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A b s t r a c t - - I n  this paper, some characteristics and order properties of symplectic Runge-Kutta- 
NystrSm (RKN) methods are given. By using a transformation technique, a family of high-order 
implicit symplectic RKN methods of order 2s - 1 or order 2s is constructed, and some available sym- 
plectic RKN methods including singly-implicit, multiply-implicit, and diagonally-implicit symplectic 
RKN methods are investigated. As examples, two-stage and three-stage symplectic RKN methods 
are derived in detail. @ 2004 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

For a Hamiltonian dynamical system such as 

_ Or(q)  q = W - l p ,  p ,q  R (1.0) 
Oq ' 

with constant diagonal (nondegenerate) matrix W, function V, and Hamiltonian H(p, q) = 
(1 /2)pTW-lp  + V(q), it has been suggested that the symplectic difference schemes should be 
employed to integrate it (see, for example, [1-3]). It is well known that (1.0) is equivalent to the 
second-order system 

----_ _ W _  1 OV(q) _ f (q ) ,  q E R ~. 
Oq 
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For integrating the above second-order system with the initial value p(to) = Po, q(to) = q0, or 
equivalently, 

= f ( y ) ,  y(to) ----- Y0, Y(t0) = 90, (1.1) 

where y and 9 correspond to q and p, respectively, we consider the s-stage RKN method 

c A 
b T 
d T 

(1.2) 

where c = (cl, c2, . . . ,  c,) T, b --- (bl, b2,. . . ,  bs) T, d = (dl, d 2 , . . . ,  ds) T, A = [aij] is an s x s  matrix, 
and c~ (1 < i < s) are distinct. Method (1.2) applied to (1.1) reads 

s 

Y{ = Yn + hcign + h 2 E a ~ J f ( Y j ) ,  i = 1, 2 , . . . ,  s, (1.3a) 
j = l  

8 

9~+1 = 9n + h E d J ( Y i ) ,  (1.3b) 
i=1  

8 

Y~+I = Y~ + h9~ + h ~ E b J ( Y O .  (1.3c) 
i=1  

Suris [3] proved that method (1.3) is sympleetic if 

b, = d, (1  - c ,) ,  i = 1, 2 , . . . ,  s ,  (1 .4a)  

d , ( b j  - a i j )  : d j ( b i  - a j i ) ,  i ,  j = 1,  2 , . . . ,  s ( l A b )  

(see also [4]). Conditions (1.4) are also necessary for methods without redundant stages to be 
symplectic (see [5]). In the following sections, we use the expression "symplectic RKN methods" 
to refer to RKN methods that satisfy (1.4). So far, order conditions of symplectic RKN methods 
have been systematically investigated (see [5-9]) by special Nystrhm rooted trees, and some 
available explicit symplectic RKN methods are given in [5,7,9-11]. Okunbor and Skeel [4] showed 
that an explicit RKN method is symplectie if and only if its adjoint is explicit. For implicit RKN 
methods, Ramaswami [12] derived a one-parameter family of symplectic RKN methods of order 
2s -1  by using the perturbed collocation technique, and Burnton and Scherer [13] discussed Gauss 
RKN methods and proved that they are always symmetric and that symmetry is equivalent to 
symplecticity. 

In this paper, some characteristics and order properties of symplectic IIKN methods are given. 
By modifying slightly the transformation technique in [14,15], a family of high-order implicit 
symplectic RKN methods of order 2s - 1 or order 2s is constructed, and some available symplec- 
tic RKN methods including singly-implicit, multiply-implicit, and diagonally-implicit symplectic 
RKN methods are investigated. As examples, two-stage and three-stage symplectic RKN methods 
are derived in detail. 

, 

Let D = diag(d), C = diag(c), and 

M = D A  - A T D  + bd T - d b  T, 

gk+l : (k + 1)kbTe k-z, 

f i ~  r - - i  m - - i  
%~rm : r ~  aic~ aijc d , 

i , j=l 

S O M E  O R D E R  P R O P E R T I E S  

Ck:(C~,C~,...,Cks) "r k = 0 ,1 ,2 ,  , ' ' ' ,  

{Ik = H d  T ck-1, k = 1, 2 , . . . ,  

r,m : 1,2, .... 
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Obviously, gk+l = (k + 1)~k - k~k+l if (1.4a) holds. Introduce the following simplifying assump- 
tions (see [16,17]): 

B(7) : gk+l = 1, k = 1 , 2 , . . . , 7 ,  

BD(7) :  ~ k = l ,  k - - 1 , 2 , . . . , 7 ,  

C(7 ) : ( k +  1)kAc k-1 = c k+~, k = 1 , 2 , . . . , 7 ,  

dTCk+~ dTC d T 
D(7) :  d T C k - l A  -- k(k + 1----~ k - -  + k +----1' k = 1, 2 , . . . ,  7. 

Now we present some properties of the above simplifying assumptions. 

LEMMA 2. i. 

(I) If (1.4a) holds, then 

B D ( 7 +  1) ~ B(7), B(7) and BD(1) ~ B D ( 7 +  1); 

(2) B(s) and BD(s  + 1) ~ (1.4a) holds; 
(3) C(7 ) ~ ¢ ~ m = r 9 ~ + . ~ + l / ( m + l ) ( m + r + l ) , l  < r < s , l  < m < _ 7 , i f d i ¢ O , l  < i < s ,  

mgr+m+l mgm+l q_ r~lra 
D ( 7 ) ~ ¢ ~ m =  ( r + l ) ( m + r + l )  r n + ~  r+-----l ' l < r < 7 ,  l < m < _ _ s ;  

(4) C(7), D(~), and BD(1) ~ BD(~ + 7 + 1), 1 _< ~, 7 -< s, ~ ¢ 7; 
(5) C(7), D(7), and BD(1) ~ BD(27) , 1 _< 7 -< s. 

PROOF. The conclusions in (1) immediately follow from the given conditions and the fact that  
gk+l = (k + 1)~k - k~k+l (k _> 1) if (1.4a) holds. By means of B(s) and BD(s  + 1), we have 

1 dTCck_ 1 _ 1 dTck_ 1 1 bTck-1 -- (k + 1)k' k + 1' = ~, k = 1 , 2 , . . . , s .  

Thus, 
(b T - d T q- dTc )  c k-1 = O, k -~ 1, 2 , . . . ,  s. 

The conclusions in (2) follow from the above formula and the fact tha t  the values ci (1 < i < s) 
are distinct. 

The conclusions in (3) can be directly deduced. By use of recursion, (4) and (5) follow 
from (3). | 

THEOREM 2.2. Let method (1.2) satisfy (1.4a) and BD(3). 

(1) If  C(7) (1 < U <- s) holds, then this method is symplectic if  and only if  BD(2u) , D(U), 
and (2.2c) hold. 

(2) I f  D(7) (1 < 7 ~- s) holds, and di # 0 for 1 < i < s, then this method is symplectic ff and 
only if BD(27), C(7), and (2.2c) hold. 

PROOF. Note that  the values c~ (1 < i < s) are distinct. Let U = [u~j], u~j = jc~ -1, 1 ~ i, j ~ s, 
and transform the skew-symmetric matrix M into 

UTMU = H = [hrm], (2.1) 

where hrr = 0 and 

1 
hrm = -hm~ = Crm -- ¢ , ~  + ----:--:gr + lg,~ -- - -  

1 
lgm+l~r,  r # rn, 

m + 
l_~r ,  m_~s .  
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Obviously, method (1.2) is symplectic iff H = 0 and (1.43) holds. If C(7 ) holds, then H = 0 iff 

r - - m  
(r + 1)(m + 1) '0r+m+l q-w(r,m) ---- 0, 

m 
(~ + 1)(~ + ~ + 1) ~+~+~ + ~(~' m) = o, 

¢ ~  - Cm~ + ~(~', ~ )  = o, 

1 < r < m <_ 7, (2.23) 

1 < r < 7, 77 < m _< s, (2.2b) 

7 < r < m_< s, (2.2c) 

where 
m ?" 

o2(r, m )  = m _~_-""'~gm+lgr -- 7 - - - ~ r + l g r n .  

When BD(3)  holds, it is easy to show that  (2.2a) holds iff BD(27)  holds, and (2.2b) holds iff D(7) 
holds. Thus, Conclusion (1) follows, and Conclusion (2) can be similarly proved. | 

THEOREM 2.3. For an RKN method of order ~7 (> 5), we assume that  di > 0 for 1 < i < s. 
Then C([(7 - 3)/21) holds. 

PROOF. This proof is similar to tha t  of the lemma in [18]. The order conditions 

k - 1  k--1 = 1 

E d i a i j c j  ailc l (2k + 3)k2(k + 1) 2' 
i,j,l 

E d.ck+la" .e~_ i = 1 
i,j ' ~ ,3 j (2k + 3 ) k ( k  + 1)'  

E d ~2k+2 _ 1 
iq  2k + 3 

i 

for the SN-trees (see [9,16,17]) of order 2k + 3 sketched in Figure 1 imply tha t  

~d, aijej k ~ T 1 ) ]  = 0  

for 2k + 3 _< 7. Since the di are positive, the individual terms must be zero. 

k-1 k-1 k-1 

~ i ~  k + l ~  2k+2 

Figure  1. 

From Theorems 2.2 and 2.3, we get the following. 

THEOREM 2.4. If an RKN method of order 7 (> 5) is symplectic with di > 0 for i = 1, 2 , . . . ,  s, 
then C([(7 - 3)/2]), BD(7), and D([(7 - 3)/2]) must hold. 

THEOREM 2.5. If method (1.2) is symplectic, and satisfies C(fl) (or D(7) with d~ ¢ O, i = 
1, 2 , . . . ,  s) and BD(27 + 2), where 1 _< 7 < s - 1, then this method is of order at least 27 + 2. 

PROOF. The proof is similar to tha t  of Theorem 2.5 in [19]. By means of Theorem 2.2, the 
assumptions of Theorem 2.5 mean that  the conditions C(~7), D(7),  and BD(2~ + 2) all hold. 
Following the notat ion in [16], let SNT2,+2 denote the set of all special Nystr5m rooted trees with 
no more than 27+2  nodes. For each tree u E SNT2~+2, we associate two numbers p(u), ~/(u), and 
a p ( u )  th polynomial (I)(u) in the coefficients a~j, dj, and cj. Here p(u) denotes the number of nodes 
in u, 7(u) denotes the density of the tree u (i.e., the product  of p(v) over v where for each node 
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of u, v is the subtree formed from tha t  node and all nodes tha t  can be reached from it by following 
upward growing branches). To show tha t  the RKN method (1.2) satisfying the  conditions assumed 
in Theorem 2.5 is of order at  least 27/+2, we need to prove tha t  ~}(u) = 1/7(u)  for all u E SNT2~+2 
(see [16,17]). Since C(1) holds, we can always use the abbreviat ion ~ k  ajk = c2/2 in writing the 
formula for ~(u) .  

Suppose a tree u E SNT2~+2 has a fat node "l", other than  the root, which is connected via 
a meagre son with the other fat node "m" connected with k meagre end-nodes, where k < 7. 
Then, when C(r]) holds, as shown in Proposit ion 16 of [17] and L e m m a  4.1 of [13], we have 

~ ~l(u) ~ az,~ck m _ 1 ~2~)t(u)c~+2 = 1 ~(~),  ~(u)  
"---" (k + 1)(k + 2) (k + 2)(k + 1) 
/=1 m = l  /=1 

p(u) = p(ft), 7(u) = (k + 2)(/: + 1)~/(~), 

where ~t(u)  are some polynomials, the SN rooted tree ~ is the same as u except tha t  the k nodes 
referred to above are all moved one step closer to the root. This means tha t  i~(u) = 1/7(u)  is 
equivalent to ~(~)  = 1/7(~).  Thus, all SN rooted trees with this proper ty  tha t  characterised u 
can be removed from consideration. With  all the SN rooted trees removed in the aforementioned 
way, there remain only SN rooted trees of the form 

Uil ,i2 ,...,i n : x ~ / 7  T 
i2 

il 

where il ,  i 2 , . . . ,  in are nonnegative integers, and in > 77 when n > 1. I t  is easy to identify tha t  

P (~ i l  ,i2 ..... in) "~ 

(7Li1,i2 ..... i n )  = 

(~il,i2 ..... i~) = 

n--1 

+ 2) + i n  + 1 _ 2 7 +  2, 
l=l 

n (~=j(iz+2)+i,~+l (il 
j = l  j = 2  

n - 1  

dT II 
I=1 

We thus only need to prove tha t  

(2.3a) 

+ 2 ) )  (i,~ + 1), (2.3b) 

(2.3c) 

n--1 
1 

(~(uil,i2 ..... i n ) - -  7(uii,i2 ..... i , ) '  for E ( i l + 2 ) + i n + 1 _ < 2 ~ 7 + 2 ,  (2.4) 
/=1 

where in >_ ~ when n > 1. When  n = 1, (2.4) is a direct consequence of BD(2~7 + 2), and it is 
also easy to show tha t  (2.4) holds for n = 2, i.e., 

1 
dTCilAei2 = (i2 + 1)(i2 + 2)(il  + i2 + 3) '  for il + i2 _< 2~] - 1, i 2 >_ ?7. (2.5) 

In fact, since il ÷ i2 _< 27] - 1, i2 > 7, we have il  < N - 1. Equat ion (2.5) with il < N follows 
directly from D(71) and BD(2~7 + 2). Now we only need to prove tha t  

m 
1 

for E ( i l  + 2) + im+l ~- 1 < 27] + 2 
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under the inductive assumption that (2.4) holds when n = m, where 2 < m < 2rl + 2, i,~+i > r~. 
Because 

m 

im+] _> r~, i~ + i,~+1 + 3 < ~£(i~ + 2) + i~+~ + 1 _< 2r~ + 2, 
l = l  

we have il < rh and therefore, according to D(~) and the inductive assumption, 

m 

~(uil  ..... i~+,) = (drCqA)  r I  (CiZA)c i'+1 
/ = 2  

= (i, + 1)(il + 2) il +~ + I-I (Ci'A) c'"+~ 
1=2 

il +1 2d T (CiZA) ci.~+l _ il +---~1 dTci2+IA E (C/ZA) ei~+ 1 
l = 2  / = 3  

m 

1 dTCi~+i2+2A ]-I (CiZA) ci'~+ 1 
+ (il + 1)(i  + 2) 

( 1 1 1 ) 
(il + 2)~(2, m) - (il + 1)(~(2, rn) + 1) + (il ~- 1)(il -~- 2)(g(2, m) + il + 2) 

x YH:ae;(J'm) j=aiI [ ~ ( i z - k 2 )  ( i ra+l+1)  

1 

..... 

m • where a(j, m) = ~l=j(zt + 2) + i,~+1 + 1. This completes the proof of Theorem 2.5. | 

Using Theorems 2.2 and 2.5, we have the following. 

COROLLARY 2.6. I f  method (1.2) is symplectic, and the conditions BD(2~ + i) (i = O, 1, 2) and 
C(~I) (or D(~) with d~ ~ O, 1 < i < s) hold, then its order is at least 2~ + i, i = O, 1, 2. 

For the special cases ~ = s, s - l ,  s - 2 ,  Lemma 2.1 and Theorems 2.2 and 2.5 yield the following. 

COROLLARY 2.7. 

(1) I f  conditions BD(3), C(s) (or D(s)) hold, then method (1.2) is sympleetic iff (1.4a), 
BD(2s), and D(s) (or C(s)) hold. 

(2) I[ conditions BD(3), C ( s -1 )  (or D ( s - 1 )  with d~ ¢ O, 1 < i < s)hold, then method (1.2) 
is symplectic iff (1.4a), BD(2s - 2), and D(s - 1) (or C(s - 1)) hold. 

(3) I[conditions BD(3), C ( s - 2 )  (or D ( s - 2 )  with di ~ O, 1 < i < s) hold, then method (1.2) 
is symplectic iff (1.4a), BD(2s - 4) and D(s - 2) (or C(s - 2)) hold and 

s - 1  s 
- - - -  + s - - - ~ 8 + 1  = O. ( 2 . 6 )  

By means of the above results, in Table 1, we list the order conditions of five types of higher- 
order symplectic RKN methods. 

In Table 1, the type I-V methods are Gauss, Gauss, Radau, Lobatto, Lobatto RKN methods 
when ci (1 _< i _< s) are chosen as the abscissas of the corresponding quadrature formulas, 
respectively. Symplecticity of the type-II methods (i.e., Gauss RKN methods of order 2s) has 
been discussed in [13]. 



Type Order 
I 2s 
II 2s 
III 2s - 1 
IV 2s - 2 
V 2s - 2 

Order Properties 

Table 1. 

Symplectic Order Conditions 
BD(2s), C(s), D(s), (1.4a), s _> 2 
BD(2s), C(s - 1), D(s - 1), (1.4a), s _> 2 
B D ( 2 s -  1), C ( s -  1), D ( s -  1), (1.4a), s >_2 
BD(2s - 2), C(s - 1), D(s - 1), (1.4a), s _> 3 
BD(2s - 2), C(s - 2), D(s - 2), (1.4a), (2.6), s > 3 

575 

fit = [aij] = C - 1 A ,  

2 s  = [ ~ j ]  = Yi-12Vs, 

B D ( 2 s  - 1) means 

1 1 

a~_j_J i . e . , ~ i j =  e{ ' i , j = l , 2 , . . . , s ,  

i.e., .~ = Vs ,4sVZ  1. 

(s + i )dT c s + i - i  = l ,  i = 1 , 2 , . . . , s - - 1 .  (3.1) 

When s = 1, it is easy to show tha t  the one-stage t ~ N  method satisfying the conditions 
BD(2), C(1), D(1) is as follows. 

1 1 

1 

1 

It is symplectic and of order 2. 
When s >_ 2, the type-I methods can be given by 

1) 
d T =  1 , ~ , . . . ,  V~ - i ,  b = d - D c ,  A = f / s V Z  l, 

where Vs = [~- i ]  and 

= L %-1))j ( j (~ E R s×s, kdT c k - i  = 1, s + 1 < k < 2s. 

For example, the two-stage four-order symplectic RKN methods satisfying BD(4),  C(2), D(2), 
and (1.4a) are given by 

6 ' 2  + = , , b = d - D c ,  A - = I / 2 V 2  1. 

The three-stage six-order symplectie RKN methods satisfying BD(6),  C(3), D(3), and (1.4a) are 
given by 

cT ( ~  v / ~  1 1 vf ih~ dT (58  4 5 )  
= 10 ' 2 ' 2  + 10 ] '  = ' 9 '  ' b = d - D c ,  A=I?3V3 - i .  

3. A FAMILY OF H I G H - O R D E R  S Y M P L E C T I C  R K N  M E T H O D S  

We consider the type-III symplectic RKN methods, i.e., the RKN methods satisfying (1.4a), 
B D ( 2 s - 1 ) ,  C ( s - 1 ) ,  D ( s - 1 ) ,  s > 2 by modifying slightly the transformation technique in [14,15]. 
Let c4 # 0 (i = 1, 2 , . . . ,  s), l/s = [~/'--1], and 



576 A.-G. XIAo AND Y.-F. TANG 

C ( s -  1) yields 

AS z 

0 0 0 .. • 0 a l s  
1 

0 0 . . .  0 ~2~ 
1×2 

1 
0 0 .. • 0 ass 

2x3  

1 
0 0 0 . . .  

( s - 1 ) x s  ass. 

(3.2) 

D(s - 1) means 

c~j~ _ 1 
j = l k + J  s ( s + l ) ( s + l + k ) '  k = 1 , 2 , . . . , s -  2, (3.3a) 

j = l s - ' T ' + J -  s ( s - 1 )  \ 2 s  s ( s + l )  " (3.3b) 

Therefore, by means of (3.1)-(3.3) and the equalities 

A = CV~fiisV~ -1, b = d - Dc, 

we can obtain a two-parameter  family of symplectic RKN methods  of order 2s - 1. For example, 
cs and a~s can be chosen as two free parameters.  Further,  letting g2s = 1, this family belongs to 
the type-I I  methods,  and is of order 2s and only one free paramete r  (such as ass). The examples 
of two-stage and three-stage symplectic R K N  methods  will be given in Section 5. 

4 .  A F A M I L Y  O F  S Y M P L E C T I C  R K N  

M E T H O D S  W I T H  R E A L  E I G E N V A L U E S  

By using the W-transformat ion,  Hairer and Wanner [20] obta ined some symplectic Runge- 
K u t t a  methods with real eigenvalues which were constructed by Iserles [10] with the help of 
per turbed collocation. In this section, based on the results given in Section 3, we construct 
some symplectic RKN methods with real eigenvalues and orders 2s - 1, 2s, i.e., singly-implicit 
and multiply-implicit  symplectic RKN methods.  An RKN method  is said to be singly-implicit 
if the matr ix  A has a single real eigenvalue. An RKN method  is said to be multiply-implicit  if 
the matr ix  A has s real distinct eigenvalues. Singly-implicit R K N  methods  are very efficiently 
implementable on a sequential machine, and multiply-implicit  R K N  methods  are very efficiently 
implementable on an s-processor machine (see [21]). Let 

= --,Y/ ] (Y/) = f (ciY/) , i = 1, 2, . . .  ,s.  
ai 

Equation (1.3a) becomes 

~ = Y - 2 + h ~ ] ~ + h 2 ~ S i j f ( ~ ) ,  i = 1 , 2 , . . . , s .  
Ci j = l  

Therefore, in essence, the approach to implementing singly-implicit R K N  methods  and multiply- 
implicit R K N  methods are the same as those to singly-implicit RK methods  and multiply-implicit  
RK methods,  respectively. 

For singly-implicit RKN methods,  let A denote the single real eigenvalue of fi~ (i.e., fi~s). We 
can easily prove tha t  

( s ) ( s -  1)!s!As_k+ 1 k =  1,2, s. (4.1) 
aks = ( - 1 )  s-k  k -  1 (k 1)!k-----~ ' " ' "  
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Insert (4.1) into (3.3) such that (3.3b) yields 

gzs = 2s 

( 

1 
(s - 1)s f: s -a;s+j + - 

j=l 1 
s(s+l) ’ (4.2) 

and such that (3.3a) includes s - 2 equations with only one unknown number A. (In general, 
we cannot find such X that the s - 2 equations hold.) In general, this would seem to imply 
that the singly-implicit RKN methods satisfying BD(2s - l), C(s - l), D(s - l), and s > 3 are 
not symplectic. Therefore, usually, s 5 3. Further, if ?jss = 1 (i.e., BD(2s) holds), then there 
exist s - 1 equations and only a free parameter X in (3.3). This usually means s = 2. Thus, 
in Section 5, we only discuss two-stage, three-stage symplectic singly-implicit RKN methods in 
detail. 

For multiply-implicit RKN methods, let Xi, AZ,. . . , A, denote the real distinct eigenvalues of A 
(i.e., A,) and let Q1,(z, A) = nl=r(z - Xj). Then 

S-l 

Q&, A) = ss + C(-1)"~"$s-i(X)& (4.3) 
i=O 

where the &(A) are the elementary symmetric functions associated with Q?‘s. Hence, 

41(X) = xxi, 42(X) = CxiXj, . . . T 4~3(~) = fr xj. 
i<j j=l 

On the other hand, 

Thus, (4.3) and (4.4) yield 

(lks = (-I)“-” 
s!(s - l)! 
,z+ - l)+-k+l(A)l k=1,2 )“., s. 

(4.4) 

(4.5) 

In (3.3) and (4.5), there exist s - 1 algebraic equations and s + 1 parameters Xi (1 < i 5 s) 
and one of ci (1 2 i 5 s). Therefore, we can construct a two-parameter family of symplectic 
multiply-implicit RKN methods of order 2s - 1. 

5. TWO-STAGE AND THREE-STAGE 
SYMPLECTIC RKN METHODS 

In this section, we will construct two-stage and three-stage symplectic RKN methods with high 
order and real eigenvalues based on the results given in Sections 3 and 4. 

5.1. Two-Stage Symplectic RKN Methods 

Consider two-stage RKN methods satisfyipg BD(3), C(l), and D(1) 
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where 

2c2 -- 1 
dl - -  2(C2 _ C1), d 2 = 1 - di, bi = di(1 - el) , b2 = d2(1 - c2), 

g4 2a22 1 2 
O~12 : 4 3 6 '  (cl + c2) - 2CLC2 = "~. 

In Sections 2 and 3, we have shown method (5.1) is symplectic and of order at least 3. Thus, we 
obtain a two-parameter  family of two-stage symplectic RKN methods.  Further,  letting .q4 = 1, 

we have a12 = (1/12) - 2a22/3 and obtain a one-parameter  family with order 4 (the parameter  

is a22). 
From Section 4, we easily show tha t  method (5.1) is singly-implicit iff 

a12 = _2A2, 0~22 = 2A, A2 2 1 (  2 )  14 

This means tha t  the symplectic singly-implicit RKN method (5.1) is a one-parameter  family of 
two-stage symplectic RKN methods.  Now we give two examples with orders 3 and 4, respectively. 

EXAMPLE 5.1. c T = (1/3,1) ,  d T = (3/4 ,1/4) ,  b T = (1/2,0) ,  a i2 = - 2 A  2, a22 = 2A, A = 

(2+v%/6. 
EXAMPLE 5.2. c T = ((3--V/3)/6,  (3+V/-3)/6), d T = (1/2, 1/2), b T = ( (3+  v/-3)/12, ( 3 - v ~ ) / 1 2 ) ,  

Ol12 = --2)k 2, 0L22 = 2 ~ ,  .~ = (44-v/iO)/12. 

From Section 4, we also easily show tha t  method (5.1) is mult iply implicit iff 

4 1 ( 2 )  

Inequality (5.2) means .q4 > 14/9, a22 E R, or 

o r  

14 4 --~/28 -- 18~4 
g4 ~ - - ~ ,  ~22  < 6 ' 

14 4 + ~/28 - 18.~4 

( 5 . 2 )  

If .q4 = 1, then c T = ((3 - V~)/6,  (3 + v~) /6 ) ,  d T = (1/2, 1/2), b T = ((3 + v/3)/12, (3 - v~) /12) ,  
hi2 = 1/12 - (2/3)a22, a22 < (4 - v ~ ) / 6 ,  or a22 > (4 + V ~ ) / 6 .  For example,  we can choose 

a22 = 1/12, 4/3. 

5.2. T h r e e - S t a g e  S y m p l e c t i c  R K N  M e t h o d s  

Consider three-stage RKN methods satisfying BD(5) ,  C(2), and D(2) 

(! ° 1 
CI (il 0 0)( 1 cl c12 ) 1 Cl 
c2 c2 0 1 C 2 C 2 0 0123 C2 

1 c3 C 3 0 C 3 1 C 3 C32 6 0~33 

bl b2 b3 
di d2 d3 

-1 

/ 

( 5 . 3 )  

where b~ = di(1 - ci), i = 1, 2, 3, and 

d I ~- 
6 e i e 3 - 3 ( e i + e 3 ) + 2  6 c 2 c 3 - 3 ( c 2 + c 3 ) + 2  d2 = d 3 = l - d l - d 2 ,  (5.4a) ' ' 

3 
6ClC2C3+2(C1~-C2+C3)--3(ClC2+C2C3~-ClC3)= 2' ( 5 . 4 b )  
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(5.4°) 
+ (c3--2) ClC2(Cl-}-e2+c3)+~c2] =1, 

226 3c~3a 19 60~33 9 (5.4d) 
O~13 - -  3 + - ~  + 3-6' a23 = g6 5 10' 

where g6 = 6 ~ a  dic~. In Sections 2 and 3, we have shown method (5.3) is symplectic and of i = 1  

order at least 5. Obviously, method (5.3) is a two-parameter family of three-stage symplectic 
RKN methods. Further, let 96 = 1, then this method is of order 6 and there exists only a free 
parameter (such as aaa). Now we select ca, aaa as free parameters. Equations (5.4b) and (5.4c) 
yield 

C1, 2 = ~ a 1 :~  , ( 5 . 5 )  

where 

2 {15c~-16ca__+3"~ 3+v~ 
a l = g  \ 6c32 6e3+1  / '  for c a ¢  6 ' 

( (6c3-  4)51 - 4ca +3)  1 
- -  (1~c3 -- 6) , for c3 # ~, 

52= ~0 I 
, for c3 = ~. 

Insert cl, c2, c3 into (5.4a) and (5.4d) so that d, b, a13, and o~23 can be solved, but c3 must satisfy 

3 ± v ~  
512 -452 > O, 51 4- V/5~- 462 # 2c3, ca :~ 

6 

In particular, let c3 = 1/2, OL33 = 1/2, the method is of order 6 and given by 

' 10 ' ' 36 ' ' ' 

7 1 
~13 = ~6' ~23 = -~. 

= i-8' 18' ' (5.6) 

Letting c a = 1, ~33 = 1/2, method (5.3) is of order 5 and given by 

c q- ( 4 - y  4+v/-6 1) ' b r : ( 9 + v / 6  93~V'~ ) 
= 1 ' 10 ' 3 6 '  ,0 , 

0~13 --~ - -  _ _ 
47 2 3 

3 ' g 6 ,  0t23 = - - ~  -~- g 6 ,  60 

36 ' ' 

3 

~ = 6 ~ <4- 
i = 1  

From Section 4, we easily show that method (5.3) is singly-implicit iff 

~13 = 12A 3, a23 = - lSA 2, a33 = 3~, (5.7a) 

3_A_ 1 =0 ,  g6=  9 (_20A2+4A_}_l) (5.7b) ¢(~) = 6~3 - 6~2 + 4 6-6 T6 " 

It follows from (5.7b) that g6 # I, i.e., BD(6) cannot hold. Therefore, a one-parameter (i.e., c3) 
family of three-stage five-order symplectic singly-implicit RKN methods is given by (5.3), (5.4a), 
(5.5), (5.7a), and A satisfying ¢()~) = 0, i.e., ~ ~ 0.8581, 0.1133, 0.0286. 



From Section 4, we also easily show that  method (5.3) is multiply implicit iff 

/~2 53 
-T+~<o, 

where 

(5.8) 

= Const, 

1 2 1 1 3 
(~ = --~0~33 -~- ~0t33 - -  ~ff6 2 0 '  

= + ±~_315 - 0 0 -  ~3~ + l~  °° 3 6 0  

Inequality (5.8) implies & < 0. When .q6 = 1, & < 0 is equivalent to a33 > 1/2 or a33 < 1/10. 
For example, let a33 = 0, the three-stage six-order multiply-implicit RKN method (5.3) is given 
by (5.6), and 

19 9 
O~13 = 3-'0' O~23 -- 10' a33 = 0. (5.9) 

6 .  N U M E R I C A L  E X P E R I M E N T S  

We solve the Kepler problem 

q'(t) = Hp(p,q) ,  p ' ( t )  = - H q ( p , q ) ,  t e [tb, te], 

where q = (ql, q2) q-, p = (pl ,p2) T and the Hamiltonian 

1 1 
H(p,  q) = H ( p l , p 2 ,  ql, q2) = ~ ((pl) 2 + (p2) 2) - ~/(ql)  z + (q2) 2 

by using the following symplectic RKN methods. 

1 

0.8 

(6.1) 

1 

0.8 

0.6 

0.4 

0.2 

o , I  o- 0 

-0.2 

-0.4 

--0.6 

-0.8 

-1 
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i I i i 

-1 -.0.5 0 0.5 
ql 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-1.5 -1 -0.5 0 0.5 
ql 

-0.6 

-0.8 
-2  

(a) e = 0.3. (b) e ---- 0.6. 

Figure  2. 
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(1) METHOD I. The two-stage four-order symplectic multiply-implicit RKN method (5.1) with 

' ' ' ' 1 2  ' ' ( 6 . 2 )  

1 1 
OQ2 : 3"6' O~22 = --'12 

(2) METHOD II. The two-stage four-order symplectic singly-implicit RKN method (5.1) with 
equation (6.2) and 

a12 = --2A 2, O~22 = 2A, A - 4 _ _ +  v / ~  
12 

(3) METHOD III. The three-stage six-order symplectic multiply-implicit RKN method (5.3) 
with (5.6) and (5.9). 

We consider that tb = O, te = 800, the step size h = 0.01, and the initial conditions 

ql(0) = 1 - e, q2(0) ---- 0, pl(0) = 0, p2(0) = V~ --+-e 
--e" 

Here e is the eccentricity and we choose e = 0.3, 0.6. Figures 2-4 exhibit the correct qualitative 
behaviors for long-time integration of problem (6.1), where Figures 2a and 2b, Figures 3a and 3b, 
and Figures 4a and 4b correspond to Methods I-III, respectively. 
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