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Abstract

Let G be a simple undirected graph. For v ∈ V (G), the 2-degree of v is the sum of the
degrees of the vertices adjacent to v. Denote by ρ(G) and µ(G) the spectral radius of the
adjacency matrix and the Laplacian matrix of G, respectively. In this paper, we present two
lower bounds of ρ(G) and µ(G) in terms of the degrees and the 2-degrees of vertices.
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1. Introduction

Let G = (V , E) be a simple undirected graph with n vertices and m edges. For
vi ∈ V , the degree of vi , written by di , is the number of edges incident with vi .
Let δ(G) = δ and �(G) = � be the minimum degree and the maximum degree of
vertices of G, respectively. A graph G is called regular if every vertex of G has equal
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degree. A bipartite graph is called semiregular if each vertex in the same part of a
bipartition has the same degree.

The 2-degree of vi [2] is the sum of the degrees of the vertices adjacent to vi

and denoted by ti . We call ti
di

the average-degree of vi . A graph G is called pseudo-
regular if every vertex of G has equal average-degree. A bipartite graph is called
pseudo-semiregular if each vertex in the same part of a bipartition has the same
average-degree. Obviously, any regular graph is a pseudo-regular graph and any
semiregular bipartite graph is a pseudo-semiregular bipartite graph. Conversely, a
pseudo-regular graph may be not a regular graph, such as S(K1,3), and a pseudo-
semiregular bipartite graph may be not a semiregular bipartite graph, such as S

(K1,n−1) (n � 5), where S(K1,t ) is the graph obtained by subdividing each edge
of K1,t one time.

Let A(G) be the adjacency matrix of G and D(G) = diag(d(v1), d(v2), . . . ,

d(vn)) be the diagonal matrix of vertex degrees. Then the Laplacian matrix of G

is L(G) = D(G) − A(G). Clearly, A(G) and L(G) are real symmetric matrices.
Hence their eigenvalues are real numbers. We denote by ρ(M) the largest eigen-
value of a symmetric matrix M . For a graph G, we denote by ρ(G) the largest
eigenvalue of A(G) and call it the spectral radius of G; we denote by µ(G) the
largest eigenvalue of L(G) and call it the Laplacian spectral radius of G. When G

is connected, A(G) is irreducible and so by Perron–Frobenius Theorem, ρ(G) is
simple.

Up to now, many bounds for ρ(G) and µ(G) were given (see, for instance,
[1–12]), but most of them are upper bounds. In the paper, we give two new lower
bounds on ρ(G) and µ(G) of G in terms of the degrees and the 2-degrees of vertices
of G, from which we can get some known results.

2. Lemmas and results

Lemma 1 [5]. Let A be a nonnegative symmetric matrix and x be a unit vector of
Rn. If ρ(A) = xTAx, then Ax = ρ(A)x.

Lemma 2 [13]. Let d1, d2, . . . , dn be the degree sequence of a simple graph. Then
n∑

i=1

d2
i �

(
n∑

i=1

√
di

)2

,

with equality if and only if the graph is empty.

Lemma 3 [1]. Let G be a simple connected graph. Then

µ(G) � max{d(u) + d(v) : uv ∈ E(G)},
with equality if and only if G is a regular or semiregular bipartite graph.

The following theorem is one of our main results.
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Theorem 4. Let G be a connected graph with degree sequence d1, d2, . . . , dn. Then

ρ(G) �
√

t2
1 + t2

2 + · · · + t2
n

d2
1 + d2

2 + · · · + d2
n

,

with equality if and only if G is a pseudo-regular graph or a pseudo-semiregular
bipartite graph.

Proof. Let X = (x1, x2, . . . , xn)
T be the unit positive eigenvector of A correspond-

ing to ρ(A). Take

C =
√

1∑n
i=1 d2

i

(d1, d2, . . . , dn)
T.

Noting that C is a unit positive vector, we have

ρ(G) = ρ(A) =
√

ρ(A2) =
√

XTA2X �
√

CTA2C.

Since

AC =
√

1∑n
i=1 d2

i


 n∑

j=1

a1j dj , . . . ,

n∑
j=1

anjdj




T

=
√

1∑n
i=1 d2

i

(t1, . . . , tn)
T, (∗)

we have

ρ(G) = ρ(A) �
√

CTA2C =
√ ∑n

i=1 t2
i∑n

i=1 d2
i

.

If the equality holds, then

ρ(A2) = CTA2C.

By Lemma 1, A2C = ρ(A2)C. If the multiplicity of ρ(A2) is one, then X = C,
which implies ti = ρ(G)di (1 � i � n). Hence G is a pseudo-regular graph. Other-
wise, the multiplicity of ρ(A2) = (ρ(A))2 is two, which implies that −ρ(A) is also
an eigenvalue of G. Then G is a connected bipartite graph (see Theorem 3.4 in [3]).
Without loss of generality, we assume

A =
(

0 B

BT 0

)
,

where B = (bi,j ) is an n1 × n2 matrix with n1 + n2 = n. Let

X =
(

X1
X2

)
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and

C =
√

1∑n
i=1 d2

i

(
C1
C2

)
,

where X1 = (x1, x2, . . . , xn1)
T, X2 = (xn1+1, xn1+2, . . . , xn)

T, C1 = (d1, d2, . . . ,

dn1)
T and C2 = (dn1+1, dn1+2, . . . , dn)

T. Since

A2 =
(

BBT 0
0 BTB

)
,

we have

BBTC1 = ρ(A2)C1, BTBC2 = ρ(A2)C2

and

BBTX1 = ρ(A2)X1, BTBX2 = ρ(A2)X2.

Noting that BBT and BTB have the same nonzero eigenvalues, ρ(A2) is the spectral
radius of BBT and its multiplicity is one. So X1 = p1C1 (p1 is a constant), which
implies ti

di
= tj

dj
(1 � i < j � n1). Similarly, X2 = p2C2 (p2 is a constant), which

implies ti
di

= tj
dj

(n1 + 1 � i < j � n). Hence G is a pseudo-semiregular graph.

Conversely, if G is pseudo-regular, then ti
di

= p (1 � i � n) is a constant, which
implies AC = pC. It is known that for any positive eigenvector of a nonnegative
matrix, the corresponding eigenvalue is the spectral radius of that matrix. Hence

ρ(G) = p =
√

t2
1 +t2

2 +···+t2
n

d2
1 +d2

2 +···+d2
n

.

If G is a pseudo-semiregular bipartite graph, we assume

A =
(

0 B

BT 0

)
,

ti
di

= p1 (1 � i � n1) and ti
di

= p2 (n1 + 1 � i � n), where B = (bi,j ) is an n1 ×
n2 matrix with n1 + n2 = n. Let C1 = (d1, d2, . . . , dn1)

T and C2 = (dn1+1,

dn1+2, . . . , dn)
T. So for each i (1 � i � n1), the ith element of BBTC1 is

ri(BBTC1) =
n1∑

j=1

n2∑
k=1

bikbjkdj =
n2∑

k=1

bik

n1∑
j=1

bjkdj

=
n2∑

k=1

bikp2dn1+k = p1p2di.

Similarly, rj (B
TBC2) = p1p2dn1+j , for each j (1 � j � n2). Hence A2C = p1p2C,

where C =
√

1
d2

1 +d2
2 +···+d2

n

(d1, d2, . . . , dn)
T. It is known that for any positive eigen-

vector of a nonnegative matrix, the corresponding eigenvalue is the spectral radius
of that matrix. So



A. Yu et al. / Linear Algebra and its Applications 387 (2004) 41–49 45

ρ(A2) = p1p2 = CTA2C.

From equality (∗), we have

ρ(A2) = p1p2 = t2
1 + t2

2 + · · · + t2
n

d2
1 + d2

2 + · · · + d2
n

.

It follows that

ρ(G) =
√

t2
1 + t2

2 + · · · + t2
n

d2
1 + d2

2 + · · · + d2
n

.

This completes the proof. �

Corollary 5
(1) Let G be a pseudo-regular graph with t (v) = pd(v) for each v ∈ V (G), then

ρ(G) = p.
(2) Let G be a pseudo-semiregular bipartite graph with the bipartition (X, Y ). If

t (v) = pxd(v) for each v ∈ X and t (v) = pyd(v) for each v ∈ Y , then ρ(G) =√
pxpy .

According to Corollary 5, it is very easy to compute the spectral radius of pseudo-
regular graphs and pseudo-semiregular bipartite graphs.

Example. Let S(K1,k) be the graph obtained by subdividing each edge of K1,k one
time and G1 and G2 are the graphs shown in Fig. 1. Obviously, G1 is a pseudo-reg-
ular graph and G2 is a pseudo-semiregular bipartite graph. When k = 3, S(K1,k) is
a pseudo-regular graph; otherwise, S(K1,k) is a pseudo-semiregular bipartite graph.
Hence we have the following results:

(1) ρ(G1) = 4.
(2) ρ(S(K1,k)) = √

k + 1.
(3) ρ(G2) = 2

√
2.

Fig. 1.
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Corollary 6 [4, 5]. Let G be a connected graph with degree sequence d1, d2, . . . , dn.
Then

ρ(G) �

√√√√1

n

n∑
i=1

d2
i ,

with equality if and only if G is either a regular connected graph or a semiregular
connected bipartite graph.

Proof. By Theorem 4 and the Cauchy–Schwarz inequality,

ρ(G) �
√

t2
1 + t2

2 + · · · + t2
n

d2
1 + d2

2 + · · · + d2
n

�
√

(t1 + t2 + · · · + tn)2

n(d2
1 + d2

2 + · · · + d2
n)

.

Since

t1 + t2 + · · · + tn = d2
1 + d2

2 + · · · + d2
n,

we have

ρ(G) �

√√√√1

n

n∑
i=1

d2
i .

If the equality holds, G is a pseudo-regular graph or a pseudo-semiregular bipar-
tite graph (by Theorem 4) with ti = tj for all 1 � i < j � n. Thus G is a regular
connected graph or a semiregular connected graph. Conversely, if G is a
regular connected graph, the equality holds immediately. If G is a semiregular con-
nected bipartite graph, we assume that d(v1) = · · · = d(vn1) = � and d(vn1+1) =
· · · = d(vn) = δ. Since n1� = (n − n1)δ,

√
1
n

∑n
i=1 d2

i = √
�δ. By Corollary 5, we

have ρ(G) = √
�δ. Thus the equality holds. �

Corollary 7. Let G be a simple connected graph. Then

ρ(G) � 2m

n
� δ.

Proof. By Corollary 6 and the Cauchy–Schwarz inequality,

ρ(G) �

√√√√1

n

n∑
i=1

d2
i �

√(∑n
i=1 di

)2

n2
= 2m

n
� δ. �

By Lemma 2 and Theorem 4, we have the following:

Corollary 8. Let G be a connected graph with degree sequence d1, d2, . . . , dn. Then

ρ(G) �

√
t2
1 + t2

2 + · · · + t2
n√

d1 + √
d2 + · · · + √

dn

.
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Now we show another main result of the paper.

Theorem 9. Let G be a connected bipartite graph with degree sequence d1, d2, . . . ,

dn. Then

µ(G) �
√∑n

i=1(d
2
i + ti )2∑n

i=1 d2
i

,

where the equality holds if and only if G is a semiregular connected bipartite graph.

Proof. Note that D + A and D − A have the same nonzero eigenvalues by G being
a bipartite graph and D + A is a nonnegative irreducible positive semidefinite sym-
metric matrix.

Let X = (x1, x2, . . . , xn)
T be the unit positive eigenvector of D + A correspond-

ing to µ(G). Take

C =
√

1∑n
i=1 d2

i

(d1, d2, . . . , dn)
T.

Then

µ(G) =
√

ρ((D + A)2) =
√

XT(D + A)2X �
√

CT(D + A)2C.

Since

(D + A)C =
√

1∑n
i=1 d2

i


d2

1 +
n∑

j=1

a1j dj , . . . , d
2
n +

n∑
j=1

anjdj




T

=
√

1∑n
i=1 d2

i

(
d2

1 + t1, . . . , d
2
n + tn

)T
,

we have

µ(G) �
√

CT(D + A)2C =
√∑n

i=1(d
2
i + ti )2∑n

i=1 d2
i

.

If the equality holds, then

ρ((D + A)2) = CT(D + A)2C,

which implies that (D + A)2C = ρ((D + A)2)C (by Lemma 1). Since D + A is a
nonnegative irreducible positive semidefinite matrix, all eigenvalues of D + A are
nonnegative. By Perron–Frobenius Theorem, the multiplicity of ρ(D + A) is one.
Since ρ((D + A)2) = (ρ(D + A))2, we have the multiplicity of ρ((D + A)2) is
one. Hence, if the equality holds then X = C. By ρ(D + A)C = (D + A)C, we
have ρ(D + A)di = d2

i + ti for i = 1, 2, . . . , n. Thus di + ti/di = dj + tj /dj for
all i /= j . Assume, without loss of generality, that d1 = �, d2 = δ and � /= δ. Then
we have
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� + t1/� = δ + t2/δ.

Since t1 � �δ and t2 � δ�,

� + δ � � + t1/� = δ + t2/δ � � + δ.

Thus we must have t1 = �δ = t2. This implies d(v) = � or d(v) = δ for all v ∈
V (G) by G being connected and uv /∈ E(G) if d(u) = d(v). Let Y1 = {v : d(v) =
�} and Y2 = {v : d(v) = δ}. Then G = (Y1, Y2; E) is a semiregular connected bipar-
tite graph.

Conversely, assume that G is a semiregular connected bipartite graph with
d(v1) = · · · = d(vn1) = � and d(vn1+1) = · · · = d(vn) = δ. Note that n1� =
(n − n1)δ. Then√∑n

i=1(d
2
i + ti )2∑n

i=1 d2
i

=
√

n1(�2 + �δ)2 + (n − n1)(δ2 + δ�)2

n1�2 + (n − n1)δ2
= δ + �.

By Lemma 3, µ(G) = � + δ and so the equality holds. �

Corollary 10 [5]. Let G be a simple connected bipartite graph with degree sequence
d1, d2, . . . , dn. Then

µ(G) � 2

√√√√1

n

n∑
i=1

d2
i ,

where the equality holds if and only if G is a regular connected bipartite graph.

Proof. By Theorem 9 and the Cauchy–Schwarz inequality, we have

µ(G) �
√∑n

i=1(d
2
i + ti )2∑n

i=1 d2
i

�
√

(d2
1 + t1 + d2

2 + t2 + · · · + d2
n + tn)2

n(d2
1 + d2

2 + · · · + d2
n)

=
√

(2d2
1 + 2d2

2 + · · · + 2d2
n)2

n(d2
1 + d2

2 + · · · + d2
n)

= 2

√√√√1

n

n∑
i=1

d2
i .

If the equality holds, G is a semiregular connected bipartite graph (by Theorem
9) with d2

i + ti = d2
j + tj for 1 � i < j � n. Without loss of generality, assume that

d1 = � and d2 = δ. Then we have �2 + δ� = δ2 + δ�, which implies � = δ. Hence
G is a regular connected bipartite graph. Conversely, if G is a regular connected
bipartite graph, by Lemma 3, the equality holds immediately. �
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Corollary 11. Let G be a simple connected bipartite graph. Then

µ(G) � 4m

n
� 2δ.
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