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a b s t r a c t

A necessary and sufficient condition for input identifiability for linear autonomous systems
is given. The result is based on a finite iterative process and its proof relies on elementary
arguments involving matrices, finite dimensional linear spaces, Gronwall’s lemma, and
linear differential systems. Our condition is equivalent to the classical condition involving
the geometrical concept of controlled invariant [V. Basile, G. Marro, Controlled and
Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, NJ, 1992,
p. 237] and the dimension reduction algorithm that we propose seems to be useful in
designing deconvolution methods.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let Mp×q (R) denote the set of all p × q matrices with real entries. Consider in a given finite interval 0 ≤ t ≤ T the
following linear time-invariant system:

·

x = Ax+ Bu, (1)
y = Hx, (2)

where A ∈ Mn×n (R) , B ∈ Mn×d (R) , H ∈ Mm×n (R) , u = u(t) is a control policy (input) taking values from Rd,
x = x(t) ∈ Rn denotes the state of the system, and y = y(t) ∈ Rm is the output trajectory.
By the variation of constants formula we can see that for every initial state x0 ∈ Rn and control (input) u ∈ L1

(
0, T ;Rd

)
the corresponding output is given by

y (t) = HeAtx0 +
∫ t

0
HeA(t−s)Bu (s) ds, ∀t ∈ [0, T ] . (3)

LetAC ([0, T ];Rm) denote the space of absolutely continuous functions on [0, T ] with values inRm. Let Q : L1
(
0, T ;Rd

)
→

AC ([0, T ];Rm) be the operator defined by

(Qu)(t) =
∫ t

0
HeA(t−s)Bu (s) ds, ∀t ∈ [0, T ] . (4)

Obviously, the range of Q , denoted Range Q , does not cover the wholeAC([0, T ]; Rm ) (in particular, every function from
Range Q vanishes at t = 0).
We continue with the following definition related to system (1) and (2) (see, e.g., [1, p. 167]):
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Definition. The system input is said to be identifiable (detectable) if for every initial state x0 and output y = y(t) the
corresponding input u = u(t) is unique (u is supposed to exist as long as an output y is produced).

Remark 1. If u is unique for some x0, y, then the same property holds for all inputs u. In fact, input identifiability (or
detectability) for system (1) and (2) means that the kernel of Q is the null space: ker Q = {0}. If the system input is
identifiable, then the system is said to be left invertible or ideally observable in the Russian literature (see [2]).

Remark 2. If system (1) and (2) is left invertible (i.e., equivalently, ker Q = {0}), then the following rank condition holds
(see [1, p. 168]):

Rank{BTHT, BTATHT, . . . , BT(AT)n−1HT} = d,

where the superscript T denotes the matrix transpose. The converse implication is not true (i.e., the above rank condition
is not sufficient for left invertibility), as the following simple counterexample shows: A = the matrix with rows
(−1, 0, 0), (0, 0, 0), (0, 0, 1), B = the matrix with rows (1, 0), (0, 1), (0, 0), H = (1, 1, 0). Obviously, the rank condition
is satisfied, but ker Q contains the nonzero function u(t) = col (t,−1+ e−t). Therefore, Theorem 5.5.2 in [1, p. 167] is false.

2. The main result

In the previous section we have seen that the problem of left invertibility for system (1) and (2) reduces to the condition
ker Q = {0}. In this section we formulate a necessary and sufficient condition on matrices A, B, H such that ker Q = {0}.
Our result relies on an iterative process. Namely, we construct iteratively a non-increasing sequence of integers {di} ⊂ N as
well as sequences of matrices {Ai} ⊂ Mn×n (R) , {Bi} ⊂ Mn×di (R) and {Hi} ⊂ Mm×n (R) for i = 0, 1, 2, . . . as follows.
Let A0 = A, B0 = B, H0 = H and d0 = d. Given Ai, Bi,Hi and di, let dim ker (HiBi) =: di+1. If di+1 = 0, the iterations

terminate. Let di+1 > 0. Then, dimRange (HiBi) = di − di+1. Moreover, if Rdi = Ui ⊕ kerHiBi and Rm = Vi ⊕ Range (HiBi)
(e.g., Ui := (kerHiBi)⊥ , Vi := (Range (HiBi))⊥), then Ui ∼= Range (HiBi) ∼= Rdi−di+1 .
First, assume that di > di+1. Then, there are matricesMi ∈ Mdi×(di−di+1) (R) , Ti ∈ Mdi×di+1 (R) , Ci ∈ M(di−di+1)×m (R) ,

such that

Range (Mi) = Ui, Range (Ti) = kerHiBi,
CiHiBiMi = id|Rdi−di+1

and for any x ∈ Rdi there exist vectors y ∈ Rdi−di+1 , z ∈ Rdi+1 , uniquely determined, such that x = Miy + Tiz. Let Pi be the
matrix of the projection on Vi with respect to Range (HiBi). The matrix Ci may be chosen as

Ci =
(
MTi B

T
i H
T
i HiBiMi

)−1
MTi B

T
i H
T
i .

Indeed, the matrixMTi B
T
i H
T
i HiBiMi is the Gramm matrix of the vectors defined by the columns of HiBiMi and due to the fact

that they are linearly independent Ci is well-defined. Note that the matricesMi, Ti, Ci and Pi are not uniquely determined.
We define the matrices Ai+1, Bi+1 and Hi+1 by

Ai+1 := (I − BiMiCiHi) Ai, Bi+1 := BiTi, Hi+1 := PiHiAi.

Now, assume that di+1 = di. In this case we define

Ai+1 := Ai, Bi+1 := Bi, Hi+1 := HiAi.

Let us now state our main result:

Theorem 1. Let A ∈ Mn×n (R) , B ∈ Mn×d (R) , H ∈ Mm×n (R), and let Q be the operator defined before by (4). If {di} ⊂ N,
{Ai} ⊂ Mn×n (R) , {Bi} ⊂ Mn×di (R) and {Hi} ⊂ Mm×n (R) are the sequences defined above, then ker Q = {0} if and only if there
exists i ∈ N, i ≤ dn such that di = 0. Moreover, if di = di+1 = · · · = di+n−1 > 0 for some i, then dk = di for all k ≥ i.

Proof. Letw ∈ ker Q , i.e.,w ∈ L1
(
0, T ;Rd

)
and∫ t

0
HeA(t−s)Bw (s) ds = 0 ∀t ∈ [0, T ]. (5)

By differentiation with respect to t we see that for a.a. t ∈ [0, T ]

HBw (t)+
∫ t

0
HAeA(t−s)Bw (s) ds = 0. (6)

First, assume that d1 = dim ker (HB) < d = d0. If d1 = 0, then there exists a matrix C such that CHB = id|Rd which allows
us to write

w (t)+ C
∫ t

0
HAeA(t−s)Bw (s) ds = 0. (7)
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Now, Gronwall’s lemma implies that w is the null function. Let d1 > 0 and w (t) = M0v (t) + T0w1 (t). Then Eq. (6) is
equivalent to the system

v (t)+ C0

∫ t

0
H0A0eA0(t−s)B0 (M0v (s)+ T0w1 (s)) ds = 0, (8)

P0

∫ t

0
H0A0eA0(t−s)B0 (M0v (s)+ T0w1 (s)) ds = 0. (9)

It follows by standard arguments that for each integrable functionw1 (t) there is a unique solution v (t) of Eq. (8). Moreover,
v can be expressed as a convolution product of a suitable matrix kernel andw1 (see (12)). Indeed, let us define

V (t) :=
∫ t

0
eA0(t−s)B0 (M0v (s)+ T0w1 (s)) ds. (10)

We have for a.a. t ∈ [0, T ]
·

V (t) = A0V (t)+ B0M0v(t)+ B0T0w1(t),

which implies (see (8))
·

V (t) = (A0 − B0M0C0H0A0) V (t)+ B0T0w1(t).

Since V (0) is the null matrix, we obtain by the variation of constants formula

V (t) =
∫ t

0
e(A0−B0M0C0H0A0)(t−s)B0T0w1(s) ds. (11)

Thus

v(t) = −C0H0A0

∫ t

0
e(A0−B0M0C0H0A0)(t−s)B0T0w1(s) ds (12)

is the (unique) solution of Eq. (8) corresponding tow1. For this v, according to (10) and (11), we can write

P0

∫ t

0
H0A0eA0(t−s)B0 (M0v (s)+ T0w1 (s)) ds = P0H0A0

∫ t

0
e(A0−B0M0C0H0A0)(t−s)B0T0w1(s) ds.

Thus it is obvious that the existence of a nonzero solution w(t) of Eq. (5) (which is equivalent to system (8) and (9)) is
equivalent to the existence of a nonzero solutionw1 (t) of the equation∫ t

0
H1eA1(t−s)B1w1 (s) ds = 0, w1 (t) ∈ Rd1 ,

where

H1 := P0H0A0, A1 := (I − B0M0C0H0) A0, B1 := B0T0.

Next, assume that d1 = dim ker (HB) = d = d0. Then Eq. (6) reads∫ t

0
HAeA(t−s)Bw (s) ds = 0, (13)

so we can takew1 = w,

A1 := A0, B1 := B0, H1 := H0A0,

and we can continue further to construct iteratively matrices Ai, Bi and Hi. Notice that if for some integer i we have
di = di+1 = · · · = di+n−1, then

HiBi = HiAiBi = · · · = HiAn−1i Bi = O,

where O denotes the zero matrix inMm×di (R). Thus the Cayley–Hamilton theorem implies that HiAki Bi = O for any integer
k ≥ i. In particular, it follows that HieAitBi = O and there exists a nonzero function w (t) satisfying (5). Moreover, either
there exists an integer i ≤ dn, such that di = 0 and the iterations terminate or 0 < ddn = ddn+1 = · · · = ddn+k = · · · and
there exists a nonzero solution of Eq. (5). �
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3. Concluding comments

First of all, it has been brought to our attention that our necessary and sufficient condition formulated in Theorem 1
is a variation of the classical condition described in Property 4.3.6 of Basile and Marro [2, Chapter 4], which involves the
geometrical concept of controlled invariant. Indeed, our condition is equivalent to the classical one. This can be shown by
comparing the two corresponding algorithms, under the maximal rank condition on B. We do not assume in Theorem 1
that B has maximal rank (i.e., equivalently, ker B = {0}), but obviously it is a necessary condition for left invertibility. This
equivalence confirms the validity of our result.
While the classical approach is geometrical, our new iterative process relies on simple arguments from linear algebra

and the theory of differential equations which allow dimension reduction, as described in the proof of Theorem 1.
If the system is left invertible (i.e., ker Q = {0}), one can use an iterative process suggested by the proof of Theorem 1

to solve for u = u(t) the equation Qu(t) = f (t). This operation is nowadays called deconvolution since Q is an integral
convolution operator. In general u does not depend continuously on f and this makes the problem difficult. Among the
existing papers addressing deconvolution methods, we refer the reader to [3–5] and the references therein. We think that
our iterative process could generate new efficient deconvolution methods.
The general output equation y(t) = Hx(t) + Du(t), t ∈ [0, T ], can also be considered in our framework. Here D is an

m× dmatrix with real entries. In this case, instead of Eq. (5), we have the following integral equation:

Dw(t)+ H
∫ t

0
eA(t−s)Bw(s) ds = 0,

whose form is similar to Eq. (6). Therefore, one can apply our algorithm described in the proof of Theorem 1 above to derive
a necessary and sufficient condition for input identification (or left invertibility). The precise formulation of this condition
is left to the reader. In particular, if kerD = {0}, then obviously the system input is identifiable.
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