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Abstract

We consider a Banach space X endowed with a linear topology τ and a family of seminorms {Rk(·)}
which satisfy some special conditions. We define an equivalent norm ||| · ||| on X such that if C is a convex
bounded closed subset of (X, ||| · |||) which is τ -relatively sequentially compact, then every nonexpansive
mapping T : C → C has a fixed point. As a consequence, we prove that, if G is a separable compact group,
its Fourier–Stieltjes algebra B(G) can be renormed to satisfy the FPP. In case that G = T, we recover
P.K. Lin’s renorming in the sequence space �1. Moreover, we give new norms in �1 with the FPP, we
find new classes of nonreflexive Banach spaces with the FPP and we give a sufficient condition so that a
nonreflexive subspace of L1(μ) can be renormed to have the FPP.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let (X,‖ · ‖) be a Banach space and C a convex closed bounded subset of X. A mapping
T : C → C is called nonexpansive if for any x, y ∈ C we have ‖T x − Ty‖ � ‖x − y‖. A point
x ∈ C is a fixed point of T if T x = x. It is clear that Banach’s Contraction Principle does not
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extend to the setting of nonexpansive mappings. However, some positive results concerning the
existence of fixed points for this class of mappings where given in 1965 by F.E. Browder [5] and
D. Göhde [13] for uniformly convex Banach spaces and by W. Kirk [16] for reflexive Banach
spaces with normal structure. Since then, many authors have studied the problem of the existence
of fixed points for nonexpansive mappings and many positive results have been found (see for
instance [12,17] and the references therein). It is usually said that a Banach space X has the
fixed point property (FPP) if every nonexpansive mapping defined from a closed convex bounded
subset onto itself has a fixed point. It is well known that the geometry of the Banach space plays a
fundamental role to assure the FPP. In fact, Kirk’s result [16] means that a reflexive Banach space
with normal structure has the FPP. Many other geometric properties are known to imply the FPP
for reflexive Banach spaces (uniform Kadec Klee property, uniform Opial condition, existence
of a monotone unconditional basis, etc.). Moreover the classical nonreflexive Banach spaces �1,
c0, L1 do not have the FPP (in fact L1 does not satisfy a stronger condition called the weakly
fixed point property [2]). For a long time, it was an open question whether all Banach spaces with
the FPP were reflexive. In 2008, P.K. Lin [20] found the first known nonreflexive Banach space
with the FPP. In fact, the Banach space given by P.K. Lin was the sequence space �1 endowed
with an equivalent norm to the usual one. His result raises the question: can any Banach space be
renormed to have the FPP? This is not, in general, the case because the Banach spaces �1(Γ ) and
c0(Γ ), if Γ is uncountable, and the Banach space �∞ cannot be renormed to have the FPP [8].
A positive partial answer was given by T. Domínguez Benavides [6], who proved that every
reflexive Banach space can be renormed to have the FPP. This leads to the following question:
Which type of nonreflexive Banach spaces can be renormed to have the FPP?

In this paper we find some classes of nonreflexive Banach spaces which under an equivalent
renorming satisfy the FPP. Our techniques are inspired by those of P.K. Lin’s paper [20] but
our applications go beyond the sequence space �1 as we will illustrate with many examples. As
particular cases, we will recover P.K. Lin’s result and we will find new renormings in �1 with
the FPP. Moreover, we will renorm the Fourier–Stieltjes algebra of a separable compact group to
have the FPP. Notice that if G is locally compact, its Fourier–Stieltjes algebra B(G) has the FPP
if and only if G is finite [18]. We also find new classes of nonreflexive Banach spaces with the
FPP which are nonisomorphic to any subspace of �1.

Finally, we will apply our results to the particular case of subspaces of L1(μ) for a σ -finite
measure. It is known that a closed subspace X of L1(μ) has the FPP if and only if X is reflex-
ive [23,7]. Nevertheless, we will show that some nonreflexive subspaces of L1(μ) can still be
renormed to have the FPP.

This paper is organized as follows: Section 2 is dedicated to the necessary fixed point back-
ground and we establish a technical lemma which is basic in our proofs. In Section 3 we will state
our main Theorem and we will introduce the first applications: we are able to find new renorm-
ings in �1 with the FPP, we renorm B(G) with the FPP if G is a separable compact group and we
give new examples of nonreflexive Banach spaces with the FPP that are nonisomorphic to any
subspace of �1. Section 4 is dedicated to the proof of the main Theorem. Finally, in Section 5, we
will apply the main Theorem to closed subspaces of L1(μ) when (Ω,Σ,μ) is a σ -finite measure
space. We obtain a sufficient condition to assure that a nonreflexive subspace X of L1(μ) can
be renormed to have the FPP (it is known that, with the usual norm, X fails to have this prop-
erty [7]). We finish the paper by introducing some examples of nonreflexive subspaces of L1(μ)

which can be renormed to have the FPP.
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2. Fixed point background

Let C be a closed convex bounded subset of a Banach space (X,‖ · ‖) and T : C → C a non-
expansive mapping. Fix any x0 ∈ C. A direct application of the Banach’s Contraction Principle
to the sequence of mappings Tn : C → C defined by

Tnx = 1

n
x0 +

(
1 − 1

n

)
T x;

provides a sequence {xn}n ⊂ C, where xn is the unique point of Tn, such that

lim
n

‖xn − T xn‖ = 0.

Such sequences are called approximated fixed point sequences (a.f.p.s.).
Moreover, if d > 0 and the set

D =
{
x ∈ C: lim sup

n
‖xn − x‖ � d

}

is nonempty, it is easy to check that D is convex, closed and a T -invariant subset of C. Hence,
we can find another a.f.p.s. in D. As an application of Cantor’s Intersection Theorem, we can
prove the following:

Lemma 1. Let (X,‖ · ‖) be a Banach space and C a convex, closed, bounded subset of X. Let
T : C → C be a nonexpansive mapping and suppose that T is fixed point free. Then there exist
some a > 0 and a convex closed T -invariant subset D of C such that for each approximated
fixed point sequence (xn) in D and for any z ∈ D

lim sup
n

‖xn − z‖ � a.

Proof. If the statement is false there exists an a.f.p.s. (x1
n) in C and z1 ∈ C such that

lim sup
n

∥∥x1
n − z1

∥∥ <
1

2
.

Hence

D1 =
{
z ∈ C: lim sup

n

∥∥x1
n − z

∥∥ � 1

2

}

is a nonempty, convex, closed, T -invariant subset of C.
With the same argument, we deduce the existence of an approximated fixed point sequence

(x2
n) in D1 and z2 ∈ D1 such that

lim sup
∥∥x2

n − z2
∥∥ <

1
2
.

n 2
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Hence the set

D2 =
{
z ∈ D1: lim sup

n

∥∥x2
n − z

∥∥ � 1

22

}

is again a nonempty, convex, closed, T -invariant subset of D1.
In this way we construct a decreasing sequence (Dn) of convex closed bounded T -invariant

subsets of C such that diam(Dn) � 1
2n−1 . By the Cantor’s Intersection Theorem,

⋂
n Dn is a

singleton. Since each Dn is T -invariant this point has to be a fixed point of T . Thus, we have
obtained a contradiction since T is fixed point free. �
Remark. Notice that if X is endowed with a topology τ such that every bounded sequence has a
τ -convergent subsequence, then the conditions of Lemma 1 also imply that

inf
{

lim sup
n

‖xn − x‖: (xn) ⊂ D, (xn) a.f.p.s. xn → x in τ
}

> 0.

Indeed, applying the triangular inequality, for every (xn) ⊂ D a.f.p.s. such that (xn) converges to
x in the topology τ , we have

lim sup
n

‖xn − x‖ � 1

2
lim sup

m
lim sup

n
‖xn − xm‖ � a

2
.

3. Main result and first examples

In this section we state the main result of this paper. As a consequence, we obtain the renorm-
ing given in [20] in the sequence space �1, which provided the first known nonreflexive Banach
space with the FPP. Also we will give new equivalent norms on �1 with the FPP and we will
obtain new classes of nonreflexive Banach spaces with the FPP. In particular, we will prove that
the Fourier–Stieltjes algebra B(G) of a separable compact group can be renormed to have the
FPP. Notice that B(G) itself has the FPP if and only if G is finite [18] (Theorem 5.8). More
applications of the main Theorem will be studied in the last section.

Let (X,‖ · ‖) be a Banach space endowed with a linear topology τ . Assume that there exists
a family of seminorms Rk : X → [0,+∞) (k � 1) that satisfy the following properties:

(I) R1(x) = ‖x‖ while for k � 2, Rk(x) � ‖x‖ for all x ∈ X.
(II) limk Rk(x) = 0 for all x ∈ X.

(III) If xn → 0 in τ and is norm-bounded, then for all k � 1

lim sup
n

Rk(xn) = lim sup
n

‖xn‖.

(IV) If xn → 0 in τ , is norm-bounded and x ∈ X, then

lim sup
n

Rk(xn + x) = lim sup
n

Rk(xn) + Rk(x)

for all k � 1.
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Then we can state the following:

Theorem 1. Let {γk}k ⊂ (0,1) be any nondecreasing sequence such that limk γk = 1 and define

|||x||| = sup
k�1

γkRk(x); x ∈ X.

Then ||| · ||| is an equivalent norm on X such that (X, ||| · |||) satisfies the following property: for
every nonempty closed convex bounded subset C which is τ -relatively sequentially compact and
for every T : C → C nonexpansive, there exists a fixed point.

That ||| · ||| is an equivalent norm on (X,‖ · ‖) is clear. In fact, γ1‖x‖ � |||x||| � ‖x‖ for all
x ∈ X.

We will prove Theorem 1 in the next section. Now we give several families of Banach spaces
where our results can be applied.

Example 1. A first application of Theorem 1 is a generalization of P.K. Lin’s example given in
[20], where he proves that if γk = 8k/(1 + 8k), then the renorming on �1 given by

|||x||| = sup
k

8k

1 + 8k

∥∥∥∥∥
∞∑

n=k

xnen

∥∥∥∥∥
has the FPP. Notice that Lin’s result can be derived from Theorem 1 defining the seminorms
Rk(x) = ‖∑∞

n=k xnen‖ and τ the weak-star topology associated to the duality σ(�1, c0). Since
the unit ball is weak-star compact and c0 is separable, every closed convex bounded subset is
σ(�1, c0)-sequentially compact. Also, we obtain the renorming given in [10] where P.K. Lin’s
result is generalized by using any nondecreasing sequence (γk) ∈ (0,1) with limk γk = 1 and
γ1 > 2/3. Notice that in our approach the condition γ1 > 2/3 can be dropped.

Example 2. If we consider again the sequence space �1 and change the family of seminorms,
then we can obtain new renormings on �1 with the FPP. For instance, let p > 1 and for k � 2
define

Rk(x) =
∞∑

n=2k

∣∣x(n)
∣∣ +

(
2k−1∑
n=k

|xn|p
)1/p

and R1(x) = ‖x‖1. It is easy to check that {Rk(·)}k is a family of seminorms that verify proper-
ties (I), (II), (III) and (IV), so �1 with the norm generated by the seminorms {Rk(·)}k satisfies the
FPP.

Corollary 1. Let {Xn}n be a sequence of finite dimensional Banach spaces and consider

X = ⊕1

∑
n

Xn =
{
x = (xn)n: xn ∈ Xn, ‖x‖ =

∑
n

‖xn‖Xn < ∞
}
.

Then X can be renormed to have the FPP.
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Proof. Define the seminorms Rk(x) = ∑
n�k ‖xn‖Xn and let τ be the weak star topology where

the predual of X is

E =
{
x = (xn): xn ∈ Xn, lim‖xn‖Xn = 0, ‖x‖ = sup

n
‖xn‖Xn

}
.

It is not difficult to check that the family {Rk(·)}k satisfies properties (I), (II), (III) and (IV).
Using the renorming given in Theorem 1, the Banach space (X, ||| · |||) has the FPP. �

A first application of Corollary 1 is the following example:

Example 3. Consider Xn = �n
p for some 1 < p � +∞ and

X = ⊕1

∑
n

�n
p.

Then we obtain a nonreflexive Banach space that can be renormed to have the FPP and
that is not isomorphic to any subspace of �1. Indeed, �p is finitely representable in X and the
type and the cotype of X is equal to the type and the cotype of �p respectively. Notice that
for every 1 < p � +∞, either the type or the cotype of �p is different from that of �1, since
type(�p) = min{2,p} and cotype(�p) = max{2,p} (see [22], p. 73). Thus, X is not isomorphic
to any subspace of �1 and we obtain new classes of nonreflexive Banach spaces with the FPP.

For the definitions of the Fourier algebra A(G) and the Fourier–Stieltjes algebra B(G) of a
locally compact group see [9] or [19] and the references therein. When G is compact, B(G) =
A(G). Another application of Corollary 1 is the following.

Corollary 2. Let G be a separable compact group and B(G) its Fourier–Stieltjes algebra. Then
B(G) can be renormed to have the FPP.

Proof. Using the arguments in the proof of Lemma 3.1 of [19], and having in mind that B(G)

is norm separable when G is a separable compact group [14, Corollary 6.9], the Banach space
B(G) can be written as

B(G) = ⊕1

∑
n

T(Hn)

where Hn is a finite dimensional Hilbert space and T(Hn) is the trass class operators on Hn.
Applying Corollary 1 we obtain a renorming of B(G) with the FPP. �

In the particular case that G = T, the circle group, B(G) is isometric to �1(Z) via Bochner’s
Theorem. Thus, Corollary 2 includes the sequence space �1 and the renorming given by P.K. Lin
[20]. Also, recall that B(G) with its usual norm has the FPP if and only if G is finite [18].
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4. Proof of the main result

Before proving Theorem 1 we prove two technical lemmas:

Lemma 2. Let X be a Banach space endowed with a linear topology τ and a family of seminorms
{Rk(·)k} satisfying properties (I), (II), (III) and (IV) stated above. Define the ||| · ||| norm as in
Theorem 1 and let (xn), (yn) be two bounded sequences in X. Then the following statements are
satisfied:

(1) If xn → 0 in τ , then

lim sup
n

|||xn||| = lim sup
n

‖xn‖.

(2) If xn → x and yn → y in τ then

lim sup
m

lim sup
n

|||xn − ym||| � lim sup
n

|||xn − x||| + lim sup
m

|||ym − y|||.

Proof. (1) For every k � 1, using the definition of the ||| · ||| norm and property (III), we have

lim sup
n

‖xn‖ � lim sup
n

|||xn||| � γk lim sup
n

Rk(xn) = γk lim sup
n

‖xn‖.

Taking limit as k goes to infinity we deduce (1).
(2) By property (IV) we have

lim sup
m

lim sup
n

Rk(xn − ym) = lim sup
m

[
lim sup

n
Rk(xn − x) + Rk(x − ym)

]
= lim sup

n
Rk(xn − x) + lim sup

m
Rk(ym − y) + Rk(x − y),

for every k � 1.
Then, using again the definition of ||| · ||| and property (III),

lim sup
m

lim sup
n

|||xn − ym||| � γk

[
lim sup

n
Rk(xn − x) + lim sup

m
Rk(ym − y) + Rk(x − y)

]

� γk

[
lim sup

n
|||xn − x||| + lim sup

m
|||ym − y|||

]
.

Taking limit as k goes to infinity we get the desired result. �
The following lemma is the key for the arguments in the proof of Theorem 1:

Lemma 3. Consider the Banach space (X, ||| · |||) and let C and T be as in Theorem 1. If T is
fixed point free we find D as in Lemma 1. Let K be any closed convex T -invariant subset of D

and denote

ρ = inf
{

lim sup |||xn − x|||: (xn) ⊂ K is an a.f.p.s. and xn → x in τ
}

> 0.

n
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Then for every a.f.p.s. (xn) ⊂ K which is τ -convergent and for every z ∈ K we have

lim sup
n

|||xn − z||| � 2ρ.

Proof. Assume that there exist a τ -convergent approximate fixed point sequence (xn) in K and
z ∈ K such that

r = lim sup
n

|||xn − z||| < 2ρ.

Then

K1 =
{
w ∈ K: lim sup

n
|||xn − w||| � r

}

is a nonempty, convex, closed, bounded T -invariant subset of K . Choose an approximate fixed
point sequence (yn) in K1 such that yn

τ→ y. Denote by x the τ -limit of the sequence (xn). Then
by (2) of Lemma 2, we have

r � lim sup
m

lim sup
n

|||xn − ym|||
� lim sup

n
|||xn − x||| + lim sup

n
|||yn − y|||

� ρ + ρ = 2ρ,

which is a contradiction. �
Now we prove Theorem 1.

Proof. Assume the contrary, that T has no fixed point. Let D be as in the conclusion of Lemma 1.
Define

c = inf
{

lim sup
n

|||xn − x|||: (xn) ⊂ D is an a.f.p.s. and xn
τ→ x

}

which is greater than zero by the remark made after Lemma 1.
Without loss generality we can assume that c = 1. Take 0 < ε1 < 1/2 and an a.f.p.s. (xn) ⊂ D

such that xn
τ→ x and lim supn |||xn − x||| < 1 + ε1. Again, by translation, we can assume that

x = 0.
Let us consider now

K =
{
z ∈ D: lim sup

n
|||xn − z||| � 2 + 2ε1

}
.

The set K is closed, convex, T -invariant and nonempty. Indeed, we can find n0 such that xn ∈ K

for all n � n0.
Define
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ρ = inf
{

lim sup
n

|||yn − y|||: (yn) ⊂ K is an a.f.p.s. and yn
τ→ y

}
.

It is clear that 1 � ρ � lim supn |||xn||| < 1 + ε1.
We are going to find an a.f.p.s. (yn) ⊂ K and z ∈ K such that

lim sup
n

|||yn − z||| < 2ρ

and then we obtain a contradiction according to Lemma 3.
Notice the following: If (yn) ⊂ K is an a.f.p.s. and yn

τ→ y, then for all k,

2 + 2ε1 � lim sup
m

lim sup
n

|||xn − ym||| = lim sup
m

lim sup
n

∣∣∣∣∣∣xn − (ym − y) − y
∣∣∣∣∣∣

� γk lim sup
m

lim sup
n

Rk

(
xn − (ym − y) − y

)
= γk

[
lim sup

n
Rk(xn) + lim sup

m
Rk(ym − y) + Rk(y)

]

= γk

[
lim sup

n
|||xn||| + lim sup

m
|||ym − y||| + Rk(y)

]
� γk

[
2 + Rk(y)

]
.

Consequently, if (yn) ⊂ K is an a.f.p.s. and yn
τ→ y, we have

Rk(y) � 2

(
1 + ε1

γk

− 1

)
.

Let

p := 1 + ε1 + 2

(
1 + ε1

γ1
− 1

)
> ρ, δ ∈ (ε1,1/2), 0 < ε2 < ρ − 2δ.

Since, by Lemma 2(1), lim supn ‖xn‖ = lim supn |||xn||| < 1 + ε1, we can find x ∈ K such that
‖x‖ < 1 + ε1. Also there exists m ∈ N such that if k � m

Rk(x) < ε2
(
by property (II)

)
and

1 + ε1

1 + δ
< γk

(
since lim

k
γk = 1

)
.

We take λ ∈ (0,1) such that

λ <
ρ(1 − γm)

γm(p − ρ)
.

Since

(2 − λ)ρ + λ(ε2 + 2δ) = 2ρ − λ
(
ρ − (2δ + ε2)

)
< 2ρ
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and

γm

[
(2 − λ)ρ + λp

]
< ρ(1 + γm) < 2ρ,

we can find ε3 > 0 such that

(i) (2 − λ)(ρ + ε3) + λ(ε2 + 2δ) < 2ρ

and

(ii) γm

[
(2 − λ)(ρ + ε3) + λp

]
< 2ρ.

Take (yn) ⊂ K to be an a.f.p.s. such that yn
τ→ y and

lim sup
n

‖yn − y‖ = lim sup
n

|||yn − y||| < ρ + ε3
(
using Lemma 2(1)

)
.

There exists s ∈ N such that ‖yN − y‖ < ρ + ε3 for all N � s and define

z = (1 − λ)ys + λx

which belongs to K because K is convex.
Let us prove that lim supn |||yn − z||| < 2ρ. In order to do this, we will prove that there exists

M > 0 such that for all k and N � s we have

γkRk(yN − z) < M < 2ρ.

We split the proof into two cases:

Case 1: k � m:

γkRk(yN − z) = γkRk

(
yN − (1 − λ)ys − λx

)
� Rk

(
yN − y − (1 − λ)(ys − y) − λ(x − y)

)
� Rk(yN − y) + (1 − λ)Rk(ys − y) + λRk(x − y)

� ‖yN − y‖ + (1 − λ)‖ys − y‖ + λRk(x − y)

� (ρ + ε3) + (1 − λ)(ρ + ε3) + λ
(
Rk(x) + Rk(y)

)
� (2 − λ)(ρ + ε3) + λ

(
ε2 + Rk(y)

)
� (2 − λ)(ρ + ε3) + λ

(
ε2 + 2

(
1 + ε1

γk

− 1

))
< (2 − λ)(ρ + ε3) + λ(ε2 + 2δ) < 2ρ by (i).
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Case 2: k � m:

γkRk(yN − z) � γmRk

(
yN − (1 − λ)ys − λx

)
� γm

[
Rk

(
yN − y − (1 − λ)(ys − y) − λ(x − y)

)]
� γm

[
Rk(yN − y) + (1 − λ)Rk(ys − y) + λRk(x − y)

]
� γm

[
(ρ + ε3) + (1 − λ)(ρ + ε3) + λ

(
Rk(x) + Rk(y)

)]
� γm

[
(2 − λ)(ρ + ε3) + λ

(
1 + ε1 + Rk(y)

)]
� γm

[
(2 − λ)(ρ + ε3) + λ

(
1 + ε1 + 2

(
1 + ε1

γ1
− 1

))]
< 2ρ by (ii).

Take

M = max

{
(2 − λ)(ρ + ε3) + λ(ε2 + 2δ),

γm

[
(2 − λ)(ρ + ε3) + λ

(
1 + ε1 + 2

(
1 + ε1

γ1
− 1

))]}
.

Then, for all N � s, |||yN − z||| < M < 2ρ. Thus lim supn |||yn − z||| < 2ρ and this finishes the
proof. �
5. Applications to the Lebesgue function space L1(μ)

In this section we are going to consider the Banach space L1(μ), where (Σ,Ω,μ) is a σ -finite
measure space and we will apply Theorem 1 to this space. As a consequence we will obtain new
results about renorming and FPP for nonreflexive subspaces of L1(μ).

In order to do that we will define a family of seminorms {Rk(·)}k�1 which satisfies proper-
ties (I), (II), (III) and (IV) stated in Section 3.

We denote by ‖ · ‖ the usual norm on L1(μ), that is

‖x‖ =
∫
Ω

|x|dμ, for all x ∈ L1(μ)

and R1(x) = ‖x‖ for all x ∈ L1(μ).
Let Ω = ⋃

n Ωn be such that μ(Ωn) < +∞ for all n ∈ N and denote Ak = ⋃k
n=1 Ωn. For

k � 2 define the seminorms

Rk(x) = sup

{ ∫
E∩Ak

|x|dμ: μ(E) <
1

k

}
+ ‖xχAc

k
‖. (1)

Let τ be the topology of locally convergence in measure, which is given by the metric

d(x, y) =
∞∑

n=1

1

2n

1

μ(Ωn)

∫ |x − y|
1 + |x − y| dμ; x, y ∈ L1(μ).
Ωn
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This topology is related to the convergence almost everywhere in the following way: every se-
quence that converges almost everywhere also converges locally in measure to the same function.
Moreover, if a sequence converges locally in measure, then it has a subsequence that converges
almost everywhere [15], pp. 157–158.

Fix any nondecreasing sequence (γk)k ⊂ (0,1) such that limk γk = 1 and define the equivalent
norm on L1(μ) as

|||x||| = sup
k

γkRk(x).

Now we have all the ingredients to state the following:

Theorem 2. The seminorms {Rk(·)}k defined above satisfy properties (I), (II), (III) and (IV)
stated in Section 3. Thus the following holds: Let C be a convex bounded closed subset of L1(μ)

and T : C → C a ||| · |||-nonexpansive mapping. If every sequence in C has a subsequence which
is almost everywhere convergent in L1(μ), then T has a fixed point.

Remark 1. Notice that the above fixed point result does not hold for the usual norm in L1(μ).
Indeed, consider (hn) a disjointly supported normalized sequence in L1(μ). Let

C =
{∑

n

tnhn; tn � 0,
∑
n

tn = 1

}
= co(hn).

The set C is closed convex bounded and every sequence in C has a convergent subsequence
almost everywhere. Indeed, consider a sequence (fk) ⊂ C. Then fk = ∑

n tn(k)hn where tn(k) �
0 and

∑
n tn(k) = 1 for every k. Define tk = (tn(k))n. The sequence (tk)k belongs to the unit ball

of �1 which is σ(�1, c0)-compact. So there exists a subsequence, denoted again by tk , which is
σ(�1, c0)-convergent to some t = (tn)n belonging to unit ball of �1. Now we can easily check
that (fk) is pointwise convergent to f = ∑

n tnhn (notice that f is not, in general, in C).
Define T : C → C by

T

(∑
n

tnhn

)
=

∑
n

tnhn+1.

It is easy to check that T is ‖ · ‖-nonexpansive and has no fixed point in C.

Remark 2. If the measure space is not σ -finite and we consider the convergence almost every-
where in L1(μ), we cannot renorm the space L1(μ) so that Theorem 2 remains true. Indeed, in
this case �1(Γ ) is contained isometrically in L1(μ) for some uncountable set Γ and every se-
quence in a bounded subset of �1(Γ ) has a pointwise convergent subsequence. So if Theorem 2
holds then we would have a renorming in �1(Γ ) with the FPP. This is impossible since every
renorming of �1(Γ ) contains an asymptotically isometric copy of �1 and then it fails the FPP [8].

Before proving Theorem 2 we give a simpler definition of the ||| · ||| norm in two special cases:
when μ is finite and when μ is purely atomic.
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Remark 3. Assume that the measure μ is finite. Consider Ak = Ω for all k. Then Ac
k = ∅ and

‖xχAc
k
‖ = 0 for all x ∈ L1(μ). Therefore

Rk(x) = sup

{∫
E

|x|dμ: μ(E) <
1

k

}

for all k ∈ N.
In this case, the topology of the convergence locally in measure is given by the metric

d(x, y) =
∫
Ω

|x − y|
1 + |x − y| dμ; x, y ∈ L1(μ),

and the convergence with respect to this topology is the convergence in measure.

Remark 4. Assume now that Ω = N and μ is the counting measure defined on the subsets of N.
Then the space L1(μ) becomes the sequence space �1. Denote Ωk = {n} and Ak = {1, . . . , n}.
Then

Rk(x) = ‖xχAc
k
‖ =

∞∑
n=k+1

∣∣x(n)
∣∣.

In this case we recover again the ||| · ||| norm defined by P.K. Lin in [20] for the particular case γk =
8k/(1 + 8k). Notice that the convergence almost everywhere in �1 is the pointwise convergence
and every bounded sequence in �1 has a pointwise convergent subsequence because the unit ball
of �1 is σ(�1, c0)-compact.

In general, if the measure space is σ -finite and purely atomic, L1(μ) is isometric to �1. Thus
by Theorem 2, it can be renormed to have the FPP.

Now, to prove Theorem 2 we only have to check that properties (I), (II), (III), (IV) are fulfilled
for the family of seminorms Rk(·) defined on L1(μ).

Proof. To simplify the notation we let

Sk(x) := sup

{∫
E

|x|dμ: μ(E) <
1

k

}

for x ∈ L1(μ), therefore

Rk(x) = Sk(xχAk
) + ‖xχAc

k
‖.

(I) Using the absolute continuity of the norm and that limk ‖xχAc
k
‖ = 0 we can check that

limk Rk(x) = 0 for all x ∈ L1(μ).
(II) We have Sk(xχAk

) � ‖xχAk
‖. Therefore Rk(x) � ‖xχAk

‖ + ‖xχAc
k
‖ = ‖x‖ for every

x ∈ L1(μ).
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(III) Fix k � 1 and let (xn) be a sequence convergent to the null function locally in measure.
Assume the contrary, that is, lim supn Rk(xn) < lim supn ‖xn‖. We can take a sequence, again
denoted by (xn), such that limn ‖xn‖, limn Sk(xnχAk

), limn ‖xnχAk
‖ and limn ‖xnχAc

k
‖ exist,

(xn) converges to the null function almost everywhere and limn Rk(xn) < limn ‖xn‖.
Let us prove that limn Sk(xnχAk

) = limn ‖xnχAk
‖:

Using Egoroff’s Theorem there exists a measurable set E ⊂ Ak with μ(E) < 1/k and such
that xn → 0 uniformly on Ak \ E. In particular xnχAk\E → 0 in norm and limn ‖xnχAk

‖ =
limn ‖xnχE‖. Therefore

lim
n

‖xnχAk
‖ � lim

n
Sk(xnχAk

) � lim
n

‖xnχE‖ = lim
n

‖xnχAk
‖.

Now

lim
n

Rk(xn) � lim
n

Sk(xnχAk
) + lim

n
‖xnχAc

k
‖

= lim
n

‖xnχAk
‖ + lim

n
‖xnχAc

k
‖

= lim
n

‖xn‖

which is a contradiction and property (III) holds.
(IV) If k = 1, since R1(·) = ‖ · ‖ and using [4] we obtain

lim sup
n

‖xn + x‖ = lim sup
n

‖xn‖ + ‖x‖.

Assume that k � 2. Suppose by contradiction that property (IV) does not hold. We recall the
following lemma for finite measure spaces [1]: Let (Ω,σ,μ) be a finite measure space and (hn)

be a bounded sequence in L1(μ) converging to the null function in measure. Then there exists a
subsequence (hnl

) and a sequence of pairwise disjoint measurable sets (El) such that

lim
l

‖hnl
− hnl

χEl
‖ = 0.

In particular, for all k � 1, liml Sk(hnl
− hnl

χEl
) = 0.

Using the above result we can take a subsequence, again denoted by (xn), such that there
exists a sequence (hn) of measurable functions defined in Ak which is disjointly supported,
limn Sk((xn − hn)χAk

) = 0 and lim supn Rk(xn + x) < lim supn Rk(xn) + Rk(x) for some x ∈
L1(μ). Therefore

lim sup
n

Rk(xn + x) = lim sup
n

Sk

(
(xn + x)χAk

) + lim sup
n

∥∥(xn + x)χAc
k

∥∥
= lim sup

n
Sk

(
(hn + x)χAk

) + lim sup
n

‖xnχAc
k
‖ + ‖xχAc

k
‖.

Let us prove that lim supn Sk((hn + x)χAk
) = lim supn Sk(hnχAk

) + Sk(xχAk
):

Denote by En ⊂ Ak the support of the function hn and let ε > 0. By the definition of Sk(·),
there exists a measurable set A ⊂ Ak with μ(A) < 1 such that
k
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∫
A

|x|dμ � Sk(xχAk
) − ε.

Since
∑

n μ(En) � μ(Ak) < +∞ there exists n0 such that μ(A)+∑
n�n0

μ(En) < 1
k

. Therefore

lim sup
n

Sk(hn + x) � lim sup
n

∫
A∪⋃

n�n0
En

|hn + x|dμ

= lim sup
n

∫
A∪⋃

n�n0
En

|hn|dμ +
∫

A∪⋃
n�n0

En

|x|dμ

� lim sup
n

∫
En

|hn|dμ +
∫
A

|x|dμ

� lim sup
n

‖hnχAk
‖ + Sk(xχAk

) − ε

= lim sup
n

Sk(hnχAk
) + Sk(xχAk

) − ε.

Since ε is arbitrary we obtain the desired equality. Therefore:

lim sup
n

Rk(xn + x) = lim sup
n

Sk(hnχAk
) + Sk(xχAk

) + lim sup
n

‖xnχAc
k
‖ + ‖xχAc

k
‖

= lim sup
n

Sk(xnχAk
) + Sk(xχAk

) + lim sup
n

‖xnχAc
k
‖ + ‖xχAc

k
‖

= lim sup
n

Rk(xn) + Rk(x)

and we obtain (IV). �
Although it is well known that the space L1(μ) does not have the FPP (it does not satisfies

the weak fixed point property w-FPP [2]), in 1980, B. Maurey [23] proved that all reflexive
subspaces of L1(μ) do have the FPP. In 1997 P. Dowling and C. Lennard [7] proved that the
converse holds, that is, a subspace X of L1(μ) has the FPP if and only if X is reflexive. This
leads us to the following question: Can a nonreflexive subspace of L1(μ) be renormed to have
the FPP? Theorem 2 lets us give a partial answer to this question:

Corollary 3. Let X be a closed subspace of L1(μ). If the unit ball of X is relatively sequentially
compact for the topology of the convergence locally in measure, then (X, ||| · |||) has the FPP.

Corollary 4. Let X be a closed subspace of L1(μ). If X is a dual space such that the topology of
the convergence locally in measure coincides with the weak star topology on the unit ball of X,
then (X, ||| · |||) has the FPP.

Notice that this is the case of the sequence space �1. Here we present another example.
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Example 4. Let D denote the open unit disc. The Bergman space La(D) is defined as the sub-
space of L1(D) of all analytic functions on D. This space is a dual space and for bounded
sequences weak* convergence is equivalent to uniform convergence on compact sets [24]. This
shows that the weak* topology is finer than the topology of convergence in measure on the unit
ball of La(D) and consequently these two topologies coincide for BLa(D). Thus the Bergman
space endowed with the ||| · ||| norm given in this section has the FPP. Notice that, from P.K. Lin’s
paper [20], it is deduced that the Bergman space can be renormed to have the FPP. Indeed, J.
Lindenstrauss, A. Pelczynski [21] proved that the Bergman space and the sequence space �1 are
isomorphic, although they did not give an explicit definition of the isomorphism. In fact, it turns
out to be a difficult problem to find a system of functions which is a basis in La(D) equivalent
to the unit vector basis in �1 (see Notes and Remarks in Chapter III.A of [25] and the references
therein). However, using Theorem 2 we can give explicitly the renorming on the Bergman space
with the FPP.

The following example satisfies the hypothesis of Corollary 3 but does not fit in the scope of
Corollary 4:

Example 5. In [11], Théorème 7, we can find an example of a subspace X of L1[0,1] such that
its unit ball BX is compact for the topology of convergence in measure but not locally convex for
this topology. Then, by Corollary 3, (X, ||| · |||) has the FPP.

To finish we show another example of a Banach space which can be renormed to satisfy the
FPP:

Example 6. In [3] we can find an example of a Banach space E contained in L1, over a proba-
bility space, and such that E fails to have the Radon–Nikodym property and every L1-bounded
sequence in E has a subsequence converging in measure. Applying again Theorem 2, we deduce
that E can be renormed to have the FPP and by the failure of the Radon–Nikodym property, E

is not isomorphic to any subspace of �1.
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