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Abstract

A formula for the large-degree asymptotics of Koornwinder’s multivariate Askey–Wilson polynomials is pre-
sented. In the special case of a single variable, this asymptotic formula agrees with the known leading asymptotics
of the Askey–Wilson polynomials determined by Ismail andWilson.
© 2004 Elsevier B.V. All rights reserved.

Keywords:(Multivariate) Orthogonal Polynomials; Asymptotics

MSC:33D45; 33D52; 41A60

1. Introduction

The Koornwinder polynomials[12] are a family of basic hypergeometric orthogonal polynomials in
several variables, unifying the (univariate) Askey–Wilson polynomials[1] and the (multivariate) Mac-
donald polynomials associated with the classical root systems[13]. The polynomials in question form the
top of a hierarchy of classical orthogonal polynomials in several variables[4,5,20]; this hierarchy should
be looked upon as a multivariate generalization of the celebrated Askey-scheme[1,11].
In recent years, a significant part of the theory surrounding the Askey–Wilson polynomials has been

extended to themultivariate level of the Koornwinder polynomials[2,3,8,12–17,19,21]. This note aims to
add further onto the current body of knowledge concerning the Koornwinder polynomials, by providing
a formula describing their leading asymptotics as the degree tends to infinity. For the Askey–Wilson
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polynomials, such large-degree asymptotics was computed some time ago in[10] (leading asymptotics)
and in[9] (full asymptotic expansion); for theMacdonald polynomials, the leading termof the asymptotics
was determined recently in[18] (for typeA root systems) and in[6] (for arbitraryreducedroot systems).
The asymptotic formula presented below follows by specialization of a more general result describing
the leading asymptotics of orthogonal polynomials in several variables with hyperoctahedral symmetry
(associated with thenonreducedroot systems)[7].
In the one-variable case, our asymptotic formula coincides formally with the expression for the leading

asymptotics of theAskey–Wilson polynomials due to Ismail andWilson[10]. However, while Ismail and
Wilson consideredpointwise convergence, herewe rather study the strong convergenceof the polynomials
in a Hilbert space sense. The proof of our asymptotic formula becomes particularly simple in the one-
variable context and will be treated here in further detail.

2. Koornwinder polynomials

The hyperoctahedral group is given by the semidirect product�N�(Z2)
N of the symmetric group of

N letters�N and theN-fold product of the cyclic group of order twoZ2. The hyperoctahedral monomial
symmetric functions

m�(x1, . . . , xN) =
∑
�∈�N

�j ∈{1,−1}

exp(i�1�1x�1 + · · · + i�N�Nx�N
), � ∈ �, (1)

indexed by the partitions

� = {� ∈ ZN | �1��2� · · · ��N �0}, (2)

form a basis for the space of even- and permutation-invariant Fourier polynomials on the torus

TN = RN

(2�Z)N
. (3)

This monomial basis inherits a partial order from the followinghyperoctahedral dominance orderingof
the partitions:

∀�, � ∈ � : � � � ⇐⇒ �1 + · · · + �k ��1 + · · · + �k, for k = 1, . . . , N. (4)

The Koornwinder polynomials arise by applying a Gram–Schmidt type procedure to the partially ordered
monomial basism�, � ∈ � with respect to a suitable orthogonality measure� onTN .
To be more specific, let us consider the following factorized weight function on the torusTN

�(x1, . . . , xN) = 1

2NN !C(x1, . . . , xN)C(−x1, . . . ,−xN)
, (5)
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where

C(x1, . . . , xN) =
∏

1�j<k�N

(te−i(xj+xk), te−i(xj−xk); q)∞
(e−i(xj+xk),e−i(xj−xk); q)∞

×
∏

1�j �N

∏4
r=1(tre−ixj ; q)∞
(e−2ixj ; q)∞

(6)

(with the standard conventions for theq-shifted factorials(z; q)∞ :=∏∞
m=0(1− zqm) and(z1, z2, . . . ,

zk; q)∞ :=(z1; q)∞(z2, q)∞ · · · (zk; q)∞). Here and below it is always assumed that the nomeqand the
parameterst andtr , r = 1, . . . ,4 lie in the domain

0< q <1, −1< t, tr <1. (7)

These parameter restrictions ensure in particular that the weight function� is positive and smooth onTN .
The standard inner product of the Hilbert spaceL2(TN, (2�)−N�dx) is given by

〈f, g〉� = 1

(2�)N

∫
TN

f (x1, . . . , xN)g(x1, . . . , xN)�(x1, . . . , xN)dx1 · · ·dxN (8)

(whereg(x1, . . . , xN) denotes the complex conjugate ofg(x1, . . . , xN)).
The (normalized)Koornwinder polynomialsare now defined as the polynomials of the form[12]

P�(x1, . . . , xN) =
∑

�∈�,���

a��m�(x1, . . . , xN), � ∈ � (9)

with coefficientsa�� ∈ C such that

〈P�, m�〉� = 0 if � ≺ � and 〈P�, P�〉� = 1, (10)

(wherea�� is chosen positive by convention).
It is obvious from this definition that the polynomialsP� are orthogonal with respect to the inner

product〈·, ·〉� when comparable in the partial order. A fundamental result of Koornwinder states that
in fact 〈P�, P�〉� = 0 for all partitions� �= � [12]. In other words, the Koornwinder polynomialsP�,
� ∈ � constitute an orthonormal basis for the hyperoctahedral-symmetric sector of the Hilbert space
L2(TN, (2�)−N�dx).

3. Asymptotic formula

The leading asymptotics of the Koornwinder polynomialP�(x1, . . . , xN), as the partition� ∈ � grows
to infinity, turns out to be governed by the functions

P ∞
� (x1, . . . , xN)

=
∑
�∈�N

�j ∈{1,−1}

C(�1�1x�1, . . . , �N�Nx�N
)exp(i�1�1x�1 + · · · + i�N�Nx�N

) (11)
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with C(x1, . . . , xN) taken from Eq. (6). To formulate the precise result, we define

m(�) := min
j=1,...,N (�j − �j+1) (12)

(with the convention that�N+1 :=0) and, for a functionf in the Hilbert spaceL2(TN, (2�)−N�dx) we
denote its norm by‖f ‖� :=√〈f, f 〉�.
Theorem 1(Asymptotic formula). Let � be(any value) in the interval(0, log(1/q)). Then

‖P� − P ∞
� ‖� =

{
O(e−� m(�)/2)

O(�N
1 e

−� m(�))
asm(�) → ∞

(with both error bounds holding simultaneously).

The asymptotic formula states that the Koornwinder polynomialP� converges (exponentially fast) to
the asymptotic functionP ∞

� (in the strong Hilbert space sense), when the parts�j of the partition� grow
to infinity in such a way that�j −�k → ∞ for j < k. This result follows by specialization of an analogous
asymptotic formula, valid for more general multivariate orthogonal polynomials with hyperoctahedral
symmetry associated to a rather broad class of factorized analytic weight functions on the torusTN [7].

4. The caseN = 1: Askey–Wilson polynomials

It is instructive to exhibit the contents of the theorem in further detail forN = 1. Koornwinder’s
polynomials then specialize to the Askey–Wilson polynomials[1,11]

P�(x) = N
−1/2
� p�(x), � ∈ N (13)

with

Nl = (t1t2t3t4q
2�; q)∞

(t1t2t3t4q�−1; q)�(q
�+1; q)∞

∏
1� r<s �4(tr tsq

�; q)∞
, (14)

p�(x) = (t1t2, t1t3, t1t4; q)�

t�1(t1t2t3t4q
�−1; q)�

4�3

(
q−�, t1t2t3t4q

�, t1eix, t1e−ix
t1t2, t1t3, t1t4

; q, q

)
, (15)

where

s�s−1
(

a1, . . . , as

b1, . . . , bs−1
; q, z

)
:=

∞∑
n=0

(a1, . . . , as; q)n

(b1, . . . , bs−1; q)n

zn

(q; q)n
.

The corresponding asymptotic functions are given by

P ∞
� (x) = c(x)ei�x + c(−x)e−i�x, (16)

c(x) =
∏4

r=1(tre−ix; q)∞
(e−2ix; q)∞

. (17)
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The orthogonality relations for the Askey–Wilson polynomials become in this notation[1,11]

1

4�

∫ 2�

0
P�(x)Pm(x)

dx

c(x)c(−x)
=

{
0 if � �= m,

1 if � = m.
(18)

The asymptotic formula in the theorem above now states that (upon taking the square)

1

4�

∫ 2�

0
|P�(x) − P ∞

� (x)|2 dx

c(x)c(−x)
=O(�2e−2��) as� → ∞, (19)

with � ∈ (0, log(1/q)). The fact that the normalizedAskey–Wilson polynomialP� tends to the asymptotic
functionP ∞

� for � → ∞ in the strong Hilbert space sense is in agreement with the formula for the
pointwise asymptotics of the Askey–Wilson polynomials found in[9,10].

5. Proof of the asymptotic formula forN = 1

The proof of the asymptotic formula in the theorem, patterned after[7], simplifies considerably for
N = 1. We will close by briefly detailing this simplified proof. For further simplicity, our discussion is
limited to the verification of the O(e−��) estimate for the error term (corresponding to the O(e−� m(�)/2)

estimate in the theorem) rather than the sharper O(�2e−2��) estimate given in Eq. (19) (which corresponds
to the O(�N

1 e
−� m(�)) estimate in the theorem).

It is clear that the desired asymptotic formula follows from the asymptotic estimates

‖P ∞
� ‖� = 1+O(e−��), (20)

〈P ∞
� , P�〉� = 1+O(e−��), (21)

for � → ∞. Indeed, from these estimates it is immediate that

‖P� − P ∞
� ‖2� = 〈P�, P�〉� − 〈P�, P

∞
� 〉� − 〈P ∞

� , P�〉� + 〈P ∞
� , P ∞

� 〉� =O(e−��),

which amounts to Eq. (19) with the O(�2e−2��) error bound on the right-hand side replaced by anO(e−��)

error bound.
To infer the estimates in Eqs. (20), (21), we first observe that for� >0

〈P ∞
� , mk〉� = 1

2�

∫ 2�

0

ei�x

c(−x)
(eikx + e−ikx)dx =

{
0 if k < �,

1 if k = �.
(22)

Notice in this connection that the evaluation of the integral in Eq. (22) readily follows from the fact that
1/c(−x) has a uniformly converging Fourier series expansion of the form 1+ ∑

n�1 cneinx (whence the
constant term in the Fourier series expansion of the integrand is equal to 0 fork < � and equal to 1 for
k = �).
Next, we rewrite the asymptotic function as

P ∞
� (x) = ĉ(x)ei(l+1)x − ĉ(−x)e−i(l+1)x

eix − e−ix
(23)
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with

ĉ(x) =
∏4

r=1(tre−ix; q)∞
(qe−2ix; q)∞

. (24)

It is not difficult to see that the function̂c(x) has a Fourier series expansion of the form

ĉ(x) = 1+
∑
n�1

ĉne
−inx

with coefficientsĉn that are O(e−�n/2) asn → ∞ (since the function in question is holomorphic in the
lower half-plane Im(x) < log(q−1/2) and it converges to 1 for Im(x) → −∞). Let P tr

� (x) denote the
truncated asymptotic function obtained by replacingĉ(x) (24) inP ∞

� (x) (23) by its Fourier polynomial
of degree 2�

P tr
� (x) = ĉtr(x)ei(l+1)x − ĉtr(−x)e−i(l+1)x

eix − e−ix
, ĉtr(x) = 1+

2�∑
n=1

ĉne
−inx.

Since|ĉ(x) − ĉtr(x)| =O(e−��), it readily follows that

‖P ∞
� − P tr

� ‖� =O(e−��) as� → ∞. (25)

We are now in the position to derive the estimates in Eqs. (20) and (21). Indeed, from Eq. (22) and the
fact that the truncated asymptotic functionP tr

� (x) is a monic polynomial of degree� (in eix + e−ix), it is
clear that〈P ∞

� , P tr
� 〉� = 1. Hence, we have that

‖P ∞
� ‖� − 1

‖P ∞
� ‖�

= 1

‖P ∞
� ‖�

〈P ∞
� , P ∞

� − P tr
� 〉�

�‖P ∞
� − P tr

� ‖�
Eq. (25)= O(e−��),

which implies Eq. (20). Furthermore, once more invoking of Eq. (22) combined with the orthonormality
of the normalized Askey–Wilson polynomialsP�(x) (13)–(15) reveals that〈P ∞

� , P�〉� = 1/〈P tr
� , P�〉�

(= a� � >0, cf. Eqs. (9), (10)). Hence, we have that

〈P ∞
� , P�〉� − 1

〈P ∞
� , P�〉�

= 〈P ∞
� − P tr

� , P�〉�

�‖P ∞
� − P tr

� ‖�
Eq. (25)= O(e−��),

which implies Eq. (21).
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