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a b s t r a c t

Turbulence models which can perform the transition from laminar flow to fully developed
turbulent flow are of key importance in industrial applications. A promising approach is the
LES WALE model, which can be used without wall functions or global damping functions.
Themodel produces an efficient and fast schemedue to its algebraic character. Additionally,
its prediction of the transition from laminar to turbulent regimes has shown promising
results. In this work, the LES WALE model is investigated within the lattice Boltzmann
framework. For validation purposes, various test cases are presented. First, a channel flow
at a Reynolds number of 6876 is investigated. Secondly, the flow around a wall-mounted
cube at various Reynolds numbers is determined. The flow regime varies from laminar, to
transitional, to fully turbulent conditions at a Reynolds number of 40,000 with respect to
the cube height.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Large Eddy simulations (LES) provide a very promising approach for the simulation of turbulent flows because
computation times are significantly lower than those of Direct Numerical simulations (DNS). Further, their resolution of
turbulent structures is more accurate in comparison to Reynolds Averaged Navier–Stokes (RANS) simulations. For many
years now, a variety of sub-grid-scale (SGS) models for LES simulations have been detailed in the literature. Unfortunately,
thesemodels have led to differing results, depending on the implementation and application [1]. In the context of this work,
implementation and investigation of the LESWALE [2], the Smagorinsky [3], and the Smagorinsky–Van Driest [4] SGSmodel
are carried out based on an in-house lattice Boltzmann solver. Three different test cases are investigated. The first test case
consists of a channel flow with a channel Reynolds number of 6876. The test cases are validated by comparing the results
with a DNS simulation fromMoser [5]. The second test case considers the flow around awall-mounted cube in a channel. The
Reynolds number given by the cube height varies between 200 and 2000. The results are validated with a Scale Adaptive
Simulation (SAS) [6] performed with ANSYS CFX 11 [7]. The SAS simulation is based on a finite volume algorithm, which
solves the Navier–Stokes equations on unstructured grids. The third test case considers the flow in a fully turbulent flow
regime at a Reynolds number of 40,000with respect to the cube height. Results for this flow are comparedwith experimental
data from Martinuzzi [8].

2. MRT lattice Boltzmann method

A D3Q19 Multiple Relaxation Time (MRT) lattice Boltzmann solver is developed in this work. The MRT model is
implemented according to the algorithm of d’Humières [9] to stabilize the numerical method. The lattice Boltzmann (LB)
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Nomenclature

f Distribution function
g Square of velocity gradient tensor
CX LES model constant
CS LES Smagorinsky constant
CSD LES Smagorinsky–Van Driest constant
CD LES Lilly constant
CW LES WALE constant
∆t Time step [s]
∆x Grid width [m]
e Discrete lattice velocity
b Channel width [m]
L Channel length [m]
h Channel height [m]
H Cube height [m]
m Moment
M Transformation matrix
$ LES Model operator
Re Reynolds number
S Shear stress tensor
s Activity parameter
u Velocity [m/s]
x Location coordinate [m]
y Wall gap [m]
y+ Dimensionless wall gap
uτ Dimensionless wall friction
j(0) Equilibrium flow momentum
Z Diagonal collision matrix

Greek letters

ν0 Molecular viscosity [m
2

s ]

νt Eddy viscosity [m
2

s ]
ρ Density [ kg

m3
]

ρ(0) Equilibrium density
κ Karman constant
Ω Rotation tensor
τ0 Molecular relaxation parameter
τt Turbulent relaxation parameter
τtotal Total relaxation parameter

Indices

i, j, k Loop variable
b Bulk
R Reichardt
n,N Number

equation (1) is given in discrete formulation in momentum space as:

f(t +∆t, x+ ei∆t)− f(t, x) = −M−1 · Z ·
[
m(t, x)−m(0)(t, x)

]
, (1)

where the bold-faced symbols denote (N + 1)-tuple vectors for a model of (N + 1) discrete velocities, e.g.,
f(t, x) ≡ (f0(t, x), f1(t, x), . . . , fN(t, x))T, (2)

where T denotes the transpose operator.
In Eq. (1), ∆t is the lattice time step, t indicates the time, x denotes the space coordinates, and ei is the discrete lattice

velocity in direction i. The diagonal collision matrix Z is
Z ≡ diag(s0, s1, . . . , s18), (3)

with relaxation rates si.
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The equilibrium distribution functions in velocity space {f (0)i |i = 0, 1, . . . , 18} are defined as follows:

f (0)i = ωiρ
[
1+

3
c2

ei · u+
9
2c4

(ei · u)2 −
3
2c2

u2
]
, (4)

where ωi is a weighting factor chosen as ω0 = 1/3, ωi = 1/18 for i = 1, 2, . . ., 6, and ωi = 1/36 for i = 7, 8, . . . , 18, ρ is
the fluid density, c = ∆x/∆t , and u is the lattice fluid velocity.
Transformation of the equilibrium values of the distribution functions f(0) to moment spacem(0) are performed by the

matrixM via:

m(0)
= M · f(0) (5)

with

m(0)
= (m(0)0 ,m

(0)
1 , . . . ,m

(0)
18 )

T (6)

and

f(0) = (f (0)0 (t, x), f (0)1 (t, x), . . . , f (0)18 (t, x))
T. (7)

The equilibria of the moments are:

m(0)0 = ρ, m(0)1 = −11ρ +
19
ρ0

j · j, m(0)2 = −
475
63

j · j (8)

m(0)3 = jx, m(0)5 = jy, m(0)7 = jz (9)

m(0)4 = −
2
3
jx, m(0)6 = −

2
3
jy, m(0)8 = −

2
3
jz (10)

m(0)9 =
1
ρ0

[
2j2x −

(
j2y + j

2
z

)]
, m(0)11 =

1
ρ0

[
j2y − j

2
z

]
(11)

m(0)13 =
1
ρ0
jxjy, m(0)14 =

1
ρ0
jyjz, m(0)15 =

1
ρ0
jxjz (12)

m(0)10 = m
(0)
12 = m

(0)
16 = m

(0)
17 = m

(0)
18 = 0, (13)

where ρ0 is the mean density, ρ ≡
∑18
i=0 fi denotes the density, and j ≡ ρu is the flow momentum.

An octree-based data structure is implemented according to the algorithm of Crouse [10]. This data structure allows local
grid refinements on hierarchical grids.

3. LES models

In LES simulations, an additional viscosity, called the turbulent eddy viscosity νt , is introduced in order to model the
turbulence. This eddy viscosity is given by:

νt = C2X ∆x
2 $, (14)

where CX denotes the LES model dependent constant, ∆x the lattice spacing, and$ the LES model operator. In the lattice
Boltzmann model, the viscosity is related to the relaxation time τ by:

νtotal = ν0 + νt =
2τ0 − 1
6
+
τt

3
(15)

where ν0 is the molecular viscosity. In analogy to splitting up the viscosity term, the relaxation time τ is divided into a
molecular and a turbulent part. The total relaxation time is defined as:

τtotal = 3νtotal +
1
2
. (16)

By applying Eq. (14), we arrive at:

τtotal = 3(ν0 + (C2X∆x
2) $ )+

1
2
. (17)

The total relaxation parameter τtotal is derived from the operator$ , which depends on the LES model and is a function of
the shear stress tensor S and the rotation tensorΩ .
The shear stress tensor S for Newtonian fluids is defined as

Si,j = ν0ρ
(
∂ui
∂xj
+
∂uj
∂xi

)
(18)
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and the rotation tensorΩ for Newtonian fluids is given by

Ωi,j = ν0ρ

(
∂ui
∂xj
−
∂uj
∂xi

)
. (19)

In this work, a central difference scheme is applied to compute the shear stress tensor S and the rotation tensorΩ . Using the
lattice Boltzmann units for the operator$ and the scaling∆x = ∆t = 1, the turbulent relaxation parameter τt is obtained:

τt =

√
τ 20 +

18 C2X $
1
2

ρ
− τ0

2
. (20)

Hou [11] was the first to derive the LES approach for the lattice Boltzmann scheme. In this formulation, only the shear stress
tensor S was taken into account, which corresponds to the Smagorinsky model.

3.1. Smagorinsky model

Thewell-known fine structuremodel was found by Smagorinsky [3] in 1963. He derived the operator$ exclusively from
the shear stress tensor as follows:

$ =
∑
i,j

Si,jSi,j. (21)

The LES model constant CX ≡ CS depends on the application and normally varies between 0.05 and 0.16. Today, this
model is commonly used in the literature. Hou was the first to implement the Smagorinsky model in the lattice Boltzmann
framework [11]. Krafczyk applied it to the 3D MRT lattice Boltzmann scheme [12]. However, problems appear because the
eddy viscosity remains positive even in laminar flows, while it is clear from the definition that νt is zero. Moreover, it is
shown in [2] that in Smagorinsky’s formulation, the wall boundary law is not fulfilled.

3.2. Smagorinsky–Van Driest model

In the Smagorinsky–Van Driest model [4], the LES model constant in Eq. (14) is adjusted to:

CX ≡ CSD =

[
CD∆x(1−

−y+
Aexp)

]2
(22)

with the Van Driest constant A = 25, and the Lilly constant CD = 0.17.
It has been proven that the extended Smagorinskymodel gives a more precise description of the wall boundary layer [2].

One disadvantage of this approach is the global dependence of the damping function on the dimensionless wall distance.

3.3. WALE model

The WALE model [2] is based on the square of the velocity gradient tensor, which takes into account the shear stress
tensor as well as the rotation tensor. The operator$ is defined as follows:

$ =
(gdi,jg

d
i,j)

3
2

(Si,jSi,j)
5
2 + (gdi,jg

d
i,j)

5
4

(23)

with

gdi,j = Si,kSk,j +Ωi,kSk,j −
1
3
δi,j(S2 −Ω2). (24)

Here, the LES model constant CX of Eq. (14) is set to CX ≡ CW = 0.5, as proposed by Nicoud [2]. This method keeps the
condition of the y3 near-wall scaling for the eddy viscosity without dynamical algorithms or damping functions. In addition,
Nicoud shows that the model can handle transition regimes.

3.4. Dynamic Smagorinsky model

In the dynamic model, the LES constant varies not only in space, but also in time. Therefore, two different filters are
recommended [13]. The permanent changing of the LES model can lead to an unstable numerical system, as shown in [14].
For this reason, the dynamic model is not further investigated in this work.

4. Test cases

In this work, the progression from an academic investigation of a simple channel flow to an industrially relevant
application is presented. A non-equidistant grid resolution for LES simulations is used for the channel flow at a Reynolds
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Fig. 1. Top view: computational domain in the xz-plane with dimensions, length L = 200 and width b = 32.

Fig. 2. Side view: calculation domain in the xy-plane with dimension, height h = 48. The shaded box is enlarged in Fig. 3 but in a different scaling.

Table 1
Domain dimensions.

Grid h0 h1 h2 h3 h4 h5

Fine 0 21 1.75 0.875 0.25 0.125
Medium 10 12.25 1 0.5 0.25 0
Coarse 20 2.25 1 0.5 0.25 0

number of 6876, and the wall-mounted cube test case is considered for Reynolds numbers up to 40,000 with respect to the
cube height.

4.1. Channel flow at Reynolds number 6876

Turbulent channel flows are standard test cases for wall-bounded flows. In the context of this work, a turbulent channel
flow at a Reynolds number of 395 with respect to the friction velocity and half of the channel width is investigated and
compared with DNS simulations published by Moser [5]. The test case allows for the investigation of the turbulent viscosity
in a simple geometry. Here, the near-wall distance y3 law is studied in detail.

4.1.1. Computational mesh
Investigations of the near-wall boundary layer require a high resolution. In order to save computational time and

memory, the grid is successively coarsened with increasing distance from the wall. The dimensions of the channel are
presented in Figs. 1 and 2. In order to determine the influence of the boundary layer resolution, three setups with different
resolutions are examined. For the finest grid resolution, the wall is refined by five levels, so the wall cell spacing is 116 of the
size of cells in the center of the channel (Fig. 3). The dimensionless wall distances are y+ = 0.51 for the finest grid resolution
and y+ = 1.02 for the medium and coarse grid resolutions. The distance y+ is defined as: y+ =

u∗y1
ν0
, where u∗ is the friction

velocity at the nearest wall node, and y1 is the distance to the nearest wall node.
The different grid resolutions are shown in Table 1. The values correspond to the dimensions of the coarsest grid cells.

For each grid resolution, statistics from the coarsest grid cells over 40,000 time steps are used to derive the value of the
averaged velocity component u.

4.1.2. Initial conditions
The main velocity component u runs parallel to the wall and is initialized according to Reichardt’s law [15]:

UR(y) = uτU+R (y+) (25)
with

U+R (y+) =
1
κ
ln(1+ 0.4y+)+ 7.8

[
1− e

−y+
11 −

y+
11
e
−y+
11

]
(26)

where κ = 0.41 is the Karman constant and uτ is the friction velocity.
The values calculated for the initial velocity U+R are compared with those from the DNS data of Moser [5], as shown

in Fig. 4. Inlet and outlet boundary conditions are periodic. The top boundary in Fig. 2 is a wall, and the other boundaries
are symmetric. This means that the velocity gradient at the boundary is zero. In this test case, the LES Smagorinsky model
constant is set to CS = 0.05.
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Fig. 3. Local grid refinement next to the wall.

Fig. 4. Initial velocity profile u in the LB simulation compared with the DNS data from Moser [5].

A random velocity distribution with a maximum amplitude of one percent is added to the initial velocity in the whole
domain. The pressure field is initialized using the LES WALE results obtained on the finest grid after 40,000 time steps,
where the pressure field is not initialized. In this way, fewer time steps are needed before starting the averaging process.
Only 10,000 time steps are required with this method to observe a fully developed turbulent flow, after which the time
averaging procedure is carried out over 40,000 time steps.

4.1.3. Numerical results
LESWALE, Smagorinsky and Smagorinsky–VanDriestmodels are comparedwith theDNS simulation fromMoser et al. [5].

Fig. 5 illustrates the behavior of the averaged dimensionless velocity u+ versus the dimensionless wall distance y+ for the
finest grid resolution. Since the WALE model gives the correct near-wall scaling of y3

+
, the obtained data set corresponds to

Moser’s DNS data. Smagorinsky’s model, as well as the Smagorinsky–Van Driest model, differs significantly from the DNS
simulation. One reason for this is the near-wall scaling is not correctly reproduced. Specifically, the Smagorinsky model has
a near-wall scaling of y+, and the Smagorinsky–Van Driest model has a near-wall scaling of y2+.
In Fig. 6, the deviatoric diagonal Reynolds stress u′u′ ∗ = u′u′− 1

3 (u
′u′+ v′v′+w′w′) is plotted against the wall distance

for the various LES models considered. The curves deviate only slightly from the DNS results.
To compare the grid resolutions, Figs. 7 and 8 present the results from the LES models for the medium and the coarse

grid setups, respectively.
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Fig. 5. Averaged main velocity component u on the finest grid resolution for a period of 40,000 averaged time steps. The three different SGS models: LES
WALE, LES Smagorinsky and LES Van Driest are compared.

Fig. 6. Streamwise velocity fluctuation on the finest grid for a period of 40,000 time steps. The three different SGS models: LES WALE, LES Smagorinsky
and LES Van Driest are compared. No significant deviations within the LES models are found. There is a slight discrepancy between the LB method and the
DNS data near the boundary layer.

Fig. 7. Averaged main velocity component u on the medium grid for a period of 40,000 averaged time steps. The three different SGS models: LES WALE,
LES Smagorinsky and LES Van Driest are compared.

With a finer grid resolution, the LES simulations converge to the DNS simulation for y+ < 100. However, it is found that
the LES Smagorinsky and the LES Van Driest models tend to converge to a shifted value of the velocity U+R for y+ > 100
(Fig. 5).
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Fig. 8. Averaged main velocity component u on the coarse grid for a period of 40,000 averaged time steps. The three different SGS models: LES WALE, LES
Smagorinsky and LES Van Driest are compared.

Fig. 9. Mach number influence on the fine grid. The Mach number 0.1 is compared with the Mach number 0.02 for a period of 40,000 averaged time steps.

Fig. 10. Vertical profile of the activity parameter for different grid levels. The stepwise grid coarsening by a factor of 2 leads to a jump in the activity
parameter.

For further investigation, simulations at two Mach numbers (Ma) are run. No significant deviation is observed between
the values of U+R for the respective cases at Mach numbers 0.1 and 0.02 in Fig. 9. The Mach number is defined as: Ma =

u
c ,

where c denotes the speed of sound. To demonstrate the dependence of the sub-grid model on the grid, the activity
parameter [16] for all three resolutions is plotted in Fig. 10. The activity parameter is defined as the ratio of the turbulent
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Fig. 11. Computational domain in the xz-plane with length L = 256 and width b = 96. White: fine grid size, dark grey: medium grid size; light grey:
coarsest grid.

Fig. 12. Computational domain in the xy-plane with length L = 256 and height h = 64. White: fine grid size, dark grey: medium grid size; light grey:
coarsest grid.

Table 2
Domain dimensions.

a1 b c1 c2 c3 d1 d2 d3

40 96 40 64 80 6 52 6

E F h H L x1 x2
42 36 64 32 256 64 160

dissipation to the total dissipation:

s =
εt

εt + εµ
(27)

with

εt = µt2Sij
∆ui
∆xj

εµ =
1
Reτ
Sij
∆ui
∆xj

.

(28)

This ratio can be used to estimate the contribution of SGS modelling in LES compared with DNS. The grid coarsening leads
to a jump in the activity parameter.

4.2. Wall-mounted cube test case for Reynolds numbers from 200 to 2,000

In various applications, obstacles within a channel flow can be of interest. Unfortunately, there are no universal
predictions of the development of turbulent flows. The presented test case investigates the transition from laminar to
turbulent flow conditions. For comparison, simulations are performed on an unstructured grid using the CFD code ANSYS
CFX 11 [7]. Here, the Scale Adaptive Turbulencemodel (SAS) [6] is used. The advantage of the SAS simulation is that according
to local space and time resolution, the solution corresponds to solutions from RANS, LES, or even DNS simulations.

4.2.1. Computational domain
For the lattice Boltzmann simulations up to Reynolds number 800, one local grid refinement is used around the wall-

mounted cube. In this test case, the whole area consists of 4.2 million nodes. For higher Reynolds numbers, the cube is
resolved with one additional finer grid level. In that case, the whole area will consist of 9.8 million nodes. A maximum
y+ value of 1.8 in the whole fluid domain is achieved. Figs. 11 and 12 illustrate the xz-plane and the xy-plane. The grey
area shows the coarsest discretization with ∆x = 1 × 10−6 m. Areas in shaded grey and white indicate one and two grid
refinement levels, respectively. The dimensions of the flow domain are summarized in Table 2 in units of coarse grid cells.
Time averaging is started after 15,000 time steps. The velocity components are then averaged over 40,000 time steps. In

the CFX simulation, the walls are resolved with an unstructured grid for all Reynolds numbers. The maximum y+ value in
the whole domain is 1.0, and for all Reynolds numbers, the boundary layer is resolved with at least 10 fluid nodes. In this
test case, the LES Smagorinsky model constant CS is set to 0.16.
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Fig. 13. Maximum deviations between the LES models for Reynolds numbers between 200 and 2000.

Fig. 14. Increase in the turbulent kinetic energy for Reynolds numbers between 200 to 2000.

4.2.2. Initial conditions
The initial velocity field is set via Reichardt’s law (Section 4.1.2). The maximum lattice Boltzmann velocity at the inlet is

0.1. The outlet boundary condition is chosen in such a way that the velocity gradient in the direction normal to the outlet
surface is zero. The bottom and side boundaries are treated as solid walls with the no-slip condition.

4.2.3. Numerical results
One possible way to measure the influence of the chosen LES model on the result is by analyzing the deviations that are

obtained in the velocity component u between the different LESmodels. The deviations in the velocity component u increase
exponentially with increasing Reynolds numbers, as shown in Fig. 13.
The exponential increase in turbulent kinetic energy with increasing Reynolds numbers (Fig. 14) gives a reasonable

explanation for this phenomenon.
For position 1, directly in front of the cube (x = 63.75 µm, z = 0 µm), and position 2, one cube length behind the cube

(x = 128.0 µm, z = 0 µm), Figs. 15–18 show the averaged velocity components for a Reynolds number of 2000 for the
three LESmodels comparedwith the CFX SAS Simulation. Differences between the LES lattice Boltzmann simulation and the
highly resolved CFX SAS Simulation at position 1, directly in front of the cube, are not significant.
At position 2 (behind the cube), no significant deviations are found between the lattice BoltzmannWALE simulation and

the highly resolved CFX SAS simulation. The Smagorinsky model, however, shows significant differences in the averaged
orthogonal velocity component v.

4.2.4. Computational effort
The computational time required for the LB WALE simulation at a Reynolds number of 2000 is approximately 206

CPU seconds for a full propagation step over the fluid cell using the maximum Courant Number of 0.14. For the CFX SAS
simulation, the computational time amounts to 2,600 CPU seconds for a full propagation step over the same fluid cell. Both
computational times are obtained using a single processor (AMD Athlon 3 GHz).
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Fig. 15. Vertical profiles at position 1: Averaged main velocity component u for a period of 40,000 averaged time steps at Reynolds number 2000.
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Fig. 16. Vertical profiles at position 1: Averaged velocity component v (orthogonal to the main velocity direction) for a period of 40,000 averaged time
steps at Reynolds number 2000.

Fig. 17. Vertical profile at position 2. Averaged main velocity component u for a period of 40,000 averaged time steps at Reynolds number 2000.

4.3. Wall-mounted cube test case at a Reynolds number of 40,000

For this Reynolds number, a fully turbulent flow field is expected. The computational domain is enlarged and adapted to
the experimental setup. In this test case, the LES Smagorinsky model constant CS is set to 0.16.
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Fig. 18. Vertical profile at position 2. Averaged velocity component v (orthogonal to the main velocity direction) for a period of 40,000 averaged time
steps at Reynolds number 2000.

Fig. 19. Calculation domain in the xz-planewith length L = 320 andwidth b = 224.White: fine grid size, dark grey: medium grid size; light grey: coarsest
grid.

Fig. 20. Computational domain in the xy-plane with length L = 256 and height b = 64. White: fine grid size, dark grey: medium grid size; light grey:
coarsest grid.

Table 3
Domain dimensions.

a1 a2 b c1 c2 c3 d e

36 42 224 20 48 40 6 2

E F h H L x1 x2
44 38 64 32 320 96 192

4.3.1. Computational domain
The mesh has two refinement levels around the wall boundaries. The coarsest grid has a discretization size of ∆x =

0.78125 mm. The domain is resolved with 16.4 million nodes. The dimensions of the channel are illustrated in Figs. 19 and
20. The grey shadings indicate the same scales used in Section 4.2.
Again, the values in Table 3 correspond to the number of coarse grid cells. After 20,000 time steps, the velocity

components are averaged over 60,000 time steps. Depending on the grid resolution, turbulent eddies next to the cube may
be completely resolved. In that case, results would correspond to a DNS simulation. Eddies smaller than the grid resolution
are covered with the LES fine structure model.
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Fig. 21. Fluctuations in the streamwise velocity component in the xz-plane at y = h
3 . The boundary between fine and medium grid sizes is indicated with

a white line.

Fig. 22. Turbulent viscosity in the xz-plane at y = h
3 . The white line indicates the boundary between the different grid resolutions.

4.3.2. Initial conditions
The velocity field is initialized by Reichardt’s law (see Section 4.1.2). For the top, bottom, and side boundaries, solid walls

with the no-slip condition are used. The outlet boundary condition is chosen in the same way as in Section 4.2.2, where the
velocity gradient in the direction normal to the outlet surface is zero.

4.3.3. Numerical results
Fig. 21 shows the small eddies in the viscous boundary layer next to the cube in the xz-plane at y = h

3 .
Depending on the grid resolution in Fig. 21, the minimum size of the resolved eddies varies. The turbulent viscosity is

plotted in Fig. 22, in order to show itsmagnitude in the vicinity of thewalls. Thewhite lines symbolize the interface between
the single grid resolution levels.

4.3.4. Validation
The averaged main velocity component u divided by the bulk velocity ub = 24.0ms is compared with the experimental

data fromMartinuzzi [8] at the location directly above the cube (Fig. 23) and four cube lengths behind the cube (Fig. 24). The
LES WALE simulation is found to match the experimental data better than the Smagorinsky model. The Smagorinsky–Van
Driestmodel was not applied because the effort for the universal calculation of the local y+ distances of arbitrary geometries
is too expensive.
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Fig. 23. Comparison of the velocity profile at x = 7L
20 , z = 0 µm.
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Fig. 24. Comparison of the velocity profile at x = 4L
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5. Conclusions

The implementation of the LES WALE model within the lattice Boltzmann framework presents advantages over the
Smagorinskymodelwith orwithout damping functions. Furthermore, the LESWALEmodel follows the near-wall distance y3
law, unlike the LES Smagorinskymodel. As a consequence, this study reveals that the LESWALEmodel ismore suitable for the
presented channel flows, both with andwithout a wall-mounted cube. The local grid refinement reduces the computational
effort and enables the capturing of the boundary layer. The physical process can be calculated with lattice Boltzmann
methods as well as with finite volume schemes [1].
The LES models applied on the lattice Boltzmann scheme give very similar results to the finite volume methods that

solve the Navier–Stokes equations. The numerical effort of these test cases is very high due to the fact that a large number of
nodes is necessary for channel flowswhen applying the lattice Boltzmann equation on a Cartesian grid. Recently, approaches
have been made to solve the lattice Boltzmann equation with a finite volume scheme [17]. Therefore, computation on
unstructured grids might be possible in the future.
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