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Suppose that the random vector (X1 , ..., Xq) follows a Dirichlet distribution on
Rq

+ with parameter ( p1 , ..., pq) # Rq
+ . For f1 , ..., fq>0, it is well-known that

E ( f1 X1+ } } } + fqXq)&( p1+ } } } + pq)= f &p1
1 } } } f &pq

q . In this paper, we generalize this
expectation formula to the singular and non-singular multivariate Dirichlet
distributions as follows. Let 0r denote the cone of all r_r positive-definite real
symmetric matrices. For x # 0r and 1� j�r, let det j x denote the j th principal
minor of x. For s=(s1 , ..., sr) # Rr, the generalized power function of x # 0r is the
function 2s (x)=(det1 x)s1&s2 (det2 x)s2&s3 } } } (detr&1 x)sr&1&sr (detr x)sr ; further, for
any t # R, we denote by s+t the vector (s1+t, ..., sr+t). Suppose X1 , ..., Xq # 0r

are random matrices such that (X1 , ..., Xq) follows a multivariate Dirichlet
distribution with parameters p1 , ..., pq . Then we evaluate the expectation
E [2s1

(X1) } } } 2sq
(Xq) 2s1+ } } } +sq+ p((a+ f1 X1+ } } } + fq Xq)&1)], where a # 0r , p=

p1+ } } } + pq , f1 , ..., fq>0, and s1 , ..., sq each belong to an appropriate subset of
Rr

+ . The result obtained is parallel to that given above for the univariate case, and
remains valid even if some of the Xj 's are singular. Our derivation utilizes the
framework of symmetric cones, so that our results are valid for multivariate
Dirichlet distributions on all symmetric cones. � 2001 Academic Press
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hypergeometric function; generalized power function; Jordan algebra; Laplace
transform; Lauricella function; multivariate beta distribution; multivariate gamma
function; Riesz measure; symmetric cone; Wishart distribution.

1. INTRODUCTION

Let r be a positive integer and Vr denote the space of real symmetric r_r
matrices; thus, Vr is a vector space of dimension n=r(r+1)�2. Denote by
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0r the cone of positive-definite elements of Vr , and denote by er the r_r
identity matrix. Let q�2 be an integer, and let p=( p1 , ..., pq) # Rq be such
that pi>(r&1)�2 for all i=1, ..., q.

Let X1 , ..., Xq be random matrices in Vr such that the probability dis-
tribution of (X1 , ..., Xq) is concentrated on the set

Tq=[(x1 , ..., xq) # V q
r : x1 , ..., xq # 0r and x1+ } } } +xq=er].

Then (X1 , ..., Xq) is said to follow the multivariate Dirichlet distribution Dp

on V q
r if the probability density function of (X1 , ..., Xq&1) exists and is

given by

Kp (det x1) p1&(n�r) } } } (det xq&1) pq&1&(n�r) (det(er&x1& } } } &xq&1)) pq&(n�r) ,

where x1 , ..., xq&1 , er&x1& } } } &xq&1 # 0r and Kp is the normalizing
constant.

For any matrix x # Vr and 1� j�r, we denote by det j x the jth principal
minor of x. Further, for s=(s1 , ..., sr) # Rr, the generalized power function of
x # 0r is defined to be

2s(x)=(det1 x)s1&s2 (det2 x)s2&s3 } } } (detr&1 x)sr&1&sr (detr x)sr . (1.1)

For the special case in which x is the diagonal matrix diag(*1 , ..., *r), it is
not difficult to see that 2s(x) has the simple form *s1

1 } } } *sr
r .

We shall adopt the convention that if s=(s1 , ..., sr) # Rr and t # R then
s+t#(s1+t, ..., sr+t). Let Ir=[(z1 , ..., zr) # Rr : zj>( j&1)�2, j=1, ..., r].
For z=(z1 , ..., zr) # Ir , the multivariate gamma function 1r is defined as

1r (z)=(2?) (n&r)�2 `
r

j=1

1 (zj&( j&1)�2).

For the special case in which z1= } } } =zr , we shall denote 1r(z) by 1r(z1);
in this case, 1r(z1) is the well-known multivariate gamma function which
arises naturally in classical multivariate statistical analysis (cf. Muirhead
(1982, p. 61, section 2.1.2)).

Suppose that (X1 , ..., Xq) follows the Dirichlet distribution Dp , s1 , ..., sq

# Rr
+ , a # 0r , and f1 , ..., fq>0. Let s=s1+ } } } +sq and p= p1+ } } } + pq .

In this paper, under appropriate conditions on s1 , ..., sq , and for p1 , ..., pq>
(r&1)�2, we establish the expectation formula

E [2s1
(X1) } } } 2sq

(Xq) 2s+ p((a+ f1 X1+ } } } + fq Xq)&1)]

=Cs, p `
q

i=1

2si+ pi
((a+ f ier)

&1), (1.2)
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where

Cs, p=
1r( p)

1r(s+ p)
`
q

i=1

1r(si+ pi)
1r( pi)

. (1.3)

In fact, we will prove in the main result (Theorem 4.1) that (1.2) is valid
under conditions on p1 , ..., pq more general than those given above.

Some particular cases of (1.2) can be found in the literature. Suppose
r=1, in which case the one-dimensional random variables X1 , ..., Xq follow
a classical Dirichlet distribution. If we set s1= } } } =sq=0 and let a � 0+,
then (1.2) becomes

E ( f1X1+ } } } + fqXq)&( p1+ } } } + pq)= f &p1
1 } } } f &pq

q . (1.4)

The formula (1.4) is known to form the basis of a characterization of the
Dirichlet distribution. Mauldon (1959), in a remarkable article which
appears to have been widely overlooked since its appearance, was first to
utilize (1.4) as the basis for a characterization of the Dirichlet distributions
and to study a more general class of distributions. Other applications of
(1.4), and references thereof, are given by Karlin, Micchelli and Rinott
(1986), Chamayou and Letac (1994), Letac and Scarsini (1998) and Gupta
and Richards (2000).

In the general case, r�1, suppose we set a=diag(*1 , ..., *r) and
si=(si1 , ..., sir) for i=1, ..., q. Then (1.2) reduces to

E [2s1
(X1) } } } 2sq

(Xq) 2s1+ } } } + sq+ p1+ } } } + pq
((a+ f1X1+ } } } + fqXq)&1)]

=2s1+ p1
((a+ f1 e)&1) } } } 2sq+ pq

((a+ fqe)&1)

= `
q

i=1

`
r

j=1

(*i+ f j)
&sij& pi, (1.5)

which is close in form to (1.4). If, further, we set sij=0 and let *j � 0+ for
all i and j then we obtain from (1.5) the result

E det( f1X1+ } } } + fq Xq)&( p1+ } } } + pq)= f &rp1
1 } } } f &rpq

q . (1.6)

This expectation formula for the random matrices X1 , ..., Xq was proved by
Letac and Massam (1998b) and it generalizes (1.4).

For the case in which q=2, Letac and Massam (1998b) also noted that
(1.6) can be extended to the situation in which the random matrices X1 , X2

may be singular. This result can be proved by applying a detailed analysis
of the eigenvalues of a beta-distributed random matrix. Indeed, the
argument requires an application of a celebrated theorem which was
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proved separately in 1939 by five different authors: see Muirhead (1982,
Theorem 3.3.4, p. 112), and Anderson (1996). For q>2, the extension of
(1.6) to the case in which the Dirichlet random variables are singular was
left open; the method of proof for q=2 relies on the computation of
Jacobians and densities and appears to be difficult to extend to the case in
which q>2.

We remarked earlier that the aim of this paper is to establish the expec-
tation formula (1.2). We consider our work as a step toward a study of
characterizations of the multivariate Dirichlet distribution, analogous to
the characterization given in the univariate case by Mauldon (1959). We
shall establish the identity (1.2), in both the singular and non-singular
cases, with methods different from those used by Letac and Massam
(1998b). Our derivation also utilizes the framework of symmetric cones, so
that the final results are valid for multivariate Dirichlet distributions on
cones more general than 0r .

As motivation for our proof of (1.2) in the general case, we will now give
a proof of (1.4). Our proof of (1.2) will be based upon a generalization of
this idea. Let us denote the classical gamma distribution on R, with shape
parameter p>0 and scale parameter 1, by

#p(dy)=
1

1( p)
y p&1 exp(& y) 1( 0, �) ( y) dy,

where, for a given set A, 1A denotes the corresponding indicator function.
Let Y1 , ..., Yq be a sequence of independent random variables with

respective distributions #p1
, ..., #pq

. For t1 , ..., tq> &1, the moment-generat-
ing function of Y1 , ..., Yq is well-known to be

M(t1 , ..., tq) :=E exp(&(t1 Y1+ } } } +tqYq))=(1+t1)&p1 } } } (1+tq)&pq.

(1.7)

Set S=Y1+ } } } +Yq and

(X1 , ..., Xq)=\Y1

S
, ...,

Yq

S + . (1.8)

It is well-known that the random variables S and (X1 , ..., Xq) are mutually
independent. Moreover, (X1 , ..., Xq) has a Dirichlet distribution with param-
eters ( p1 , ..., pq), and S has a gamma distribution #p with p= p1+ } } } +pq .
Thus, another way to evaluate the moment-generating function M is to
introduce the decomposition Y=S(X1 , ..., Xq), evaluate a conditional

120 LETAC, MASSAM, AND RICHARDS



expectation with respect to (X1 , ..., Xq), and then apply the independence of
X and S. Then we obtain

M(t1 , ..., tq)=EX1, ..., Xq
ES [exp(&(t1 X1+ } } } +tqXq) S) | X1 , ..., Xq]

=E(1+t1 X1+ } } } +tqXq)&p. (1.9)

Replacing each t j by fj&1, noting that X1+ } } } +Xq=1, and comparing
the expressions (1.7) and (1.9) for M(t1 , ..., tq), we then obtain the result
(1.4).

In Section 2, we provide some preliminary material on symmetric cones.
This material, which is abstracted from Faraut and Kora� nyi (1994) (hence-
forth abbreviated F�K) has been presented here so as to make the paper
self-contained. Thus, we provide simple guidelines to enable our readers to
translate standard symmetric cone notation into traditional matrix nota-
tion. In Section 3, we assemble some basic facts about the Wishart and
Dirichlet distributions associated with the symmetric cones. Further, we
establish a crucial auxiliary result, Theorem 3.6, needed for the proof of the
main theorem. In Section 4, we state and prove formula (1.2), in complete
generality, i.e., in both the non-singular and singular cases within the con-
text of symmetric cones. We also mention that the fundamental basis on
which our proof rests is that the cone 0r of r_r positive-definite symmetric
matrices, and more generally the symmetric cone associated with a simple
Jordan algebra, has the structure of a Gelfand pair; however we will not
elaborate on this point here. Finally, in Section 5, we provide a connection
between our results and the theory of multiple hypergeometric functions.

2. PRELIMINARIES ON SYMMETRIC CONES

We shall begin with a brief review of the structure of symmetric cones,
providing those properties that are needed for the results that follow. For
a presentation in more detail we refer to F-K.

The prototypical example of a symmetric cone is 0r , the cone of real,
positive-definite, symmetric r_r matrices. The cone 0r is irreducible
because it cannot be decomposed into a direct product of non-zero sym-
metric cones. We shall refer to this example as the classical case. The
Euclidean Jordan algebra associated with 0r is Vr , the linear space of r_r
real symmetric matrices; the algebra Vr also is simple because it contains
no proper ideals. The space Vr is endowed with an inner product ( } , } ) ,
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given by (x, y) :=tr(xy) for all x, y # Vr . Moreover, Vr is a commutative
algebra under the Jordan product x b y := 1

2(x } y+ y } x), where x } y denotes
the standard matrix product. The Jordan product also satisfies a
fundamental identity, called the Jordan identity (cf. F-K (p. 24)); however,
we will not make explicit use of that identity in this paper.

There are five types of irreducible symmetric cones. The cones of self-
adjoint matrices with entries in R, C and H are the most commonly
encountered examples, each of which arises naturally in multivariate
statistical analysis (cf. Andersson (1975), Andersson et al. (1983), Massam
(1994), Casalis and Letac (1996)). The remaining two types are the Lorentz
cone (cf. Jensen, 1988)) and a cone of 3_3 matrices with entries in the
octonions or Cayley numbers (denoted by O). We will generally adopt the
notations for symmetric cones as prescribed by F-K.

Turning to the general context, let V be a simple Euclidean Jordan
algebra. In particular, V is a commutative algebra over R; and V also is a
finite-dimensional Euclidean space, of dimension n, say. The space V is
equipped with an inner product, which we denote by (x, y) (rather than
the standard notation (x | y), as used by F-K). The product of two
elements x, y # V is denoted by x b y; thus the product may be viewed as a
map from V_V into V such that (x, y) [ x b y. In particular, we denote
x b x, the square of x # V, by x2.

Let 0 be the interior of the set [x2 : x # V], the cone of squares in V;
then the space 0 is an irreducible symmetric cone. Moreover, any
irreducible symmetric cone is isomorphic to a cone of this type (cf. F-K
(p. 49, Theorem III.3.1)), so that the classification of the irreducible sym-
metric cones reduces to the classification of the simple Euclidean Jordan
algebras. Therefore, to work within the framework of symmetric cones is
equivalent to working within the framework of Jordan algebras.

Let GL(V) denote the general linear group of invertible linear transfor-
mations on V, and denote by O(V) the subgroup of GL(V) containing all
orthogonal linear transformations. We let G be the connected component
of the subgroup of GL(V) which preserves 0; then, G contains the identity
element in GL(V). Further, we denote by K=O(V) & G the orthogonal
subgroup of G.

For each x # V we define the regular representation L(x): V � V by
L(x)( y)=x b y, y # V. For each x # V, the trace of x is tr(x) :=(x, e) and
the inner product on V is given by (x, y) :=tr(x b y). Following F-K
(p. 29), for any x # V, we also denote by det(x) the determinant of x, which
may be defined explicitly in terms of the coefficients of the characteristic
polynomial of the linear transformation L(x).

The map P(x) : V � V, defined by

P(x)=2L(x)2&L(x2) (2.1)
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is called the quadratic representation of V (cf. F-K, p. 32) because it satisfies
the identity

P(P(x) y)=P(x) P( y) P(x).

Moreover, it can be deduced from the definition of P that

tr(P( y) x2)=tr(P(x) y2)=(x2, y2) (2.2)

for all x and y in V.
An element c # V is idempotent if c2=v. A scalar ; is an eigenvalue of

c # V if there exists a nonzero x # V such that c b x=;x. If c is idempotent
then it can be shown that its eigenvalues must be equal to 1, 1�2 or 0 (cf.
F-K, p. 62). An idempotent c is primitive if it is nonzero and is not express-
ible as the sum of two nonzero idempotents. Two idempotents c1 and c2

are orthogonal if c1 b c2=0. A maximal system of orthogonal primitive
idempotents is called a Jordan frame. It may be shown that any Jordan
frame has the same number, r, of elements; and r is called the rank of 0.
If [c1 , ..., cr] is a Jordan frame, then c1+ } } } +cr=e, the identity element
in V. By constructing a Jordan frame we are simply choosing a basis for
the vector space V.

Let us choose and fix a Jordan frame [c1 , ..., cr] in V and define a collec-
tion of subspaces, Vj=[x # V : cj b x=x] and Vij=[x # V : ci b x= 1

2 x and
cj b x= 1

2 x], i, j=1, ..., r. Each Vj , for j=1, ..., r, is a one-dimensional sub-
algebra. Further, the subspaces Vij , for i, j=1, ..., r with i{ j, all have a
common dimension, called the Peirce constant, denoted by d. The constant
d is independent of the choice of Jordan frame; for convenience, we denote
d�2 by d $. It may be shown that n, d and r are related by the formula

n=r+d $r(r&1).

In the classical case of Vr , the space of r_r real symmetric matrices, all
of these concepts are familiar. In this case, d=1 and n=r(r+1)�2; the
identity element e # V is er , the usual r_r identity matrix. Further, 0 is the
cone of r_r positive-definite symmetric matrices, and its closure 0� is the
cone of positive r_r positive semi-definite symmetric matrices. The trace and
determinant functions on V reduce to the classical trace and determinant
functions, respectively, on Vr ; and a natural Jordan frame for Vr is obtained
by choosing cj as the r_r matrix whose ( j, j)-th entry is 1 and all other
entries are zero. Next, for each x # Vr , the linear map P(x) : Vr � Vr ,
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defined in (2.1), is given by P(x)( y)=x } y } x, y # Vr , and (2.2) corresponds
to the simple formula,

tr( y } x } x } y)=tr(x } x } y } y).

For any r_r real matrix a, denote by a* the transpose of a. Then G, the
connected component of the identity in GL(Vr), is the group of linear maps
ga : Vr � Vr such that ga(x)=a } x } a*, x # Vr , where a is invertible. If a is
an orthogonal r_r matrix then ga # K; and conversely, every element of K
is of this form.

In the case of the algebras of complex and quaternionic matrices of order
r, the values of d are 2 and 4, respectively. In the case of the Lorentz
algebra of dimension n, r=2 and d=n&2. In the case of the Albert
algebra, which corresponds to the cone of 3_3 matrices with entries in the
octonions, n=27, r=3 and d=8. We refer the reader to a summary listing
(cf. F-K, page 97) of all five types of Jordan algebras, their associated sym-
metric cones, ranks and Peirce constants.

Returning to the general context, define the set

I0=[(z1 , ..., zr) # Rr : z j>( j&1) d $, j=1, ..., r].

Then the multivariate gamma function for the cone 0, denoted 10 , is
defined on the domain I0 by

10(z)=(2?) (n&r)�2 `
r

j=1

1(zj&( j&1) d $),

where z=(z1 , ..., zr) # I0 . For cases in which z1= } } } =zr , we denote 10(z)
by 10(z1). As before, we retain the convention that, for any s=(s1 , ..., sr)
# Rr and t # R, s+t#(s1+t, ..., sr+t).

3. THE WISHART AND DIRICHLET DISTRIBUTIONS

3.1. The Wishart Distributions on V. The Gindikin set is defined to be
the set of real numbers

4=[d $, 2d $, ..., d $(r&1)] _ (d $(r&1), �) (3.1)

(cf. F-K, p. 137). For p # 4 it is known (cf. F-K, p. 123) that there exists
a positive measure +p on 0� such that the Laplace transform of +p exists for
&% # 0 and equals

|
0�

exp((%, x) ) +p(dx)=(det &%)&p. (3.2)
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For p>d $(r&1), the measure +p has a density with respect to the
Lebesgue measure dx on the cone 0. Then we have

+p(dx)=
1

10( p)
(det x) p&(n�r) 10(x) dx,

a result which follows directly from F-K (p. 123, Theorem VII.1.1). If
p= jd $ where j is an integer, 1� j�r&1, then +p is a singular measure
which is concentrated on the set of elements of rank j of 0� .

For p # 4 and _ # 0, the Laplace transform (3.2) implies that the
measure #p, _ on 0� , defined by

#p, _(dx)=(det _)&p exp(&(x, _&1) ) +p(dx),

is a probability distribution. This distribution is called the Wishart distribu-
tion on V, with shape parameter p and scale parameter _. The Laplace
transform of #p, _ exists for _&1&% # 0 and is equal to

|
0�

exp((%, x) ) #p, _(dx)=[det (e&P(_1�2)(%))]&p. (3.3)

Further details of the Wishart distribution on 0 may be obtained from
Artzner and Fourt (1974), Fourt (1974), Massam (1994), Gupta and
Richards (1995), Casalis and Letac (1996) and Letac and Massam (1998a).

In the classical case of 0r , the Wishart distribution is usually denoted by
Wr(m, 7). The correspondence between the two notations is given by
Wr(m, 7)##p, _ with m=2p and 7=_�2. Then (x, _&1) =tr (x7&1)�2,
and the Laplace transform (3.3) reduces to the familiar formula [det
(er&27%)]&m�2, 1

2 7&1&% # 0r (cf. Muirhead (1982, p. 87)). For purposes
of applications, interest has focused traditionally on integer values of m;
however, in this article there is no need for restriction to integer values of
m so that p is free to take any value in 4.

3.2. The Dirichlet distributions on V. In order to study the singular
case, it is necessary to present a nontraditional description of the Dirichlet
distributions. We remark that, even in the classical matrix case, there exist
singular versions of the Dirichlet distributions, and we shall pay special
attention to them throughout the present paper. We proceed toward the
definition of the Dirichlet distributions as follows.

Let q be an integer, q�2. Let p1 , ..., pq # 4, the Gindikin set defined in
(3.1), be such that p :=p1+ } } } + pq>d $(r&1). For _ # 0, let Y1 , ..., Yq be
mutually independent random variables in V with Wishart distributions
#p1, _ , ..., #pq , _ , respectively, and set S=Y1+ } } } +Yq . Then, using the
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Laplace transform (3.3), we see immediately that S has the Wishart dis-
tribution #p, _ . Moreover, since p>d $(r&1) then, with probability one, the
distribution of S is concentrated on 0 and is invertible.

We define the random variable (X1 , ..., Xq) taking values in Vq by

(X1 , ..., Xq)=(P(S&1�2)(Y1), ..., P(S&1�2)(Yq)). (3.4)

It is not difficult to see that (3.4) is a natural generalization to the sym-
metric cone setting of the univariate transformation (1.8). The distribution
of (X1 , ..., Xq) in (3.4) is called the Dirichlet distribution on V with
parameter p=( p1 , ..., pq), and is denoted by Dp . This distribution was
studied in the absolutely continuous (or nonsingular) case by Artzner and
Fourt (1974) and by Massam (1994, Theorems 4.1 and 4.2). In the general
case, the distribution was studied by Casalis and Letac (1996, p. 774). In
those papers, it is proved that, analogous to the one-dimensional setting,
the random variables (X1 , ..., Xq) and S are independent and the distribu-
tion of (X1 , ..., Xq) does not depend on the parameter _; this result can be
established by application of Basu's theorem in the nonsingular case. In the
general case, however, it is simpler to prove directly the independence of
(X1 , ..., Xq) and S, as is done by Casalis and Letac (1996, Theorem 3.1),
than to prove that the conditions of Basu's theorem are satisfied.

Next, we define the set

Tq :=[(x1 , ..., xq) # Vq : xi # 0� , x1+ } } } +xq=e]. (3.5)

Since P(S &1�2)(S)=e then, clearly, (X1 , ..., Xq) # Tq .
Let B0(p) be the beta function for the cone 0, defined by

B0(p)=
10( p1) } } } 10( pq)
10( p1+ } } } + pq)

.

Suppose that pi>d $(r&1), i=1, ..., q. Then Massam (1994) proved that
the image of Dp under the projection of Tq on Vq&1, defined by
(x1 , ..., xq) [ (x1 , ..., xq&1), has the density

1
B0(p)

(det x1) p1&(n�r) } } } (det xq) pq&(n�r) , (3.6)

where xq=e&x1& } } } &xq&1 . Simply put, if p i>d $(r&1) for all
i=1, ..., q, then the random variable (X1 , ..., Xq&1) has a density function
which is given by (3.6).

In situations in which pi�d $(r&1), the corresponding Xi are singular,
and then explicit expressions for the law Dp are complicated (cf. Uhlig
(1994), Di� az-Garcia and Gutie� rrez Ja� imez (1997)) and so cannot be
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applied here. To treat both the singular and non-singular cases, we now
introduce the generalized Pochhammer symbol (or rising factorial).

3.3. The generalized Pochhammer symbol. For s�0 and p>0, the
classical Pochhammer symbol ( p)s may be defined as

( p)s=
1(s+ p)

1( p)
.

Using the multivariate gamma function, we extend this definition as follows.
Let s=(s1 , ..., sr) # Rr

+ and let p # 4, the Gindikin set. For p>d $(r&1),
the generalized Pochhammer symbol is defined to be

( p)s :=
10(s+ p)

10( p)
= `

r

j=1

1(s j+ p&( j&1) d $)
1( p&( j&1) d $)

.

As a special case, if s=(s1 , ..., sj0&1 , 0, ..., 0) and p=( j0&1) d $ for some
j0 # [1, ..., r], then

( p)s= `
j0&1

j=1

1(sj+( j0& j) d $)
1(( j0& j) d $)

.

The generalized Pochhammer symbol is also defined in F-K (p. 129 and
230), for the case in which s1 , ..., sr is a non-increasing sequence of non-
negative integers and p is a complex number. In our definition, the pair
( p, s) belongs to a different domain; however, our definition is compatible
with the definition in F-K whenever the two domains coincide.

We shall use the Pochhammer symbol in several ways. For now, let us
observe that it can be used to simplify an expression such as (1.2) by
writing the normalizing constant Cs, p in (1.3) in a simpler manner as

Cs, p=
( p)s1

} } } ( p)sq

( p)s

(3.7)

when pj>d $(r&1). However the main reason for introducing the
Pochhammer symbol is to provide a meaning for (3.7) above even in case
some pj belong to the singular part, [d $, 2d $, ..., (r&1) d $], of the Gindikin
set 4. For in that case, the constant Cs, p in (1.2) and (1.3) is undefined.

3.4. The generalized power functions 2s . Following F-K (p. 122), we
first choose a Jordan frame [c1 , ..., cr] of V. Clearly, for each j=1, ..., r,
c1+ } } } +cj is an idempotent in V. Now define

V(c1+ } } } +cj , 1) :=[x # V : (c1+ } } } +cj) b x=x],
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j=1, ..., r; then V(c1+ } } } +cj , 1) is a subalgebra of V of rank j. We denote
by 2j (x) the determinant of x in the Jordan subalgebra V(c1+ } } } +cj , 1),
as defined in F-K (p. 122). For s=(s1 , ..., sr) # Rr, we define the generalized
power function

2s(x)=(21(x))s1&s2 (22(x))s2&s3 } } } (2r&1(x))sr&1&sr (2r(x))sr .

In case 2j (x)=0, we adopt the usual convention that (2j (x))0=1.

Remark 3.5. In the classical case of the matrix cone over R, the for-
mula which represents 2s(x) as a product of powers of principal minors is
given in (1.1). In the case of the matrix cones over C, H or O, expressions
for the determinant, principal minors, and generalized power function 2s

are well-known and are similar to (1.1). The Lorentz cone, however, is less
familiar to readers, so we shall provide an explicit description of the prin-
cipal minors for that cone.

For n�2, the Lorentz cone is the space

Ln=[(x1 , ..., xn) # Rn : x2
1&x2

2& } } } &x2
n>0, x1>0].

For x=(x1 , ..., xn) # Ln , the first principal minor on Ln is the function
det1(x) :=x2

1 ; the second principal minor, or determinant, is the function
det2(x) :=x2

1&x2
2& } } } &x2

n .
For s=(s1 , s2) # R2 and x=(x1 , ..., xn) # Ln , it now follows that the

generalized power function is 2s (x)=x2(s1&s2)
1 (x2

1&x2
2& } } } &x2

n)s2.

We are now in position to formulate a crucial result.

Theorem 3.6. Let p # 4 and +p be the measure defined by (3.2). For
s # Rr and _ # 0, the Laplace transform

|
0�

exp(&(x, _&1) ) 2s(x) +p(dx)

converges in the following cases:

(1) p>d $(r&1) and sj�0 for all j=1, 2, ..., r;

(2) p=d $( j0&1) for some j0 # [2, 3, ..., r], sj�0 for all j=1, 2, ...,
j0&1 and sj=0 for all j= j0 , ..., r.

In either case, we have

|
0�

exp(&(x, _&1) ) 2s(x) +p(dx)=( p)s 2s+ p(_). (3.8)
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Proof. In the non-singular case (1), which corresponds to the con-
tinuous part of the Gindikin set 4, the result (3.8) is a reformulation of
Prop. VII.1.2 in F-K (p. 124).

In the singular case (2), the details of the proof are rather delicate, and
rely on results obtained by Lajmi (1998) (cf. Hassairi and Lajmi (1999,
Theorem 2.2)). As in F-K (p. 138), for u�0, set

=(u)={0
1

if u=0,
if u>0.

Further, let 5 denote the image of the function S : Rr
+ � R r

+ , with

u=(u1 , ..., ur) # Rr
+ [ S(u)=(s1 , ..., sr) # Rr, (3.9)

where

sk={u1 ,
uk+d $(=(u1)+ } } } +=(uk&1)),

if k=1,
if 2�k�r.

For s # 5, Lajmi (1998, Chapt. 1), establishes the existence of the positive
Riesz measure Rs , which is defined as the measure on 0� whose Laplace
transform is given by

|
0�

exp(&(x, _&1) ) Rs(dx)=2s(_)

for _ in 0.
Furthermore, Lajmi defines a set of minimal elements in 5 such that any

s in 5 can be written uniquely as a sum �k
j=1 s( j) of minimal elements. By

the convolution property of the Laplace transform, we then obtain the
Riesz measure Rs as a convolution,

Rs=Rs(1) * } } } *Rs(k) .

Therefore the problem of the existence of Rs is thus reduced to the case in
which s itself is minimal. For such a minimal s, Lajmi (1998) applies the
results of Lassalle (1987) to establish the existence of Rs .

We shall give here a sketch of Lajmi's proof only for a special minimal
element of interest to us, namely s+ p, where p=d $( j0&1) for some
j0=2, 3, ..., r, sj�0 for all j=1, 2, ..., j0&1 and sj=0 for all j= j0 , ..., r.
With S denoting the map defined in (3.9), the corresponding u such that
s+ p=S(u) is

uj={sj+ p&( j&1) d $,
0,

j=1, ..., j0&1
j= j0 , ..., r.

In particular, we risk no confusion by considering u as an element of R j0&1.
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Let c=c1+ } } } +cj0&1 , where [c1 , ..., cr] is the fixed Jordan frame of V.
Let V(c, 1) and V(c, 1�2) be the eigenspaces of c corresponding to the
eigenvalues 1 and 1�2, respectively. We also denote by detc , 2c

u(x) and 0c

the determinant, generalized power function and cone, respectively,
associated with the Jordan algebra V(c, 1). We now consider the measure
#u on 0c_V(c, 1�2) defined by

#u(dx, dv)=
2c

u(x)(detc x)&1&d $( j0&2)

10c
(u)(2?)d $( j0&1)(r+1& j0) . (3.10)

We also consider the map : from 0c _V(c, 1�2) to V defined by

(x, v) [ x+2 - x b v+(e&c) b v2, (3.11)

where - x is the unique element in 0c whose square is x. Then Lajmi
(1998, The� ore� me 1.4) proves that Rs+ p equals :(#u), the image of #u under
:. Note that this result holds also for the case in which s=0, and then we
denote the corresponding u by u0 ; in this case Rp is the familiar measure
+p which generates the Wishart distributions with p as the shape parameter.
A lengthy but straightforward computation shows that

#u(dx, dv)=( p)s 2s(:(x, v)) #u0
(dx, dv). (3.12)

Applying the map : in (3.11) to both sides of (3.12) we obtain

Rs+ p=( p)s 2sRp ,

which is the desired result.
We close this section by remarking that the hypotheses on the si 's in

Theorem 3.6 are sufficient. These hypotheses can be made less restrictive,
however the corresponding formulation of the theorem would then be far
more complicated. A similar remark holds also for Theorem 4.1 below.

4. THE EXPECTATION FORMULA

In the following we will choose and fix a Jordan frame, and denote by
2s the generalized power function associated with that frame.

We are now in position to state and prove the main result.

Theorem 4.1. Let p1 , ..., pq # 4 where p :=p1+ } } } + pq>d $(r&1).
For i=1, ..., q, let si=(si1 , ..., sir) # Rr satisfying the following restrictions:
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(1) For any i such that pi>d $(r&1), then si, j�0 for all j=1, 2, ..., r.

(2) For any i such that pi=d $( j0&1) for some j0 where 2� j0�r,
then si, j�0 for all j=1, 2, ..., j0&1 and s i, j=0 for all j= j0 , ..., r.

Let p=( p1 , ..., pq), s=s1+ } } } +sq , and (X1 , ..., Xq) be a random
variable on Vq with the Dirichlet distribution Dp , as defined by (3.4). Then,
for a # 0 and f1 , ..., fq # R+ , we have

E [2s1
(X1) } } } 2sq

(Xq) 2s+ p((a+ f1 X1+ } } } + fq Xq)&1)]

=
1

( p)s

`
q

i=1

( pi)si
2si+ pi

((a+ fi e)&1). (4.1)

Proof. Let Y1 , ..., Yq be independent Wishart random variables with a
common scale parameter _=a&1 and respective shape parameters
p1 , ..., pq . Then the random variable S=Y1+ } } } +Yq has a Wishart dis-
tribution with shape parameter _ and scale parameter p. Since p>d $(r&1)
then, almost surely, the inverse S&1 exists. Moreover, without loss of
generality, we may write

(X1 , ..., Xq)=(P(S&1�2)(Y1), ..., P(S&1�2)(Yq)).

The basic idea of the proof, as explained in the introduction, is to evaluate
by two different methods the moment-generating function

MY1, ..., Yq
( f1 , ..., fq) :=E _exp (&(e, f1Y1+ } } } + fq Yq) ) `

q

i=1

2si
(Yi)&.

(4.2)

The first method of evaluation simply utilizes the mutual independence of
Y1 , ..., Yq and Theorem 3.6. Thus, in (3.8) we replace p by pi , s by si , and
_&1 by _&1+ fie. Noting that _&1+ fi e # 0, we obtain for each i=1, ..., q,

E [exp(&(e, fi Yi) ) 2si
(Yi)]=(det _)&pi ( pi)si

2si+ pi
((_&1+ fie)&1).

The product of these expressions for all i=1, ..., q leads to the result

MY1, ..., Yq
( f1 , ..., fq)=(det _)&p `

q

i=1

( pi)si
2si+ pi

((_&1+ f ie)&1). (4.3)

The second method of evaluating (4.2) is more subtle. We shall use the
fact that (X1 , ..., Xq) and S are mutually independent, and then we write
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Yi=P(S 1�2)(Xi), i=1, ..., q, and P(S 1�2)=tSkS , where tS is in the tri-
angular group T associated with the fixed Jordan frame (see F-K,
Chap. VI), and kS # K, the orthogonal group. (In the classical case, ts is the
mapping x [ ts(x)=t } x } t$ where t is the lower triangular matrix such
that, in the basis corresponding to the chosen Jordan frame, s=t } t$; and
the mapping ks=t&1

s P(s1�2), is x [ t&1 } s1�2 } x } s1�2 } (t&1)$).
On applying the identity (2.2) to x=S1�2 and y=( f1 X1+ } } } + fq Xq)1�2,

we obtain

(e, f1Y1+ } } } + fqYq) =tr( f1Y1+ } } } + fqYq)

=tr(P(S1�2)( f1 X1+ } } } + fq Xq))

=( f1 X1+ } } } + fqXq , S).

Substituting this result in (4.2) and applying the well-known property of
conditional expectations, E( } )=E(E[ } | S]), we obtain

MY1, ..., Yq
( f1 , ..., fq)

=E E _exp(&( f1 X1+ } } } + fq Xq , S) ) `
q

i=1

2si
(tS kS(Xi)) | S&. (4.4)

Next, we use the fact that the law L(X1 , ..., Xq) of (X1 , ..., Xq) is invariant
under the action of K on Vq; specifically, for all k in K we have

L(k(X1), ..., k(Xq))=L(X1 , ..., Xq). (4.5)

This invariance property has been proved by Casalis and Letac (1996,
Theorem 3.1(i)); however we can give here a direct proof, as follows. Sup-
pose s # 0 and k # K then, by decomposing s using a suitable Jordan frame,
we find that (k(s))&1�2=k(s&1�2). Thus

P((k(s))&1�2)=kP(s&1�2) k*=kP(s&1�2) k&1.

Hence for all s in 0 and y in V, we have kP((k(s))&1�2)( y)=
P((k(s))&1�2)(k( y)). Thus

(k(X1), ..., k(Xq))=(k(P(S&1�2)(Y1)), ..., k(P(S&1�2)(Yq)))

=(P((k(S))&1�2)(k(Y1)), ..., P((k(S))&1�2)(k(Y1))).

Now k(Y1), ..., k(Yq), and therefore k(S) also, have Wishart distributions
with scale parameter k(_). Since the distribution of X1 , ..., Xq does not
depend on _ then the proof of (4.5) is complete.
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Applying the crucial property of independence of (X1 , ..., Xq) and S, and
the invariance property (4.5), it is clear that we can omit kS in (4.4). Then
(4.4) becomes

MY1, ..., Yq
( f1 , ..., fq)

=E E _exp(&( f1X1+ } } } + fq Xq , S) ) `
q

i=1

2si
(tS(Xi)) | S&. (4.6)

Next, we apply the identity

2si
(tS(Xi))=2si

(tS(e)) 2si
(X i),

i=1, ..., q (cf. F-K, Proposition VI.3.10, p. 114), and the fact that tS(e)=S
to obtain

`
q

i=1

2si
(tS(e))=2s(tS(e))=2s(S).

We substitute these equalities in (4.6) and ignore the conditioning with
respect to S since S and X are independent. Then (4.6) becomes

MY1, ..., Yq
( f1 , ..., fq)

=E _exp(&( f1X1+ } } } + fqXq , S) ) 2s(S) `
q

i=1

2si
(Xi)&. (4.7)

We now rewrite (4.7) by conditioning with respect to X1 , ..., Xq and, in the
conditional expectation E( } | X1 , ..., Xq), we factorize out all terms which
depend on X1 , ..., Xq only. This leads to the result

MY1, ..., Yq
( f1 , ..., fq)

=E `
q

j=1

2sj
(Xj) E[2s(S) exp(&( f1X1+ } } } + fqXq , S) ) | X1 , ..., Xq ] .

(4.8)

In the final stage in the proof, we need to evaluate the conditional expec-
tation, E[ } | X1 , ..., Xq], appearing in (4.8). We again shall use the facts
that the random variables (X1 , ..., Xq) and S are independently distributed
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and that S also has a Wishart distribution #p, _ . Replacing _&1 in (3.8) by
_&1+ f1 X1+ } } } + fq Xq , which itself belongs to 0, then we obtain

E [2s(S) exp(&( f1X1+ } } } + fq Xq , S) ) | X1 , ..., Xq]

=(det _)&p ( p)s 2s+ p((_&1+ f1X1+ } } } + fqXq)&1),

and (4.8) reduces to

MY1, ..., Yq
( f1 , ..., fq)

=(det _)&p ( p)s E 2s+ p((_&1+ f1X1+ } } } + fqXq)&1) `
q

j=1

2sj
(Xj)).

(4.9)

By comparing the expressions for MY1, ..., Yq
( f1 , ..., fq) in (4.9) and in (4.3),

and noting that a=_&1, we obtain the desired result. Then the proof is
complete.

To conclude this section, we note that by using the explicit descriptions
of principal minors provided in Remark 3.5, the right-hand side of (4.1)
can be written down in a straightforward manner for each of the five types
of symmetric cones.

5. CONCLUDING REMARKS

A referee kindly noted the following connection between our results and
the theory of Lauricella functions. Formula (1.4), which deals with the
univariate Dirichlet distribution, has also been proved in the literature as
a particular case of a Lauricella function. Indeed, for a, pi>0 and
0< fi<2, i=1, ..., q, Carlson (1963) defined the multiple hypergeometric
function

R(a; p1 , ..., pq ; f1 , ..., fq)

:= :
�

m1=0

} } } :
�

mq=0

(a)m1+ } } } +mq

( p1+ } } } + pq)m1+ } } } +mq

`
q

i=1

( pi)mi

mi !
(1& f i)

mi .

It follows from a formula given by Carlson (1963, Eq. (7.10)) that, with the
notation of (1.4) in our paper,

R(a; p1 , ..., pq ; f1 , ..., fq)=E( f1 X1+ } } } + fqXq)&a.
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This clearly yields (1.4) for the case in which a= p1+ } } } + pq . Formula
(2.3.5) of Exton (1976) provides the same result.

For the case in which q=2 and p1 , p2�d $(r&1), there is also a connec-
tion between formula (1.6) and the Gaussian hypergeometric functions of
matrix argument (cf. Muirhead, 1982). This connection can be extended to
any symmetric cone 0, in which case the expectation formula appears in
terms of the Gaussian hypergeometric functions on 0, denoted by 2F1 (cf.
F-K, p. 329). For q=2 and p1 , p2>d $(r&1), we have (X1 , X2) # T2 , the
set defined in (3.5); then, by (3.6), the marginal density of X1 is

1
B0( p1 , p2)

(det x1) p1&(n�r) det(e&x1) p2&(n�r), (5.10)

x1 , e&x1 # 0. Since X2=e&X1 it follows that

f1 X1+ f2X2= f2e+( f1& f2) X1= f2(e& f0 X1),

where f0=( f2& f1)� f2 . By (5.10), for any p # R, | f0 |<1, and p1 , p2>
d $(r&1),

E det(e& f0X1)&p=
1

B0( p1 , p2) |
x1, e&x1 # 0

(det x1) p1&(n�r) det(e&x1) p2&(n�r)

_det(e& f0 x1)&p dx1

=2 F1( p, p1 ; p1+ p2 ; f0e),

where the last equality follows from F-K, (p. 330, Proposition XV.3.2).
Assuming also that f1 , f2>0, we then deduce that

E det( f1 X1+ f2X2)&p= f &rp
2 2F1( p, p1 ; p1+ p2 ; f0e). (5.11)

Since 2F1( p1+ p2 , p1 ; p1+ p2 ; x)=det(e&x)&p1 (cf. F-K, p. 330, Proposi-
tion XV.3.4(i)), then it follows that

E det( f1X1+ f2X2)&( p1+ p2)=f &r( p1+ p2)
2 det((1& f0) e)&p1

=f &r( p1+ p2)
2 (1& f0)&rp1

#f &rp1
1 f &rp2

2 . (5.12)

The above derivation proceeded under the additional assumption that
| f0 |<1; however, this assumption can be removed by elementary
analyticity considerations, so that (5.12) holds for all f1 , f2>0.
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The formula (5.11) also leads to simple evaluations for values of p other
than p1+ p2 . For instance, suppose that p= p1+ p2+1; then by a second
application of F-K (p. 330, Proposition XV.3.4(i) to (5.11)), we obtain

E det( f1X1+ f2X2)&( p1+ p2+1)

= f &r( p1+ p2+1)
2 det((1& f0) e)&p1

_2F1(&1, p2 ; p1+ p2 ; & f0(1& f0)&1e).

This latter 2F1 , by virtue of the parameter &1, reduces to a finite series,
each term of which can be calculated explicitly from F-K (p. 329). After a
lengthy, but elementary, calculation we obtain

E [det( f1X1+ f2 X2)&( p1+ p2+1)]

= f &rp1
1 f &r( p2+1)

2 :
r

k=0

\&
1
d $

&k+1+k \
p1

d $
&k+1+k \

1
d $

+r&k+k

\p1+ p2

d $
&k+1+k \

n
d $r

&k+1+k \
1
d $+k

_\ r
k+ \1&

f2

f1+
k

.

Thus, even for q=2, a small change in the exponent of det( f1X1+ f2X2)
leads to an expectation formula which cannot be reduced to closed form.
This result underscores the remarkable nature of the closed expression
(4.1), our main result.

Finally, we remark that for q=2, some special cases of the evaluation
formula (4.1) can be given an interpretation in terms of a class of Gaussian
hypergeometric functions treated by Gindikin (1964), Section 4.
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