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Wedevelop a general framework for the construction of various derived brackets.We show
that suitably deforming the differential of a graded Leibniz algebra extends the derived
bracket construction and leads to the notion of strong homotopy (sh) Leibniz algebra. We
discuss the connections among homotopy algebra theory, deformation theory and derived
brackets. We prove that the derived bracket construction induces a map from suitably
defined deformation theory equivalence classes to the isomorphism classes of sh Leibniz
algebras.
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1. Introduction

Let (V , d, {, }) be a chain complex equipped with a binary bilinear V -valued operation {, }. The triple (V , d, {, }) is called
a dg Leibniz algebra or a dg Loday algebra by some authors, if the differential is a derivation with respect to the bracket and
the bracket satisfies the (graded) Leibniz identity. When the bracket is anti-commutative, the Leibniz identity is equivalent
to the Jacobi identity. In this sense, (dg) Leibniz algebras are noncommutative analogues of classical (dg) Lie algebras.

Let (V , d, {, }) be a dg Leibniz algebra. We define a modified bracket:

{x, y}d := (−1)x{dx, y},

which is called a derived bracket. In Kosmann-Schwarzbach [5], it was shown that the derived bracket satisfies the Leibniz
identity. The original idea of the derived bracket goes back at least to Koszul (unpublished). The derived brackets play
important roles in modern analytical mechanics (cf. [6]). For instance, a Poisson bracket on a smooth manifold is given
as a derived bracket, {f , g} := [df , g]SN , where f , g are smooth functions on the manifold, [, ]SN is a Schouten–Nijenhuis
bracket and d is a coboundary operator of Poisson cohomology. It is known that the Schouten–Nijenhuis bracket is also a
derived bracket of a certain graded Poisson bracket.

We consider n-fold derived brackets:

(±)[[· · · [δx1, x2] · · ·], xn],

where [·, ·] is a Lie bracket, ± an appropriate sign, and δ a certain derivation, not necessarily of square zero. The n-ary
(higher) derived brackets in the category of Lie algebras were studied by several authors in various contexts: in an article on
Poisson geometry by Roytenberg [15], in a paper on homotopy algebra theory by Voronov [18], in early work of Vallejo [17]
who gave a necessary and sufficient condition for the n-ary derived brackets become Nambu–Lie brackets.

The purpose of this note is to complete the theory of higher derived bracket construction in the category of Leibniz
algebras. To study the higher derived bracket composed of pure Leibniz brackets, we apply the theory of sh Leibniz algebras
(also called Leibniz ∞-algebras, sh Loday algebras or Loday ∞-algebras). Sh Leibniz algebras are Leibniz algebras up to
homotopy as well as noncommutative analogues of sh Lie algebras. We refer the reader to Ammar and Poncin [1] for the
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study of sh Leibniz algebras. We give a short survey of sh Leibniz algebras in Section 4.1 below. The main result of this note
is Theorem 3.4: Let (V , δ0, {, }) be a dg Leibniz algebra. We consider a deformation of δ0,

δt = δ0 + tδ1 + t2δ2 + · · · ,

where t is a formal parameter and δt a differential on V [[t]]. We define an i-ary derived bracket as

li(x1, . . . , xi) := (±){{. . . {δi−1x1, x2}, . . .}, xi},

where ± is an appropriate sign. We prove that the collection of the higher derived brackets, {l1, l2, . . .}, yields an sh
Leibniz algebra structure. The theorem follows from a universal formula, satisfied by Leibniz brackets, which we establish
in Lemma 4.2.

The higher derived bracket construction proposed in this paper is useful to study a relation between homotopy algebra
theory and deformation theory. In Proposition 5.1, we will show that if two deformations of δ0 are gauge equivalent, then
the induced sh Leibniz algebras are equivalent; in other words, the higher derived bracket construction is invariant under
gauge transformations.

2. Preliminaries

2.1. Notation and assumptions

The base field is a field K of characteristic zero. The unadorned tensor product denotes the tensor product⊗ := ⊗K over
the field K. We follow the standard Koszul sign convention, for instance, a linear map f ⊗ g : V ⊗ V → V ⊗ V satisfies

(f ⊗ g)(x ⊗ y) = (−1)|g||x|f (x) ⊗ g(y),

where x, y ∈ V and where |g|, |x| are the degrees of g , x. We will denote by s the operator that raises degree by 1 and,
likewise, by s−1 the operator that lowers degree by 1. The Koszul sign convention for shifting operators is, for instance,

s ⊗ s = (s ⊗ 1)(1 ⊗ s) = −(1 ⊗ s)(s ⊗ 1).

We call a derivation of degree 1 a differential, if it is of square zero. Given a homogeneousmember x of a graded vector space,
we denote the sign (−1)|x| simply by (−1)x.

2.2. Leibniz algebras and derived brackets

Let (V , d, {, }) be a chain complex equipped with a binary bracket. We assume that the degree of the differential is +1
(or odd) and the degree of the bracket is 0 (or even). The triple is called a dg (left) Leibniz algebra, or a dg (left) Loday algebra
by some authors, if d is a derivation with respect to the bracket and the bracket satisfies a Leibniz identity, i.e.,

d{x, y} = {dx, y} + (−1)|x|{x, dy},
{x, {y, z}} = {{x, y}, z} + (−1)|x||y|{y, {x, z}},

where x, y, z ∈ V . A dg Lie algebra can be seen as a special Leibniz algebra of which the bracket is anti-commutative. In this
sense, (dg) Leibniz algebras are noncommutative analogues of (dg) Lie algebras.

We recall the classical derived bracket construction in [5,6]. Define a new bracket on the shifted space sV by

{sx, sy}d := (−1)xs{dx, y}. (1)

This bracket is called a (binary) derived bracket on sV . Eq. (1) is equal to the following tensor identity,

{·, ·}d(sx ⊗ sy) = s{·, ·}(s−1
⊗ s−1)(sds−1

⊗ 1)(sx ⊗ sy).

We recall two basic propositions.

• The derived bracket also satisfies the graded Leibniz identity, i.e.,

{sx, {sy, sz}d}d = {{sx, sy}d, sz}d + (−1)(x+1)(y+1)
{sy, {sx, sz}d}d.

We consider the cases of dg Lie algebras.

• Let (V , d, [, ]) be a dg Lie algebra and let g(⊂ V ) a trivial subalgebra of the Lie algebra. If sg is closed under the derived
bracket, then sg is a Lie algebra, that is, the derived bracket is anti-commutative on sg.
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3. Main results

Let V be a graded vector space and let li : V⊗i
→ V be an i-ary multilinear map with the degree 2 − i, for each i ≥ 1.

Definition 3.1 ([1]). The space (V , l1, l2, . . .) with the multilinear maps is called a strong homotopy (sh) Leibniz algebra, if
the collection {li}i≥1 satisfies (2) below.−

i+j=Const

i+j−1−
k=j

−
σ

χ(σ)(−1)(k+1−j)(j−1)(−1)j(xσ(1)+···+xσ(k−j))

li(xσ(1), . . . , xσ(k−j), lj(xσ(k+1−j), . . . , xσ(k−1), xk), xk+1, . . . , xi+j−1) = 0, (2)

where x· ∈ V , σ ∈ Sk−1 is a (k − j, j − 1)-unshuffle [7], i.e.,

σ(1) < · · · < σ(k − j), σ (k + 1 − j) < · · · < σ(k − 1),

and χ(σ) is an anti-Koszul sign, χ(σ) := sgn(σ )ϵ(σ ).

An sh Lie algebra can be seen as a special sh Leibniz algebra whose structures li≥2 are skewsymmetric.
Let (V , {, }) be a Leibniz algebra. We define an i-ary bracket associated with the Leibniz bracket as

Ni(x1, . . . , xi) := {. . . {{x1, x2}, x3}, . . . , xi}.

It is well-known that Ni satisfies an i-ary Leibniz identity, the so-called Nambu–Leibniz identity (cf. [2]). Hence we denote
the higher bracket by N·. Let Der(V ) be the space of derivations on the Leibniz algebra. For any D ∈ Der(V ), we define a
multilinear map as

NiD := Ni

D ⊗

i−1  
1 ⊗ · · · ⊗ 1

 ,

or equivalently, NiD(x1, . . . , xi) = {. . . {{D(x1), x2}, x3}, . . . , xi}, in particular, N1D := D.
Let δ0 ∈ Der(V ) be a differential on the Leibniz algebra. We consider a formal deformation of δ0,

δt := δ0 + tδ1 + t2δ2 + · · · .

The deformation δt is a differential on V [[t]], which is a Leibniz algebra of formal serieswith coefficients in V . The differential
condition δ2

t = 0 is equivalent to the following condition,−
i+j=Const

δiδj = 0. (3)

Definition 3.2. We define an i-ary derived bracket on sV as

li := (−1)
(i−1)(i−2)

2 s ◦ Ni ◦ s−1(i) ◦ (sδi−1s−1
⊗ 1),

where s−1(i) =

i  
s−1

⊗ · · · ⊗ s−1, 1 =

i−1  
1 ⊗ · · · ⊗ 1.

It is obvious that the degree of the i-ary derived bracket is 2− i for each i ≥ 1.We see an explicit expression of the higher
derived bracket.

Proposition 3.3. For each i ≥ 1, the higher derived bracket has the following form on V ,

(±){. . . {{δi−1x1, x2}, x3}, . . . , xi} = s−1li(sx1, . . . , sxi),

where

± =


(−1)x1+x3+···+x2n+1+··· i = even,
(−1)x2+x4+···+x2n+··· i = odd.

Proof.

li(sx1, . . . , sxi) = (−1)
(i−1)(i−2)

2 s ◦ Ni ◦ s−1(i) ◦ (sδi−1s−1
⊗ 1)(sx1 ⊗ · · · ⊗ sxi)

= (±)(−1)
(i−1)(i−2)

2 s ◦ Ni ◦ s−1(i) ◦ (sδi−1s−1
⊗ 1) ◦ s(i)(x1 ⊗ · · · ⊗ xi)

= (±)(−1)
(i−1)(i−2)

2 s ◦ Ni ◦ s−1(i) ◦ (sδi−1 ⊗ s(i − 1))(x1 ⊗ · · · ⊗ xi)

= (±)(−1)
(i−1)(i−2)

2 (−1)(i−1)s ◦ Ni ◦ s−1(i) ◦ s(i)(δi−1x1 ⊗ · · · ⊗ xi)

= (±)(−1)
(i−1)(i−2)

2 (−1)(i−1)(−1)
i(i−1)

2 s ◦ Ni(δx1 ⊗ · · · ⊗ xi)
= (±)s{. . . {{δi−1x1, x2}, x3}, . . . , xi},

where s(i) := s ⊗ · · · ⊗ s (i-times). �
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The main result of this note is as follows.

Theorem 3.4. The system (sV , l1, l2, l3, . . .) associated with the higher derived brackets defined in Definition 3.2 forms an sh
Leibniz algebra.

We will give a proof of the theorem in the next section. We consider the cases of dg Lie algebras.

Corollary 3.5. Assume that in Theorem 3.4 V is a Lie algebra. Let g be an abelian subalgebra of the Lie algebra. If sg is a subalgebra
of the induced sh Leibniz algebra, then sg becomes an sh Lie algebra.

Example 3.6 (Deformation Theory, cf. [3]). Let (V , δ0, [, ]) be a dg Lie algebra with a Maurer–Cartan (MC) element θt :=

tθ1 + t2θ2 + · · ·, which is a solution of the MC-equation:

δ0θt +
1
2
[θt , θt ] = 0.

We put δi(−) := [θi, −] for each i ≥ 1. Then the collection {δi} satisfies Eq. (3) because θt is a solution of the MC-
equation. Therefore an algebraic deformation theory admits an sh Leibniz algebra structure, via the higher derived bracket
construction.

4. Proof of Theorem 3.4

The theorem is given as a corollary of the key lemma (Lemma 4.2 below). To state the lemma, we recall an alternative
definition of sh Leibniz algebra.

4.1. Sh Leibniz algebras (cf. [1])

We recall the notion of dual-Leibniz coalgebra [10,11]. A dual-Leibniz coalgebra is, by definition, a (graded) vector space
equipped with a comultiplication, ∆, satisfying the identity below.

(1 ⊗ ∆)∆ = (∆ ⊗ 1)∆ + ((12) ⊗ 1)(∆ ⊗ 1)∆,

where (12) ∈ S2. We consider the tensor space over a graded vector space:

T̄ V := V ⊕ V⊗2
⊕ V⊗3

⊕ · · · .

Define a comultiplication, ∆ : T̄ V → T̄ V ⊗ T̄ V , by ∆(V ) := 0 and

∆(x1, . . . , xn+1) :=

n−
i=1

−
σ

ϵ(σ )(xσ(1), xσ(2), . . . , xσ(i)) ⊗ (xσ(i+1), . . . , xσ(n), xn+1),

where ϵ(σ ) is a Koszul sign, σ is an (i, n − i)-unshuffle and (x1, . . . , xn+1) ∈ V⊗(n+1). Then the pair (T̄ V , ∆) becomes the
cofree nilpotent dual-Leibniz coalgebra over V .

Let Coder(T̄ V ) be the space of coderivations on the coalgebra, i.e., Dc
∈ Coder(T̄ V ) satisfies

∆Dc
= (Dc

⊗ 1)∆ + (1 ⊗ Dc)∆.

By a standard argument, we have Coder(T̄ V ) ∼= Hom(T̄ V , V ) (cf. [14]). We recall an explicit formula of the isomorphism.
Let f : V⊗i

→ V be an i-ary linear map. It is one of the generators in Hom(T̄ V , V ). The coderivation associated with f is
defined by f c(V⊗n<i) := 0 and

f c(x1, . . . , xn≥i) :=

n−
k=i

−
σ

ϵ(σ )(−1)|f |(xσ(1)+···+xσ(k−i))(xσ(1), . . . , xσ(k−i), f (xσ(k+1−i), . . . , xσ(k−1), xk), xk+1, . . . , xn),

where σ is a (k − i, i − 1)-unshuffle. The inverse of the mapping f → f c is the (co)restriction.
If f , g ∈ Hom(T̄ V , V ) are i-ary, j-ary multilinear maps respectively, then

[f c, gc
] = (f , g)c,

where [f c, gc
] is the canonical commutator (Lie bracket) on Coder(T̄ V ) and where (f , g) is an (i + j − 1)-ary multilinear

map. Since the mapping f → f c is an isomorphism, (f , g) defines a Lie bracket on Hom(T̄ V , V ).
In the sequel, we will identify Coder(T̄ V ) with Hom(T̄ V , V ) as a Lie algebra. We sometimes omit the superscript ‘‘c ’’

from f c .
Given a graded vector space V , an i-ary i-multilinear V -valued operation li on V of degree 2 − i determines a degree 1

element in Hom(T̄ sV , sV ). The following proposition provides an alternative definition of sh Leibniz algebras.
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Proposition 4.1 ([1]). Let V be a graded vector space endowed with a system {li}i∈N of i-ary i-multilinear V -valued operations,
the operation {li}i∈N having degree 2 − i and, for each i ≥ 1, let

∂i := s−1
◦ li ◦ (s ⊗ · · · ⊗ s),

by construction of degree +1, viewed as a member of Coder(T̄ V ) via the identifications T̄V ∼= T̄ s−1(sV ). Define the coderivation
∂ by

∂ := ∂1 + ∂2 + · · · .

The system (sV , l1, l2, . . .) is an sh Leibniz algebra if and only if

1
2
[∂, ∂] = 0

or equivalently, ∂∂ = 0.

4.2. The key lemma

Let (V , {, }) be a Leibniz algebra. We consider a collection of maps:

Der(V ) → Hom(T̄ V , V ) ∼= Coder(T̄ V ), D → NiD ∼= Nc
i D,

where NiD was defined in Section 3 and where Nc
·
D is the coderivation associated with N·D. Theorem 3.4 is a consequence

of the following

Lemma 4.2. For any derivations D,D′
∈ Der(V ) and for any i, j ≥ 1, the following identity holds.

Ni+j−1[D,D′
] = (NiD,NjD′),

or equivalently,

Nc
i+j−1[D,D′

] = [Nc
i D,Nc

j D
′
].

Proof. We show the case of i = 1. The general case will be shown in Section 6. We have

Nj[D,D′
] = Nj([D,D′

] ⊗ 1 ⊗ · · · ⊗ 1)

= Nj(DD′
⊗ 1 ⊗ · · · ⊗ 1) − (−1)DD

′

Nj(D′D ⊗ 1 ⊗ · · · ⊗ 1).

By the derivation property, we have

Nj(DD′
⊗ 1 ⊗ · · · ⊗ 1) = DNj(D′

⊗ 1 ⊗ · · · ⊗ 1) − (−1)DD
′

j−
k≥2

Nj(D′
⊗ 1 ⊗ · · · ⊗ 1 ⊗ D(k)

⊗ 1 ⊗ · · · ⊗ 1).

Hence we obtain

Nj[D,D′
] = DNj(D′

⊗ 1 ⊗ · · · ⊗ 1) − (−1)DD
′

j−
k≥1

Nj(D′
⊗ 1 ⊗ · · · ⊗ 1 ⊗ D(k)

⊗ 1 ⊗ · · · ⊗ 1),

which is equal to Nj[D,D′
] = (N1D,NjD′) because N1D = D. �

The higher derived brackets are elements in Hom(T̄ sV , sV ). Hence they correspond to the coderivations in Coder(T̄ V ),
via the maps,

Hom(T̄ sV , sV )
shift
∼ Hom(T̄ V , V ) ∼= Coder(T̄ V ).

Lemma 4.3. Let ∂i be the coderivation associated with the i-ary derived bracket. It has the following form,

∂i = Nc
i δi−1.

Proof.

∂i := s−1
◦ li ◦ (s ⊗ · · · ⊗ s)

= (−1)
(i−1)(i−2)

2 Ni ◦ (s−1
⊗ · · · ⊗ s−1) ◦ (sδi−1 ⊗ s ⊗ · · · ⊗ s)

= (−1)
(i−1)(i−2)

2 Ni ◦ (δi−1 ⊗ s−1
⊗ · · · ⊗ s−1) ◦ (1 ⊗ s ⊗ · · · ⊗ s)

= Niδi−1.

Hence ∂i = Nc
i δi−1 as a coderivation. �

Now, we give a proof of Theorem 3.4.
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Proof. By Lemma 4.3, the differential δt =
∑

t iδi corresponds to the coderivation:
∂ := ∂1 + ∂2 + ∂3 + · · · .

By Lemma 4.2, the deformation condition [d, d] = 0 corresponds to the homotopy algebra condition,−
i+j=Const

[∂i, ∂j] =

−
i+j=Const

[Nc
i δi−1,Nc

j δj−1] = Nc
i+j−1

−
i+j=Const

[δi−1, δj−1] = 0. �

Remark 4.4 (cf. Lemma 4.2). We consider the case of the trivial deformation, that is, δt = tδ1. In this case, the induced sh
Leibniz algebra is an ordinary Leibniz algebra. We put CLn(sV ) := Hom(V⊗n, V ) and b(−) := (∂2, −). Then (CL∗(sV ), b) is
the Leibniz cohomology complex [9]. The key Lemma implies that Der(V ) provides a subcomplex of the Leibniz complex:

NiDer(V ) ⊂ CLi(sV ),

because (∂2,NiD) = (N2δ1,NiD) = Ni+1[δ1,D]. If δ1 is an adjoint representation, i.e., δ1 := ad(θ) := [θ, −] for some θ ∈ V ,
then Niad(V ) is also a subcomplex,

Niad(V ) ⊂ NiDer(V ) ⊂ CLi(sV ).

5. Deformation theory

In this section, we discuss the connection between deformation theory and sh Leibniz algebras. The deformation δt
is considered to be a differential on V [[t]], which is a Leibniz algebra of formal series with coefficients in V . Let tξ1 ∈

Der(V [[t]]) be a derivation with the degree 0. We consider a transformation,
δ′

t := exp(Xtξ1)(δt),

where Xtξ1 := [·, tξ1]. By a standard argument, δ′
t is also a deformation of δ0. We have

δ′

0 = δ0,

δ′

1 = δ1 + [δ0, ξ1],

δ′

2 = δ2 + [δ1, ξ1] +
1
2!

[[δ0, ξ1], ξ1],

· · · · · · · · ·

δ′

i =

i−
n=0

1
(i − n)!

X i−n
ξ1

(δn).

The collection {δ′

i}i∈N induces an sh Leibniz algebra structure ∂ ′
=

∑
∂ ′

i , via the higher derived bracket construction. From
Lemmas 4.2, 4.3, we have

∂ ′

i+1 = Nc
i+1δ

′

i =

i−
n=0

1
(i − n)!

X i−n
Nc
2ξ1

(∂n+1).

Therefore we obtain
∂ ′

= exp(XNc
2ξ1)(∂),

which implies that ∂ ′ is equivalent to ∂ . We consider a general case. Let ξt := tξ1 + t2ξ2 +· · · be a derivation on V [[t]] with
degree 0. The transformation (4) below is called a gauge transformation.

δ′

t := exp(Xξt )(δt). (4)
Proposition 5.1. (I) If two deformations of δ0 are gauge equivalent, or related via the gauge transformation, then the induced
sh Leibniz algebra structures are equivalent to each other, i.e., the codifferential ∂ ′ induced by δ′

t is related with ∂ via the
transformation,

∂ ′
= exp(XΞ )(∂), (5)

where Ξ is a coderivation,
Ξ := Nc

2ξ1 + Nc
3ξ2 + · · · + Nc

i+1ξi + · · · .

(II) The exponential of Ξ ,

eΞ
:= 1 + Ξ +

1
2!

Ξ 2
+ · · · ,

is a dg coalgebra isomorphism between (T̄ V , ∂) and (T̄ V , ∂ ′), namely, (6) and (7) below hold.

∂ ′
= e−Ξ

· ∂ · eΞ , (6)
∆eΞ

= (eΞ
⊗ eΞ )∆. (7)

The notion of sh Leibniz algebra homomorphism is defined to be a map satisfying (6) and (7). Thus (II) says that eΞ is an
sh Leibniz algebra isomorphism.
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Proof. (I) From (4) we have

δ′

n = δn +

−
n=i+j

[δi, ξj] +
1
2!

−
n=i+j+k

[[δi, ξj], ξk] + · · · .

Hence we obtain

∂ ′

n+1 = Nc
n+1δ

′

n = Nc
n+1δn +

−
n=i+j

Nc
n+1[δi, ξj] +

1
2!

−
n=i+j+k

Nc
n+1[[δi, ξj], ξk] + · · ·

= ∂n+1 +

−
n=i+j

[∂i+1,Nc
j+1ξj] +

1
2!

−
n=i+j+k

[[∂i+1,Nc
j+1ξj],N

c
k+1ξk] + · · · .

This gives (5).

(II) The exponential eΞ is well-defined as an isomorphism on T̄ V , because eΞ is finite on V⊗n for each n. For instance, on
V⊗3,

eΞ
≡ 1 + (Nc

2ξ1 + Nc
3ξ2) +

1
2
(Nc

2ξ1)
2.

By a direct computation, one can prove that

exp(XΞ )(∂) = e−Ξ
· ∂ · eΞ .

Thus (6) holds. Since Ξ is a coderivation, eΞ satisfies (7). �

6. Proof of Lemma 4.2

Claim 6.1. Let f : V⊗i
→ V be an i-ary linear map. For each n, we define f (k)

: V⊗n
→ V⊗(n−i+1) by

f (k)(x1, . . . , xn) :=

−
σ

ϵ(σ )(−1)|f |(xσ(1)+···+xσ(k−i))(xσ(1), . . . , xσ(k−i), f (xσ(k+1−i), . . . , xσ(k−1), xk), xk+1, . . . , xn).

Then the coderivation associated with f decomposes as:

f c =

−
k≥i

f (k).

In Section 4.2, we established the lemma for i = 1. We assume the identity of the lemma and prove the case of i + 1, i.e.,
Ni+j[D,D′

] = (Ni+1D,NjD′), or equivalently, Nc
i+j[D,D′

] = [Nc
i+1D,Nc

j D
′
].

We put x := (x1, . . . , xi+j−1). From the definition of N·D, we have

Nc
i+j[D,D′

](x, xi+j) = {Nc
i+j−1[D,D′

](x), xi+j}.

The assumption of the induction yields that

Nc
i+j[D,D′

](x, xi+j) = {[Nc
i D,Nc

j D
′
](x), xi+j}

= {Nc
i D ◦ Nc

j D
′(x), xi+j} − (−1)DD

′

{Nc
j D

′
◦ Nc

i D(x), xi+j}.

Claim 6.1 derives

Nc
j D

′
=

−
k≥j

N (k)
j D′,

which gives

Nc
i+j[D,D′

](x, xi+j) =

i+j−1−
k=j

{Nc
i D ◦ N (k)

j D′(x), xi+j} − (−1)DD
′

{Nc
j D

′
◦ Nc

i D(x), xi+j}. (8)

The first term of (8) becomes
i+j−1−
k=j

{Nc
i D ◦ N (k)

j D′(x), xi+j} =

i+j−1−
k=j

Nc
i+1D ◦ N (k)

j D′(x, xi+j)

= Nc
i+1D ◦ Nc

j D
′(x, xi+j) − Nc

i+1D ◦ N (i+j)
j D′(x, xi+j),

because the coderivation preserves the position of the most right component xi+j. So it suffices to show that

−(−1)DD
′

{Nc
j D

′
◦ Nc

i D(x), xi+j} = Nc
i+1D ◦ N (i+j)

j D′(x, xi+j) − (−1)DD
′

Nc
j D

′
◦ Nc

i+1D(x, xi+j). (9)

We need a lemma.
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Lemma 6.2. For any elements in the Leibniz algebra, A, B, y1, . . . , yn ∈ V ,

Nn+2(A, B, y1, . . . , yn) = −(−1)AB{B,Nn+1(A, y1, . . . , yn)}

+

n−
a=1

(−1)B(y1+···+ya−1)Nn+1(A, y1, . . . , ya−1, {B, ya}, ya+1, . . . , yn).

Proof. We show the case of n = 2. Up to sign,

{B, {{A, y1}, y2}} = {{B, {A, y1}}, y2} + {{A, y1}, {B, y2}}
= {{{B, A}, y1}, y2} + {{A, {B, y1}}, y2} + {{A, y1}, {B, y2}}
= −{{{A, B}, y1}, y2} + {{A, {B, y1}}, y2} + {{A, y1}, {B, y2}},

where −{{A, B}, y1} = {{B, A}, y1} is used. Thus we obtain

{B,N3(A, y1, y2)} = −N4(A, B, y1, y2) + N3(A, {B, y1}, y2) + N3(A, y1, {B, y2}). �

We prove (9). By the definition of coderivation,

Nc
i D(x) =

i+j−1−
k=i

−
σ

E(σ , k − i)(xσ(1), . . . , xσ(k−i),Ni(Dxσ(k+1−i), . . . , xσ(k−1), xk), xk+1, . . . , xi+j−1),

where

E(σ , ∗) := ϵ(σ )(−1)D(xσ(1)+···+xσ(∗)).

Since Nn(x1, . . . , xn) = {{{x1, x2}, . . . , }, xn},

Nn(x1, . . . , xn) = Nn−i+1(Ni(x1, . . . , xi), xi+1, . . . , xn),

which gives

S := −(−1)DD
′

{Nc
j D

′
◦ Nc

i D(x), xi+j} = −(−1)DD
′
i+j−1−
k=i

−
σ

E(σ , k − i)

Ni+j−k+2

Nk−i(D′xσ(1), . . . , xσ(k−i)),Ni(Dxσ(k+1−i), . . . , xσ(k−1), xk), xk+1, . . . , xi+j


.

We put A := Nk−i(D′xσ(1), . . . , xσ(k−i)) and B := Ni(Dxσ(k+1−i), . . . , xσ(k−1), xk), then from Lemma 6.2,

S = T + U, (10)

where

T := −(−1)DD
′
i+j−1−
k=i

−
σ

E(σ , k − i)E1Ni+1

Dxσ(k+1−i), . . . , xσ(k−1), xk,Nj(D′xσ(1), . . . , xσ(k−i), xk+1, . . . , xi+j)


,

U := −(−1)DD
′
i+j−1−
k=i

−
σ

i+j−k−
a=1

E(σ , k − i)E2

×Nj(D′xσ(1), . . . , xσ(k−i), xk+1, . . . , xk+a−1,Ni+1(Dxσ(k+1−i), . . . , xσ(k−1), xk, xk+a), xk+a+1, . . . , xi+j),

where E1 and E2 are appropriate signs given by the manner in the lemma above.

(I)We show the identity,

T = Nc
i+1D ◦ N (i+j)

j D′(x, xi+j). (11)

We replace σ in T with an unshuffle permutation τ along the table,

σ(k + 1 − i) · · · σ(k − 1) k σ(1) · · · σ(k − i)

τ (1) · · · τ(i − 1) τ (i) τ (i + 1) · · · τ(k)

Then the Koszul sign is replaced with ϵ(τ ):

ϵ(τ ) = ϵ(σ )(−1)(xσ(1)+···+xσ(k−i))(xσ(k+1−i)+···+xσ(k−1)+xk),



1110 K. Uchino / Journal of Pure and Applied Algebra 215 (2011) 1102–1111

and then

E(σ , k − i)E1 = −ϵ(σ )(−1)D(xσ(1)+···+xσ(k−i))(−1)AB

= −ϵ(σ )(−1)D(xσ(1)+···+xσ(k−i))(−1)(xσ(1)+···+xσ(k−i)+D′)(xσ(k+1−i)+···+xσ(k−1)+xk+D)

= −ϵ(σ )(−1)(xσ(1)+···+xσ(k−i))(xσ(k+1−i)+···+xσ(k−1)+xk)(−1)D
′(xσ(k+1−i)+···+xσ(k−1)+xk)+DD′

= −ϵ(τ )(−1)D
′(xσ(k+1−i)+···+xσ(k−1)+xk)+DD′

= −ϵ(τ )(−1)D
′(xτ(1)+···+xτ(i−1)+xτ(i))+DD′

= −E ′(τ , i)(−1)DD
′

.

Thus T is equal to

T ′
:=

i+j−1−
k=i

−
τ

E ′(τ , i)Ni+1

Dxτ(1), . . . , xτ(i−1), xτ(i)=k,Nj(D′xτ(i+1), . . . , xτ(k), xk+1, . . . , xi+j)


,

where τ is an (i, k − i)-unshuffle such that τ(i) = k.

Claim 6.3. T ′
= T ′′, where

T ′′
:=

−
ν

E ′(ν, i)Ni+1

Dxν(1), . . . , xν(i−1), xν(i),Nj(D′xν(i+1), . . . , xν(i+j−1), xi+j)


,

where ν is an (i, j − 1)-unshuffle.

Proof. We put k := ν(i) in T ′′. Since ν is an (i, j − 1)-unshuffle, i ≤ k ≤ i + j − 1. Replace ν with τ . This replacement
preserves the order of variables. Hence E ′(τ , i) = E ′(ν, i), which gives the identity of the claim. �

Since T ′′
= Nc

i+1D ◦ N (i+j)
j D′(x, xi+j), we obtain (11).

(II)We show the identity,

U = −(−1)DD
′

Nc
j D

′
◦ Nc

i+1D(x, xi+j). (12)

We replace σ in U with an unshuffle permutation τ along the table,

σ(1) · · · σ(k − i) k + 1 · · · k + a − 1
τ(1) · · · τ(k − i) τ (k + 1 − i) · · · τ(k + a − 1 − i)

σ (k + 1 − i) · · · σ(k − 1) k
τ(k + a − i) · · · τ(k + a − 2) τ (k + a − 1)

Then the Koszul sign is replaced with ϵ(τ ):

ϵ(τ ) = ϵ(σ )(−1)(xσ(k+1−i)+···+xσ(k−1)+xk)(xk+1+···+xk+a−1),

and then

E(σ , k − i)E2 = ϵ(σ )(−1)D(xσ(1)+···+xσ(k−i))(−1)B(xk+1+···+xk+a−1)

= ϵ(σ )(−1)D(xσ(1)+···+xσ(k−i))(−1)(xσ(k+1−i)+···+xσ(k−1)+xk+D)(xk+1+···+xk+a−1)

= ϵ(σ )(−1)(xσ(k+1−i)+···+xσ(k−1)+xk)(xk+1+···+xk+a−1)(−1)D(xσ(1)+···+xσ(k−i)+xk+1+···+xk+a−1)

= ϵ(τ )(−1)D(xτ(1)+···+xτ(k+a−1−i))

= E(τ , k + a − 1 − i) = E(τ ,m − i),

where m := k + a − 1.

Claim 6.4. U = U ′, where

U ′
:= −(−1)DD

′
i+j−1−
m=i

−
τ

E(τ ,m − i)

Nj(D′xτ(1), . . . , xτ(m−i),Ni+1(Dxτ(m+1−i), . . . , xτ(m), xm+1), xm+2, . . . , xi+j),

where τ is an (m − i, i)-unshuffle.
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Proof. Let τ be an (m − i, i)-unshuffle. We put k := τ(m) and a := m + 1 − τ(m). Then we have

(τ (1), . . . , τ (m − i); τ(m + 1 − i), . . . , τ (m),m + 1, . . . , i + j)
= (τ (1), . . . , τ (k − i), k + 1, . . . , k + a − 1; τ(k + a − i), . . . , τ (k + a − 2), k, k + a, . . . , i + j).

One can replace τ with an unshuffle σ ,

(τ (1), . . . , τ (m − i); τ(m + 1 − i), . . . , τ (m),m + 1, . . . , i + j)
= (σ (1), . . . , σ (k − i), k + 1, . . . , k + a − 1; σ(k + 1 − i), . . . , σ (k − 1), k, k + a, . . . , i + j),

which gives the table above. Up to this permutation, we obtain−
τ

=

−
(k,a)

−
σ

where (m − i,m) is fixed and (k, a) runs over all possible pairs. This gives−
m≥i

−
τ

=

−
k≥i

−
a≥1

−
σ

,

which implies the identity of the claim. �

Since U ′
= −(−1)DD

′

Nc
j D

′
◦ Nc

i+1D(x, xi+j), we obtain (12). From (10)–(12), we get the desired identity (9). The proof is
completed.
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