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ABSTRACT 

A computable criterion is given for two square matrices to possess a common 
eigenvector, as well as a criterion for one matrix to have an eigenvector lying in a 
given subspace. Some applications are discussed. 

1. INTRODUCTION 

A nonzero vector x in C n is a common eigenvector of the n-square, 

complex matrices A and B if there exist complex numbers X and p such that 

Ax=Xx, 

Whenever the two matrices A and B commute, they possess at least one 
common eigenvector. 

In 1935 McCoy [3] proved that the matrices A and B have simultaneous 
triangularization (i.e. there exists a nonsingular matrix P such that P-IAP and 
P- ‘BP are triangular) if’f for every polynomial p( x, y) of the noncommutative 
variables x, y the matrix &A, B)[A, B] ([A, B] being the commutator AB - 
BA) is nilpotent. Consequently if the McCoy condition (p(A, B)[A, B] is 

nilpotent for every p(x, y) as above) holds, then A and B have a common 
eigenvector. 

The McCoy condition is sufficient, though not very easy to check, for the 
existence of a common eigenvector. In Section 3 a computable condition is 
given which is necessary and sufficient for two matrices to have a common 
eigenvector. 

Another way of attacking the above problem is to find whether or not 
there is an eigenvector of A corresponding to a fixed eigenvalue A, which is 
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also an eigenvector of B. We can restate this problem as: Does there exist an 
eigenvector of B which belongs to the kernel of A - XI? Or, more generally, 
when does an n-square, complex matrix have an eigenvector lying in a given 
subspace of C”? This problem is solved in Section 2; its solution is related to 

system theory. 
In Section 4 some applications are given. The problems of existence of 

common roots of two polynomials and two matrix polynomials are treated 
there, as well as the question of when two matrices have a common eigenvec- 
tor corresponding to the same eigenvalue (i.e. Ax = Xx and Bx = Ax). 

2. CONSTRAINED EIGENVECTOR PROBLEM 

Let A be an n-square complex matrix, and let U be a subspace of C “. 
Under what conditions does the matrix A have an eigenvector which belongs 
to the subspace U? Since U can be characterized as the kernel of a (not 
necessarily square) matrix B, the above problem can be rewritten as follows: 
Is there a nonzero vector x satisfying 

Ax = hx, 

Bx=O (Bbeinganmxnmatrix), 
(2.1) 

or, in a more compact form, 

#=A(;)? (2.2) 

The following theorem settles this problem. 

THEOREM 2.1. There is an eigenvector x of A which satisfies Bx = 0 if 
and only if np:i ker( BAk) # (O}, where 9 is any integer greater than or equal 
to the degree of the minimal polynomial of A. 

OBSERVATION. All powers of A of order > 9 are linear combinations of 
the first 9 powers I, A, A2,. . . , A”- ‘. Thus, denoting by _& the intersection of 
the kernels in the theorem, we get J? -flz:Aker(BAk) =ll&ker(BAk). 

Proof. Let x # 0 be a vector in JY. Then BAkx = 0, k = 0,1,2,. . . , and 
hence also BAk’ lx = BAk( Ax) = 0 for k = 0,1,2,. . . , which means that Ax is 
also in A. 

The subspace 4 # (0) is an invariant subspace of A. Thus A has an 
eigenvector in J? c ker B, and this eigenvector is a solution of (2.1). 
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The other direction is obvious. If x # 0 is a solution of (2.1), then x 
satisfies Akx = Xkx E ker B, so x Ef&,ker(BAk) = _#. m 

REMARK 2.1. & is the kernel of the positive semidefinite matrix K = 
C~L;( BAk)*(BAk). Therefore (2.1) h as a nontrivial solution iff K is singular. 
(The singularity of K can be easily checked.) 

REMARK 2.2. JZ is also the kernel of the mg X n matrix 

‘B \ 

BA 
L=: . 

\ BAQ-’ / 

Now Theorem 2.1 can be restated: the problem (2.1) is solvable iff 
rank(L) < 12. 

The last remark has the following consequences in system theory (for 
definitions and relevant results see [2]): 

THEOREM 2.2. The system i( t ) = Ax( t ) + Bu( t ) is completely controlla- 
ble if there i.s no eigenvector of A* Zyirq in the kernel of B*. 

THEOREM 2.3. Z&e system a(t)- Ax(t), y(t)= Bx(t) is completely ob 
seroable icf no eigenvector of A i-s contained in ker( B). 

RED 2.3. Although, in the general case, the exact number of linearly 
independent eigenvectors of A which are in ker(B) cannot be figured out by 
Theorem 2.1, an upper bound can be given: 

(a) The number of linearly independent solutions of (2.1) is G dim(A). 
(b) If A % similar to a diagonal matrix, then dim(M) is the exact number 

of independent eigenvectors of A lying in ker( B). This follows from the fact 
that every invariant subspace of a diagonalizable matrix is spanned by 
eigenvectors of this matrix. 

3. COMMON EIGENVECTORS 

The results of the previous section can be used to check the solvability of 

Ax=hx 

Bx=p, x # 0, 
(34 
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where A and B are complex, n-square matrices and h, p are unknown 
eigenvalues of A and B respectively. 

For each fixed eigenvalue p of B, one can use Theorem 2.1 to check if the 
problem 

Ax = Ax, 

(B-pZ)x=O, x#O 

is solvable. 
This method requires the knowledge of all the eigenvalues of B (or A), 

which might be very difficult to achieve. 
The following theorem gives a criterion for the solvability of (3.1), i.e. for 

the existence of common eigenvectors of A and B. This criterion does not 
require knowledge of the eigenvalues of A or B. 

THEOREM 3.1. The matrices A and B have a common eigenvector iff 

n-1 

n ker[Ak, B’] -f (0) 
k.l=l 

(where n, in the intersection, can be replaced by p and q, the degrees of the 
minimal polynomials of A and B). 

Proof. First suppose that x # 0 is a common eigenvector of A and B. 
Then Ax = Xx and Bx = px imply that AkB’x = B’Akx = Xk&. Thus [Ak, B’]x 
= AkB’x - B/A% = 0 i e > * * 

O#XE fi ker[Ak, B’]= h ker[Ak,B’] 
k,l=l k,l=l 

(as in the observation following Theorem 2.1). 
In order to prove the second direction let us denote by JV the subspace 

fl;,,=,ker[Ak, B’] =flcIClker[Ak, B’]. 
We suppose first that N(which is supposed to be # (0)) is an invariant 

subspace of both A and B. Now note that A and B commute on N 
([A, B]x = 0 for every x E N). Thus the restrictions of the operators repre- 
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sented by A and B to the subspace Xare commutative and hence they have a 
common eigenvector, which is, of course, a common eigenvector of A and B. 
In order to finish the proof the invariance of Xshould be proved. 

Choose a nonzero vector x in JV, and define JV,, = ( p( A, B)xJp E 9 }, 
where 9 is the set of all complex polynomials in two noncommutative 
variables. NX is, obviously, an invariant subspace of A and B. Now, since 
x E JV, AkB’x = BzAkx, and therefore every monomial in A and B operating 
on x has the form A’B”x [e.g. A2BAB3x = A2B(AB3x) = A2B(B3Ax) = 
A2( B4Ax) = A2( AB4x) = A3 B4x]. This means that any element of XX is of the 
form y = (& jai3AiBj)x, and using the above argument we get ABy = BAy 
= (CaijAi+lBj+ )x. Thus A and B commute onJ$, and the proof is finished 
if NX replaces X in the previous argument. Moreover, XX c JV, so JV = 
U xE_NJK=JL_h” .A$ Thus A”, as a sum of invariant subspaces, is invariant 
for both A and B. n 

Note that Sr, is a minimal A, B invariant subspace which contains x and 
on which A and B commute. On the other hand JV is the maximal A, B 
invariant subspace on which A and B commute. 

REMARK 3.1. As in the previous section, we can construct the matrices 

n-l 
K= c [A~, B~]*[A~, B’] and L= 

k,l=l 

/ [A, Bl 
[A, B2] 

[A, l&-r] 

[A23 R] 

\ 

each of which has Xas its kernel. Now we can restate Theorem 3.1: A and B 
possess a common eigenvector if and only if the matrix K (or the matrix L) 
has rank less than n. 

REMARK 3.2. Again, as in Section 2, one can observe that the number of 
independent common eigenvectors of A and B is less than or equal to 
dim(X). If A and B are both diagonalizable, then dim(X) is the exact 
number of linearly independent common eigenvectors of A and B. 
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4. APPLICATIONS 

Let p(t)= a, + a,t + * * 3 + an_ltn-l + t” be a manic complex poly- 
and let C, the companion matrix of p, i.e. 

0 1 
0 1 i 

Let and 9 manic polynomials of same degree. Then and 9 have a 
common iff and C, have 

the fact the only eigenvectors of are multiples of 
)...) A”_‘)‘, where is a root of p. Thus Theorem applied to 

gives for the existence of of the polynomials 
p and 9. 

Now let P(t)=A,+tA,+t’A,+ e-s +t”-‘A,_,+t”Z be a matrix 
polynomial, where A,, A,, . . . , A, _ i, I are compIex square matrices of the 
same order, say m. 

We say that X is an eigenvalue of P if there exists a nonzero vector x 
satisfying P(X)r = 0; r is then a corresponding eigenvector. Construct now 
the block companion matrix of P: 

C,= 

Suppose y is an eigenvector of Cr. Then y =(xb, xi,..., xi_,)‘, where 
xi, i=O,l,..., n - 1, are n-tuples and 

CpY = XY, 

i.e. 

’ 0 Z 

0 1 

0’ 1 
\-A” -A, ..a -A,_, -A,_, 

/ 
1 

I’ 

x0 
x1 

x n-l 

\ 

= h 

I 

X0 
XI 1; X,-l 
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This implies that x1 = Xx,, x2 = Xx,,. . . , xn_l = Xx,_2. So y = 
<x;, Ax;, x2x:, ,..., A”-‘x6)‘, and comparing the nth components of CPy = Ay, 

we get 

( - A, - AA, - * -. - X"-lA,_l)~o = A(An”-lx,), i.e., P(X)x, = 0. 

The conclusion of the above discussion is that the eigenvector of the 

companion matrix C, must be of the form (x’, hx”, A%‘,.. ., X”-‘X~)~ where 

P(X)x = Oand x#O. 
Consider now two manic matrix polynomials P and Q of the same degree. 

Then, if C, and Co have a common eigenvector, it has to be 

(x’, hxt,..., X”-‘xt)’ where P(h)x = Q(X)x = 0. Therefore we have proved 

THEOREM 4.1. The two matrices C, and Co have a common eigenuector 
iff P and Q have cummon eigenuector corresponding to the same eigen- 
value A. 

REMARK 4.1. Here and in the previous discussion, the limitation that the 
two polynomials should be of the same degree can be handled by multiplying 
one of these polynomials by a proper power of t (or t - OL, when (Y is not a 
root of the two polynomials). 

A simple application of Theorem 4.1 is the following 

REMARK 4.2. The two n-square complex matrices, A, I? have a common 
eigenvector corresponding to the same eigenvalue (i.e. Ax = Xx and Bx = Xx) 
iff the matrices 

have a common eigenvector (I is the n X n identity matrix). 

Denote the above two matrices by A, B respectively. It follows from the 
last remark and Theorem 3.1 that A and B have a common eigenvector 
corresponding to the same eigenvalue iff flz:ll’rker[Ak, B”] # (0) (n is the 
order of the square matrices A and B). 

Checking the commutators [ Ak, b’] and their kernels yields the conclusion 
that there exists a nonzero vector x which satisfies 

Ax=Ax, 

Bx = Xx 
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iff JV nker(A - B)# (0) ( w h ere Mis the subspace Q&ker[Ak, B’] men- 
tioned in Theorem 3.1). 

We conclude with a generalization of this result. 

THEOREM 4.2. Let p be a complex polynomial in two variables. The 

problem 

Ax = Ax, 

Bx = px, x f 0, (4.1) 

is solvable iffX n ker p( A, B) z (0). 

Proof. Since A and B commute on Jlr, they commute with p(A, B) on 
the subspace .IV, and hence ker p( A, B)n Jlris again an A- and B-invariant 
subspace. On this subspace A and B commute and thus possess a common 
eigenvector x. This vector x satisfies Ax= Ax, Bx =~Lx, and p(A, B)x = 
p(X,p)x=O [x~kerp(A,B)]. x is a nonzero vector; hence p( A, p) must 

vanish. 
Conversely, if x is a solution of (4.1), then x belongs to .IV and again 

p(A, B)x=p(A,p)x; but p(A,p)=O implies that x is in kerp(A, B) and 
0 # x E JV nkerP(A, B). n 
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