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Abstract

In this paper we apply the elimination technique to the computation of Markov bases, paying
special attention to contingency tables with structural zeros. An algebraic relationship between the
Markov basis for a table with structural zeros and the corresponding complete table is proved. In
order to find the relevant Markov basis, it is enough to eliminate the indeterminates associated with
the structural zeros from the toric ideal for the complete table. Moreover, we use this result for the
computation of Markov bases for some classical log-linear models, such as quasi-independence and
quasi-symmetry, and computations in the multi-way setting are presented.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of contingency tables with structural zeros has received increasing
attention in the last decades. Structural zeros are cells with true probabilities equal to zero.
In such a case, the cell counts are zero regardless of the sample size. Here we consider
contingency tables under the theory of log-linear models. For a general reference, see
Fienberg (1980) or Agresti (2002). In particular, we are interested in exact procedures
for goodness of fit tests.

In recent years, a new exact method for hypothesis testing for log-linear models has
been introduced by Diaconis and Sturmfels (1998). That method is based on a Markov
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chain Monte Carlo approach, in order to navigate into the set of all contingencies with
fixed value of the sufficient statistic. The Markov chain is defined through the notion of the
Markov basis and the computation of Markov bases needs the computation of a system of
generators of a toric ideal. As toric ideals can be computationally very intensive, especially
for large tables, a number of methods have been proposed for simplifying the computations
in special cases. For example see Dobra (2003) for graphical models, Aoki and Takemura
(2003) for 3 × 3 × K tables with fixed two-way marginals, and Rapallo (2003) for some
models for two-way tables.

In this paper we present an easy method for computing the relevant Markov basis for
contingency tables with structural zeros, regardless of the dimension of the table and the
form of the sufficient statistic. The method is also extended to complete tables where single
cell counts are components of the sufficient statistic.

In Section 2 we recall some basic notions about log-linear models and exact goodness
of fit tests, with special attention paid to the Diaconis–Sturmfels algorithm and the notion
of the Markov basis, while in Section 3 we present an elimination-based method for
the computation of the Markov bases. Section 4 is devoted to the presentation of a new
theorem, which leads to a simple computation of the Markov basis for contingency tables
with structural zeros or with single cell counts as components of the sufficient statistic.
Finally, in Section 5 we show some applications to log-linear models for contingency tables
with structural zeros frequently used in statistics, and examples.

2. Log-linear models and inference

We denote the sample space by X , and its cardinality by k = #X , that is the number
of non-zero cells of the table. We also denote the vector of the cell probabilities by p.
Moreover, we denote the vector of the expected counts by μ and the vector of the observed
counts by n. A generic contingency table is a function f : X −→ N.

The sufficient statistic is a function T : X −→ Ns . It can be represented by an s × k
matrix AT ; see Pistone et al. (2001) for details. Let m be the rank of AT . In the log-linear
model theory, it is assumed that the vector log(μ), the log of the expected counts, lies in
the sub-vector space M of Rk generated by the columns of AT . The vector space analysis
of log-linear models is fully developed, e.g., in Haberman (1974). Using the linearity
property, the sufficient statistic is defined for contingency tables by the formula

T ( f ) =
∑
x∈X

T (x) f (x).

This definition implies that T ( f ) = AT f .

Example 1. Let us consider a 2 × 3 contingency table with a structural zero in the cell
(1, 2). The table is depicted below; 0 means a structural zero and the symbol • means a
non-zero cell.

• 0 •
• • •
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Here X = {(1, 1), (1, 3), (2, 1), (2, 2), (2, 3)} and k = 5. The model defined through the
matrix

AT =

⎛
⎜⎜⎝

1 1 1 1 1
0 0 1 1 1
0 0 0 1 0
0 1 0 0 1

⎞
⎟⎟⎠

is an independence model for this table and a sufficient statistic is T1 : X −→ N4 with

T1( f ) = ( f11 + f13 + f21 + f22 + f23, f21 + f22 + f23, f22, f13 + f23).

Note that rank(AT ) = 3. Moreover, the image of AT is also spanned by the sufficient
statistic

T2( f ) = ( f11 + f13, f21 + f22 + f23, f11 + f21, f22, f13 + f23)

which is a most familiar form in the framework of contingency tables, as it is formed by
the row sums and the column sums.

The goodness of fit tests for log-linear models are performed conditionally on the
sufficient statistic, i.e. for a fixed value of the sufficient statistic. A number of methods
for exact tests are given in the literature; see for example Agresti (2001). The most recent
results on non-asymptotic goodness of fit tests are in Diaconis and Sturmfels (1998), where
the theory of toric ideals is used in order to define appropriate Markov Chain Monte Carlo
(MCMC) approximations of the test statistics. Previous works on the special problem of
the quasi-independence model can also be found in Smith et al. (1996).

As the test statistics are computed conditionally on the sufficient statistic, we restrict
the inference to the set of tables with the same value of the sufficient statistic with respect
to the observed table, i.e., to the set

Ft = { f : X −→ N | T ( f ) = t} (1)

where t is the observed value of the sufficient statistic. This set is often called the
reference set and the relevant probability distribution on Ft is the hypergeometric one;
see Bishop et al. (1975) for details.

The Diaconis–Sturmfels algorithm defines a Markov chain on the reference set Ft and it
is a special case of the Metropolis–Hastings algorithm which is based on a set of moves for
constructing the relevant Markov chain. Once we have the right set of moves, the Markov
chain is easy to implement. It is well known that a connected, reversible and aperiodic
Markov chain converges to a stationary distribution. See Diaconis and Sturmfels (1998)
for the convergence theorems and the detailed description of the algorithm. The following
definition, from Diaconis and Sturmfels (1998), is the basis of the method.

Definition 2. A Markov basis of Ft is a set of functions m1, . . . , mL : X −→ Z, called
moves, such that for all i , 1 ≤ i ≤ L,∑

x∈X
mi (x)T (x) = 0, (2)
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where T is the sufficient statistic, and for any f, f1 ∈ Ft there exist a sequence of moves
(mi1 , . . . , miA ) and a sequence (ε j )

A
j=1 with ε j = ±1 such that

f1 = f +
A∑

j=1

ε j mi j and f +
a∑

j=1

ε j mi j ≥ 0 (3)

for all 1 ≤ a ≤ A.

Eqs. (2) and (3) imply that T (m) = 0 for all moves in the Markov basis and thus

T ( f1) = T

(
f +

A∑
j=1

ε j mi j

)
= T ( f ) +

(
A∑

j=1

ε j T (mi j )

)
= T ( f ),

i.e., the value of the sufficient statistic is constant for every table obtained with the moves
in m1, . . . , mL . A set of moves is a Markov basis if and only if the Markov chain on Ft is
connected.

3. Computation of Markov bases

As we have mentioned in the previous section, the main problem in applying the
Diaconis–Sturmfels algorithm is the computation of the relevant Markov basis. In this
section we show how to address this problem using toric ideals; see Diaconis and Sturmfels
(1998).

In the following, we sketch the elimination-based method for the computation of
Markov bases and toric ideals. This method will be used in the proofs. More efficient
algorithms can be found in Bigatti et al. (1999). As a reference in computational
commutative algebra, the reader can refer to Kreuzer and Robbiano (2000).

We consider the field Q of the rational numbers, the indeterminates ξα , α ∈ X , and we
associate with the problem the polynomial ring Q[ξ ], i.e., we identify every cell probability
with an indeterminate. Here ξ is vector notation, meaning ξ = (ξα)α∈X . The algebraic
counterpart of a move m is obtained by decomposing it into a positive and a negative part
m = m+ − m− and defining the binomial

gm = ξm+ − ξm−
. (4)

For example the following move for the 2 × 3 tables

+1 −2 +1
−1 +2 −1

is represented by the binomial

gm = ξ11ξ13ξ
2
22 − ξ2

12ξ21ξ23

in the polynomial ring Q[ξ11, ξ12, ξ13, ξ21, ξ22, ξ23].
Consider the matrix representation AT of the sufficient statistic T : X −→ Ns . This

matrix defines a set of power products {y1, . . . , yk} in a new polynomial ring Q[z], where
k = #X and the power products are defined by yi = za(i), where a(i) is the i -th column of
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the matrix AT . The power products yi , i = 1, . . . , k, induce a ring homomorphism

πT : Q[ξ ] −→ Q[z]
defined by

ξi �−→ yi (5)

for i = 1, . . . , k. Now, define the binomials ξi − yi , for i = 1, . . . , k, in the polynomial
ring Q[ξ, z] and the ideal JT generated by such binomials. The toric ideal IT associated
with the sufficient statistic T is given by

IT = JT ∩ Q[ξ ] := Elim(z,JT ).

An extended example on how this procedure works in the framework of contingency tables
is presented in Rapallo (2003).

The free computer algebra system CoCoA—see CoCoA Team (2004)—has a function
called Toric which directly computes the Gröbner basis of the toric ideal starting from
the matrix representation of the sufficient statistic, and the algorithms implemented in this
function are highly optimized and lead to the results in few seconds, at least in small- or
medium-sized cases.

4. Markov bases and structural zeros

Suppose that we observe d random variables Y1, . . . , Yd on N subjects. Each random
variable Yq has a sample space {1, . . . , Iq }, with q = 1, . . . , d . If we consider the
case of structural zeros, the sample space is X , a subset of the cartesian product X ′ =
{1, . . . , I1} × · · · × {1, . . . , Id }. The set X0 = X ′\X is the set of the structural zeros of the
table. The sufficient statistic for the sample of size 1 is a function T : X −→ Ns .

Definition 3. The function T ′ : X ′ −→ Ns is an extension of T to X ′ if T ′ = T on X .
The function f ′ : X ′ −→ N is a contingency table on X ′ compatible with the contingency
table f on X if f ′ = f on X and f ′ = 0 on X0.

The relevant toric ideal for the complete table with sufficient statistic T ′ is IT ′ =
Elim(z,JT ′), while the toric ideal for the incomplete table with sufficient statistic T is
IT = Elim(z,JT ). The following theorem gives a way of easily computing the toric ideal
IT starting from the toric ideal IT ′ .

Theorem 4. Following the notation above, let IT be the toric ideal associated with the
sufficient statistic T on the sample spaceX and let IT ′ be the toric ideal associated with the
sufficient statistic T ′ on the sample space X ′. Finally, let (ξα)α∈X0 be the indeterminates
corresponding to the structural zeros. Then,

IT = Elim((ξα)α∈X0,IT ′). (6)

Proof. Without loss of generality suppose that ξ1, . . . , ξk are the indeterminates
corresponding to the non-zero cells and the indeterminates ξk+1, . . . , ξk+r are the
indeterminates corresponding to the structural zeros. Note that the ideal IM is computed
starting from the diophantine system T ( f ) = t , where t is the observed value of the
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sufficient statistic T . As for all structural zeros the observed counts are zero, the above
system has the same solutions as{

T ′( f ′) = t

f ′
1 = · · · = f ′

r = 0
(7)

where T ′ is an extension of T as in Definition 3 and f ′ is a contingency table on X ′
compatible with f . The system of polynomial equations is{

ξi = za′(i) for i = 1, . . . , k

ξk+ j = zk+ j for j = 1, . . . , r
(8)

where a′(i) is the i th column of the matrix AT ′ , the matrix representation of T ′. In
particular, notice that ξk+ j = yk+ j for all j = 1, . . . , r . Thus, following the theory in
Chapter 2 of Kreuzer and Robbiano (2000), since ξk+ j = zk+ j , the following chain of
equalities holds:

IT = Elim(z,JT ) = Elim((z, (ξk+ j )
r
j=1),JT ′) = Elim((ξk+ j )

r
j=1,IT ′) .

The proof is now complete.

In Section 5 we will present some applications of Theorem 4 to statistical problems
which occur frequently in statistics. First, we present a simple example.

Example 5. Let us consider the 2 × 3 table with a structural zero in the cell (1, 2) as in
Example 1 and the sufficient statistic

T2( f ) = ( f11 + f13, f21 + f22 + f23, f11 + f21, f22, f13 + f23).

An extension T ′ of T2 is given by

T ′( f ) = ( f11 + f12 + f13, f21 + f22 + f23, f11 + f21, f12 + f22, f13 + f23).

The Gröbner basis for the complete table with sufficient statistic T ′ is

GT ′ = {ξ11ξ22 − ξ12ξ21, ξ11ξ23 − ξ13ξ21, ξ12ξ23 − ξ13ξ22}.
By elimination of the indeterminate ξ12 corresponding to the cell (1, 2), we obtain the
Gröbner basis for the incomplete table with sufficient statistic T2:

GT2 = {ξ11ξ23 − ξ13ξ21}.
Thus, the Markov basis for the incomplete table is formed by making one move, namely

+1 0 −1
−1 0 +1.

The method described above for structural zeros also applies to complete tables, when
single cell counts are components of the sufficient statistic.

Consistently with the above notation, let X ′ be a complete table and let X0 be the
set of cells whose counts are components of the sufficient statistic. Define X = X ′\X0.
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Let T̃ : X ′ −→ Ns+r be the sufficient statistic. Without loss of generality, suppose that the
last r cell counts are components of the sufficient statistic. The diophantine system is

T̃ ( f ′) = t̃ (9)

where t̃ ∈ Ns+r is the observed value of the sufficient statistic T̃ . As ts+1 =
fk+1, . . . , ts+r = fk+r , we have that t̃ = (t̃1, fk+1, . . . , fk+r )

t , with t̃1 ∈ Ns .
The system in Eq. (9) induces the polynomial system{

ξi = zã(i) for i = 1, . . . , k

ξk+ j = zk+ j for j = 1, . . . , r.
(10)

Let T be the restriction of T̃ to X and let T ′ be the extension of T to X ′ as in
Definition 3. As ã j (i) = a j (i) for all i = 1, . . . , k and j = 1 . . . , s, the polynomial system
ξi = za(i), i = 1, . . . , k, is associated with the sufficient statistic T and the last r cells are
structural zeros. Consequently, IT = IT̃ . Thus, we have proved the following result.

Proposition 6. Following the notation above, let IT̃ be the toric ideal associated with the
sufficient statistic T̃ on the sample space X ′ and let IT ′ be the toric ideal associated with
the sufficient statistic T ′ on the sample space X . Finally, let (ξα)α∈X0 be the indeterminates
corresponding to the cells whose counts are components of the sufficient statistic. Then,

IT̃ = Elim((ξα)α∈X0,IT ′). (11)

Note that the computation of the Markov bases does not imply any structure for the set
X . Thus, the connectedness of the Markov chain does not depend on the completeness of
the table.

5. Applications and examples

There are a number of statistical models for contingency tables where structural zeros
play a role. In this section we present two models for square incomplete tables, namely the
quasi-independence model and the quasi-symmetry model. See Agresti (2002), Chapter 7,
for references. Some specific results for the computation of Markov bases for the quasi-
independence model are presented in Rapallo (2003). We show here that the computation of
Markov bases for the quasi-independence model can be carried out within the above theory.

Let X = {1, . . . , I } × {1, . . . , I } be a square two-way table. Following Agresti (2002),
the sufficient statistic for the quasi-independence model on X is

T̃ =
(

I∑
j=1

fi j , i = 1, . . . I,
I∑

i=1

fi j , j = 1, . . . , I, fii , i = 1, . . . , I

)
.

Here, the counts of the main diagonal cells are components of the sufficient statistic. Hence,
we apply Proposition 6. We consider the sufficient statistic

T ′ =
(

I∑
j=1

fi j , i = 1, . . . I,
I∑

i=1

fi j , j = 1, . . . , I

)
, (12)
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we compute IT ′ and we obtain the relevant ideal IT̃ by elimination of the indeterminates
ξ11, . . . , ξI I .

The important issue in this case is that the toric ideal associated with T ′ in Eq. (12) is
the toric ideal of the independence model for complete tables and does not need symbolic
computations, as its Gröbner basis under the DegRevLex term order is

G = {ξi j ξkh − ξihξkj , 1 ≤ i < k ≤ I, 1 ≤ j < h ≤ I };
see Diaconis and Sturmfels (1998) for details and proofs. Note that the DegRevLex term
order is not the term order needed in the elimination step. It just represents an easy way to
define the ideal IT ′ without any symbolic computation.

The same procedure can also be applied to the quasi-symmetry model with sufficient
statistic

T =
(

I∑
j=1

fi j , i = 1, . . . I,
I∑

i=1

fi j , j = 1, . . . , I, fi j + f j i , 1 ≤ i ≤ j ≤ I

)
.

A number of examples of incomplete tables where our methods work are presented in
Bishop et al. (1975), Chapter 5.

Finally, we show an explicit computation in the multi-way case.

Example 7. Let us consider a 3 × 3 × 3 table with a structural zero in the cell (1, 1, 1)

under the complete independence model. The sample space is X = {1, 2, 3}3\{(1, 1, 1)}
and the sufficient statistic is

T =
(∑

j,k

fi j k , i = 1, 2, 3,
∑
i,k

fi j k , j = 1, 2, 3,
∑
i, j

fi, j,k , k = 1, 2, 3

)
(13)

where summations range over the cells in X .
The extension T ′ of T to X ′ = {1, 2, 3}3 has the same expression as in Eq. (13), with

the summations ranging over X ′. The Gröbner basis of the toric ideal IT ′ associated with
T ′ is formed by 162 binomials of degree 2. By elimination of the indeterminate ξ111, we
obtain the Gröbner basis for the ideal IT , which is formed by 160 binomials: 142 binomials
of degree 2 and 18 binomials of degree 3. Note that the computation of the toric ideal IT

by using Theorem 4 needs about 1 s of CPU time, while the direct computation needs
about 70 s.
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