}\\ 1 & \text { if } \ell=m\end{cases}
$$

The asymptotic formula in the theorem above now states that (upon taking the square)

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{0}^{2 \pi}\left|P_{\ell}(x)-P_{\ell}^{\infty}(x)\right|^{2} \frac{\mathrm{~d} x}{c(x) c(-x)}=\mathrm{O}\left(\ell^{2} \mathrm{e}^{-2 \varepsilon \ell}\right) \quad \text { as } \ell \rightarrow \infty \tag{19}
\end{equation*}
$$

with $\varepsilon \in(0, \log (1 / q))$. The fact that the normalized Askey-Wilson polynomial P_{ℓ} tends to the asymptotic function P_{ℓ}^{∞} for $\ell \rightarrow \infty$ in the strong Hilbert space sense is in agreement with the formula for the pointwise asymptotics of the Askey-Wilson polynomials found in [9,10].

5. Proof of the asymptotic formula for $N=1$

The proof of the asymptotic formula in the theorem, patterned after [7], simplifies considerably for $N=1$. We will close by briefly detailing this simplified proof. For further simplicity, our discussion is limited to the verification of the $\mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right)$ estimate for the error term (corresponding to the $\mathrm{O}\left(\mathrm{e}^{-\varepsilon m(\lambda) / 2}\right)$ estimate in the theorem) rather than the sharper $\mathrm{O}\left(\ell^{2} \mathrm{e}^{-2 \varepsilon \ell}\right)$ estimate given in Eq. (19) (which corresponds to the $\mathrm{O}\left(\lambda_{1}^{N} \mathrm{e}^{-\varepsilon m(\lambda)}\right)$ estimate in the theorem).

It is clear that the desired asymptotic formula follows from the asymptotic estimates

$$
\begin{align*}
& \left\|P_{\ell}^{\infty}\right\|_{\Delta}=1+\mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right) \tag{20}\\
& \left\langle P_{\ell}^{\infty}, P_{\ell}\right\rangle_{\Delta}=1+\mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right) \tag{21}
\end{align*}
$$

for $\ell \rightarrow \infty$. Indeed, from these estimates it is immediate that

$$
\left\|P_{\ell}-P_{\ell}^{\infty}\right\|_{\Delta}^{2}=\left\langle P_{\ell}, P_{\ell}\right\rangle_{\Delta}-\left\langle P_{\ell}, P_{\ell}^{\infty}\right\rangle_{\Delta}-\left\langle P_{\ell}^{\infty}, P_{\ell}\right\rangle_{\Delta}+\left\langle P_{\ell}^{\infty}, P_{\ell}^{\infty}\right\rangle_{\Delta}=\mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right)
$$

which amounts to Eq. (19) with the $\mathrm{O}\left(\ell^{2} \mathrm{e}^{-2 \varepsilon \ell}\right)$ error bound on the right-hand side replaced by an $\mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right)$ error bound.

To infer the estimates in Eqs. (20), (21), we first observe that for $\ell>0$

$$
\left\langle P_{\ell}^{\infty}, m_{k}\right\rangle_{\Delta}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\mathrm{e}^{\mathrm{i} \ell x}}{c(-x)}\left(\mathrm{e}^{\mathrm{i} k x}+\mathrm{e}^{-\mathrm{i} k x}\right) \mathrm{d} x= \begin{cases}0 & \text { if } k<\ell \tag{22}\\ 1 & \text { if } k=\ell\end{cases}
$$

Notice in this connection that the evaluation of the integral in Eq. (22) readily follows from the fact that $1 / c(-x)$ has a uniformly converging Fourier series expansion of the form $1+\sum_{n \geqslant 1} c_{n} \mathrm{e}^{\mathrm{i} n x}$ (whence the constant term in the Fourier series expansion of the integrand is equal to 0 for $k<\ell$ and equal to 1 for $k=\ell$).

Next, we rewrite the asymptotic function as

$$
\begin{equation*}
P_{\ell}^{\infty}(x)=\frac{\hat{c}(x) \mathrm{e}^{\mathrm{i}(l+1) x}-\hat{c}(-x) \mathrm{e}^{-\mathrm{i}(l+1) x}}{\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}} \tag{23}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{c}(x)=\frac{\prod_{r=1}^{4}\left(t_{r} \mathrm{e}^{-\mathrm{i} x} ; q\right)_{\infty}}{\left(q \mathrm{e}^{-2 \mathrm{i} x} ; q\right)_{\infty}} \tag{24}
\end{equation*}
$$

It is not difficult to see that the function $\hat{c}(x)$ has a Fourier series expansion of the form

$$
\hat{c}(x)=1+\sum_{n \geqslant 1} \hat{c}_{n} \mathrm{e}^{-\mathrm{i} n x}
$$

with coefficients \hat{c}_{n} that are $\mathrm{O}\left(\mathrm{e}^{-\varepsilon n / 2}\right)$ as $n \rightarrow \infty$ (since the function in question is holomorphic in the lower half-plane $\operatorname{Im}(x)<\log \left(q^{-1 / 2}\right)$ and it converges to 1 for $\left.\operatorname{Im}(x) \rightarrow-\infty\right)$. Let $P_{\ell}^{\operatorname{tr}}(x)$ denote the truncated asymptotic function obtained by replacing $\hat{c}(x)(24)$ in $P_{\ell}^{\infty}(x)(23)$ by its Fourier polynomial of degree 2ℓ

$$
P_{\ell}^{\operatorname{tr}}(x)=\frac{\hat{c}^{\operatorname{tr}}(x) \mathrm{e}^{\mathrm{i}(l+1) x}-\hat{c}^{\operatorname{tr}}(-x) \mathrm{e}^{-\mathrm{i}(l+1) x}}{\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}}, \quad \hat{c}^{\operatorname{tr}}(x)=1+\sum_{n=1}^{2 \ell} \hat{c}_{n} \mathrm{e}^{-\mathrm{i} n x}
$$

Since $\left|\hat{c}(x)-\hat{c}^{\operatorname{tr}}(x)\right|=\mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right)$, it readily follows that

$$
\begin{equation*}
\left\|P_{\ell}^{\infty}-P_{\ell}^{\mathrm{tr}}\right\|_{\Delta}=\mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right) \quad \text { as } \ell \rightarrow \infty . \tag{25}
\end{equation*}
$$

We are now in the position to derive the estimates in Eqs. (20) and (21). Indeed, from Eq. (22) and the fact that the truncated asymptotic function $P_{\ell}^{\mathrm{tr}}(x)$ is a monic polynomial of degree ℓ (in $\mathrm{e}^{\mathrm{i} x}+\mathrm{e}^{-\mathrm{i} x}$), it is clear that $\left\langle P_{\ell}^{\infty}, P_{\ell}^{\mathrm{tr}}\right\rangle_{\Delta}=1$. Hence, we have that

$$
\begin{aligned}
&\left\|P_{\ell}^{\infty}\right\|_{\Delta}-\frac{1}{\left\|P_{\ell}^{\infty}\right\|_{\Delta}}=\frac{1}{\left\|P_{\ell}^{\infty}\right\|_{\Delta}}\left\langle P_{\ell}^{\infty}, P_{\ell}^{\infty}-P_{\ell}^{\mathrm{tr}}\right\rangle_{\Delta} \\
& \leqslant\left\|P_{\ell}^{\infty}-P_{\ell}^{\mathrm{tr}}\right\|_{\Delta} \stackrel{\mathrm{Eq.}}{=}(25) \\
& \mathrm{O}\left(\mathrm{e}^{-\varepsilon \ell}\right)
\end{aligned}
$$

which implies Eq. (20). Furthermore, once more invoking of Eq. (22) combined with the orthonormality of the normalized Askey-Wilson polynomials $P_{\ell}(x)$ (13)-(15) reveals that $\left\langle P_{\ell}^{\infty}, P_{\ell}\right\rangle_{\Delta}=1 /\left\langle P_{\ell}^{\mathrm{tr}}, P_{\ell}\right\rangle_{\Delta}$ ($=a_{\ell \ell}>0$, cf. Eqs. (9), (10)). Hence, we have that

$$
\begin{aligned}
\left\langle P_{\ell}^{\infty}, P_{\ell}\right\rangle_{\Delta}-\frac{1}{\left\langle P_{\ell}^{\infty}, P_{\ell}\right\rangle_{\Delta}} & =\left\langle P_{\ell}^{\infty}-P_{\ell}^{\mathrm{tr}}, P_{\ell}\right\rangle_{\Delta} \\
& \leqslant\left\|P_{\ell}^{\infty}-P_{\ell}^{\mathrm{tr}}\right\|_{\Delta}^{\mathrm{Eq} .(25)} \stackrel{\mathrm{O}}{\mathrm{E}}\left(\mathrm{e}^{-\varepsilon \ell}\right),
\end{aligned}
$$

which implies Eq. (21).

Acknowledgements

Thanks are due to a referee for eliminating a redundancy in the conditions describing the bounds on the convergence rate of our asymptotic formula.

References

[1] R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985) 319.
[2] O.A. Chalykh, Macdonald polynomials and algebraic integrability, Adv. in Math. 166 (2002) 193-259.
[3] J.F. van Diejen, Self-dual Koornwinder-Macdonald polynomials, Invent. Math. 126 (1996) 319-339.
[4] J.F. van Diejen, Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement, Comm. Math. Phys. 188 (1997) 467-497.
[5] J.F. van Diejen, Properties of some families of hypergeometric orthogonal polynomials in several variables, Trans. Amer. Math. Soc. 351 (1999) 233-270.
[6] J.F. van Diejen, Asymptotic analysis of (partially) orthogonal polynomials associated with root systems, Internat. Math. Res. Notices 7 (2003) 387-410.
[7] J.F. van Diejen, Asymptotics of multivariate orthogonal polynomials with hyperoctahedral symmetry, in: V.B. Kuznetsov, S. Sahi (Eds.), Jack, Hall-Littlewood and Macdonald Polynomials, Contemporary Mathematics, Amer. Math. Soc., Providence, RI, to appear.
[8] J.F. van Diejen, J.V. Stokman, Multivariable q-Racah polynomials, Duke Math. J. 91 (1998) 89-136.
[9] M.E.H. Ismail, Asymptotics of the Askey-Wilson and q-Jacobi polynomials, SIAM J. Math. Anal. 17 (1986) 1475-1482.
[10] M.E.H. Ismail, J.A. Wilson, Asymptotic and generating relations for the q-Jacobi and $4 \Phi_{3}$ polynomials, J. Approx. Theory 36 (1982) 43-54.
[11] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology Report No. 98-17, 1998.
[12] T.H. Koornwinder, Askey-Wilson polynomials for root systems of type BC, in: D.St.P. Richards (Ed.), Hypergeometric Functions on Domains of Positivity Jack Polynomials, and Applications, Contemporary Mathematics, vol. 138, Amer. Math. Soc., Providence, RI, 1992, pp. 189-204.
[13] I.G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, Cambridge University Press, Cambridge, 2003.
[14] K. Mimachi, A duality of Macdonald-Koornwinder polynomials and its application to integral representations, Duke Math. J. 107 (2001) 265-281.
[15] A. Nishino, Y. Komori, An algebraic approach to Macdonald-Koornwinder polynomials: Rodrigues-type formula and inner product identity, J. Math. Phys. 42 (2001) 5020-5046.
[16] A. Okounkov, BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform Groups 3 (1998) 181-207.
[17] E.M. Rains, $B C_{n}$-symmetric polynomials, math.QA/0112035.
[18] S.N.M. Ruijsenaars, Factorized weight functions vs. factorized scattering, Comm. Math. Phys. 228 (2002) 467-494.
[19] S. Sahi, Nonsymmetric Koornwinder polynomials and duality, Ann. Math. 150 (1999) 267-282.
[20] J.V. Stokman, Multivariable big and little q-Jacobi polynomials, SIAM J. Math. Anal. 28 (1997) 452-480.
[21] J.V. Stokman, Koornwinder polynomials and affine Hecke algebras, Internat. Math. Res. Notices 2000 (19) 1005-1042.

[^0]: ${ }^{2}$ Work supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant \# 1010217 and by the Programa Formas Cuadráticas of the Universidad de Talca.

 E-mail address: diejen@inst-mat.utalca.cl (J.F. van Diejen).

