Linear Preservers on Powers of Matrices

Gin-Hor Chan
Department of Mathematics
National University of Singapore
Singapore

and

Ming-Huat Lim
Department of Mathematics
University of Malaya
Malaysia

Submitted by F. Uhlig

ABSTRACT

This paper is concerned with linear maps L on $n \times n$ matrices such that (i) $L(A^k) = L(A)^k$ for all A, where k is a fixed integer ≥ 2; or (ii) L preserves idempotent or tripotent matrices, respectively.

1. INTRODUCTION

Let F be a field. Let $M_n(F)$ and $S_n(F)$ be the vector spaces of all $n \times n$ matrices and symmetric matrices over F respectively. Let k be a fixed integer greater than one. In this paper we characterize linear maps L on $M_n(F)$ that satisfy $L(A^k) = L(A)^k$ for all A when char $F = 0$ or char $F > k$. For linear maps L on $S_n(F)$ we obtain a similar result when F is algebraically closed. For $k = 2, 3$, we need only the weaker hypothesis that L preserves idempotent and tripotent matrices respectively to obtain the structure of L. The proofs depend on the structure of linear maps that preserve rank less than or equal to one; see [6, 7]. The result for idempotent preservers on $M_n(F)$ was obtained independently by Beasley and Pullman in [1].
2. LINEAR MAPS THAT COMPUTE WITH THE kTH POWER FUNCTION

In this section we consider linear maps L on $M_n(F)$ and $S_n(F)$ such that $L(A^k) = L(A)^k$, where k is a fixed integer greater than one. We shall need the following two simple but interesting results.

Lemma 1. Let L be a linear map on $M_n(F)$, where $|F| \geq 3$. If L sends rank one idempotents to rank one or zero matrices, then rank $A \leq 1$ implies that rank $L(A) \leq 1$.

Proof. Let A be a rank one matrix which is not a scalar multiple of an idempotent. Then there exists a nonsingular matrix Q such that

$$A = Q \begin{pmatrix} u \\ 0 \\ \vdots \\ 0 \end{pmatrix} Q^{-1},$$

where $u = (\lambda_1, \ldots, \lambda_n)$ is a nonzero vector. Thus $A^2 = \lambda_1 A$, and therefore we must have $\lambda_1 = 0$. Let $B = QE_11Q^{-1}$. Then $B^2 = B$ and hence rank $L(B) \leq 1$. For any nonzero $\lambda \in F$, the matrix $A + \lambda B$ is a scalar multiple of an idempotent. It follows that $L(A) + \lambda L(B) = L(A + \lambda B)$ is of rank one or zero. As $|F| \geq 3$, this is only possible if rank $L(A) \leq 1$. \[\square\]

Lemma 2. Let L be a linear map on $S_n(F)$, where $|F| \geq 5$. If L sends rank one idempotents to rank one or zero matrices, then rank $A \leq 1$ implies that rank $L(A) \leq 1$.

Proof. Let A be any rank one matrix in $S_n(F)$ which is not a scalar multiple of an idempotent. Then $A = cu^t u$ for some nonzero scalar c and some nonzero row vector $u = (u_1, \ldots, u_n)$ with $uu^t = 0$. We may assume $u_1 \neq 0$ and $c = 1$. Let $0 \neq \lambda \in F$ be such that $2u_1 + \lambda \neq 0$. Let $B_{\lambda} = (\lambda + u_1, u_2, \ldots, u_n)^t (\lambda + u_1, u_2, \ldots, u_n)$. Then $B_{\lambda}^2 = \lambda(2u_1 + \lambda) B_{\lambda}$ and hence B_{λ} is a scalar multiple of idempotent. Note that $B_{\lambda} = A + \lambda M_{\lambda}$ for some symmetric matrix M_{λ}. Hence $L(A) + \lambda L(M_{\lambda})$ is of rank one or zero. By looking at the 2×2 minors of $L(A) + \lambda L(M_{\lambda})$, we see that every 2×2 minor of $L(A)$ has determinant equal to zero, since $|F| \geq 5$. Hence rank $L(A) \leq 1$. \[\square\]
An $n \times n$ matrix A is called k-potent if $A^k = A$. Throughout this section, we assume that $k \geq 2$.

Lemma 3. Let $|F| > k$, and L be a nonzero linear map on $M_n(F)$ preserving k-potent matrices. Then $L(E_{ii}) \neq 0$ for all i.

Proof. Suppose that $L(E_{ii}) = 0$ for some i. Then for any $j \neq i$, that $E_{ii} + \lambda E_{ij}$ is k-potent implies that $L(E_{ii} + \lambda E_{ij}) = \lambda L(E_{ij})$ is k-potent for all $\lambda \in F$. Since $|F| > k$, $L(E_{ij}) = 0$. Similarly, we have $L(E_{ji}) = 0$, since $E_{ii} + \lambda E_{ji}$ is k-potent. On the other hand, for each $\beta \in F$,

$$(1 - \beta)E_{ii} + (\beta - \beta^2)E_{ij} + E_{ji} + \beta E_{jj}$$

is idempotent, and hence $\beta L(E_{jj})$ is k-potent. Hence $L(E_{jj}) = 0$. This again implies that $L(E_{js}) = 0$ for all $s \neq j$. Hence $L = 0$, a contradiction. This shows that $L(E_{ii}) \neq 0$ for all i. \blacksquare

If L is a nonzero linear map on $M_n(F)$ such that $L(A^k) = L(A)^k$ for all A, where $|F| > k$, then L preserves k-potent matrices and hence $L(E_{ii}) \neq 0$ for all i. For symmetric matrices, we have the following lemma.

Lemma 4. Let $\text{char } F = 0$ or $\text{char } F > k$. Let L be a nonzero linear map from $S_n(F)$ into $M_n(F)$ such that $L(A^k) = L(A)^k$ for all A. Then $L(E_{ii}) \neq 0$ for all i.

Proof. Suppose that $L(E_{ss}) = 0$ for some s. For each $j \neq s$, let $B_j = E_{sj} + E_{js}$. Then $E_{ss}B_jE_{ss} = 0$, $B_jE_{ss}B_j = E_{jj}$, $E_{ss}B_j + B_jE_{ss} = B_j$, and

$$B_j^p = \begin{cases} E_{ss} + E_{jj} & \text{if } p \text{ is even}, \\ B_j & \text{if } p \text{ is odd}. \end{cases}$$

Therefore,

$$L\left((E_{ss} + tB_j)^k \right) = L \left(E_{ss} + t \sum_{p=0}^{k-1} E_{ss}^p B_j E_{ss}^{k-p-1} + t^{k-1} \sum_{p=0}^{k-1} B_j^p E_{ss} B_j^{k-p-1} + \text{sum of other terms} \right)$$

$$= tL(B_j) + t^{k-1}L \left(\sum_{p=0}^{k-1} B_j^p E_{ss} B_j^{k-p-1} \right) + \text{sum of other terms},$$

$$\left[L(E_{ss} + tB_j) \right]^k = t^k L(B_j)^k.$$
Thus by comparing the coefficients of t, we have $L(B_j) = 0$. If k is even, $B_j^k = E_{ss} + E_{jj}$ and

$$L(E_{jj}) = L(E_{ss} + E_{jj}) = L(B_j^k) = L(B_j)^k = 0.$$

If k is odd,

$$\sum_{p=0}^{k-1} B_j^p E_{ss} B_j^{k-p-1} = \left[\frac{k + 1}{2}\right] E_{ss} + \left[\frac{k - 1}{2}\right] E_{jj}.$$

Hence by comparing the coefficients of t^{k-1}, we also have $L(E_{jj}) = 0$. Repeating the same process on E_{jj} for different p, we have $L(E_{pp}) = L(E_{jp} + E_{pj}) = 0$ for all j and p. Hence L is a zero map, a contradiction.

Remark 1. If F is assumed to be algebraically closed and the hypothesis on L is weakened to $L(A^k) = L(A)^k$ for all diagonalizable matrices A, then the same conclusion of Lemma 4 holds. One needs only to observe that $E_{ss} + tB_j$ is diagonalizable for infinitely many $t \in F$ in the proof of Lemma 4.

Remark 2. Lemma 4 also holds when L is a linear map on the $n \times n$ complex Hermitian matrices. The same proof works if we let $B_j = E_{sj} + E_{js}$ or $i(E_{sj} - E_{js})$.

For convenience, we call two $n \times n$ matrices X and Y orthogonal if $XY = YX = 0$.

Lemma 5. Let $\text{char } F = 0$ or $\text{char } F > k$. Let U be a subspace of $M_n(F)$ such that $A^k \in U$ for all $A \in U$, and L a linear map from U into $M_n(F)$ such that $L(A^k) = L(A)^k$ for all $A \in U$. Let $X, Y \in U$ be two orthogonal k-potent matrices. Then $L(X)$ and $L(Y)$ are orthogonal.

Proof. Consider

$$L\left((X + tY)^k\right) = L(X^k + t^k Y^k) = L(X + t^k Y) = L(X) + t^k L(Y),$$

$$L(X + tY)^k = [L(X) + tL(Y)]^k$$

$$= L(X) + t \sum_{p=0}^{k-1} L(X)^p L(Y) L(X)^{k-p-1} + \text{sum of other terms}.$$
Let \(B = \sum_{p=0}^{k-1} L(X)^p L(Y) L(X)^{k-p-1} \). Then a comparison of the coefficients of \(t \) shows that \(B = 0 \). Furthermore,

\[
L(X)B = BL(X) + L(X)^{k} L(Y) - L(Y) L(X)^{k}.
\]

Thus \(L(X)L(Y) = L(Y)L(X) \) and hence \(L(X)^{k-1} L(Y) = (1/k) B = 0 \). It follows that

\[
L(X)L(Y) = L(X)^{k} L(Y) = L(X)L(X)^{k-1} L(Y) = 0.
\]

This completes the proof.

COROLLARY 1. Let \(U \) and \(L \) be as in Lemma 5. Let \(X \) and \(Y \) be orthogonal idempotents in \(U \). Then \(L(X) \) and \(L(Y) \) are orthogonal.

LEMMA 6. Let \(L \) be a nonzero linear map as in Lemma 5. If \(U \) is the space \(S_n(F) \) or \(M_n(F) \), then \(L(E_{ii})^{k-1} \), \(i = 1, \ldots, n \), are mutually orthogonal nonzero idempotents and \(L(I_n)^{k-1} = I_n \).

Proof. For each \(i \),

\[
\left[L(E_{ii})^{k-1} \right]^2 = L(E_{ii})^{2k-2} = L(E_{ii})^k L(E_{ii})^{k-2} = L(E_{ii}) L(E_{ii})^{k-2} = L(E_{ii})^k \frac{1}{k}.
\]

Thus \(L(E_{ii})^{k-1} \) is a nonzero idempotent by Lemma 3 and Lemma 4. By Corollary 1, \(L(E_{11}), \ldots, L(E_{nn}) \) are mutually orthogonal and so are \(L(E_{11})^{k-1}, \ldots, L(E_{nn})^{k-1} \). Therefore \(L(E_{11})^{k-1} + \cdots + L(E_{nn})^{k-1} = I_n \). Furthermore

\[
L(I_n)^{k-1} = \left[L(E_{11}) + \cdots + L(E_{nn}) \right]^{k-1} = I_n.
\]

THEOREM 1. Let \(\text{char } F = 0 \) or \(\text{char } F > k \). Let \(L \) be a nonzero linear map on \(M_n(F) \) such that \(L(A^k) = L(A)^k \) for all \(A \). Then there exists a nonsingular matrix \(P \) such that

\[
L(A) = \lambda PAP^{-1} \quad \text{for all } A
\]

or

\[
L(A) = \lambda APA^{-1} \quad \text{for all } A,
\]

where \(\lambda^{k-1} = 1 \).
Proof. Let A be a rank one idempotent. Then there exists a nonsingular matrix N such that $A = NE_{11}N^{-1}$. Let T be a linear map on $M_n(F)$ defined by

$$T(X) = L(NXN^{-1}).$$

Then T satisfies the assumption of the theorem, and $T(E_{11}) = L(A)$. By Lemma 6, $T(E_{11})^k$ is of rank one and so is $L(A) = T(E_{11})^k$. Therefore, by Lemma 1, L preserves rank less than or equal to one, and it follows from a result in [6] that either

$$L(A) = \begin{cases} PAQ & \text{for all } A \\ PA'Q & \text{for all } A \end{cases}$$

for some matrices P and Q, or $\text{Im } L$ consists of rank one and zero matrices. Since $L(I_n)^{k-1} = I_n$, $L(A)$ is of form (1). Furthermore, $(PQ)^{k-1} = I_n$ implies that P and Q are nonsingular. We may assume $L(A) = PAQ$ for all A.

Let $QP = D = (d_{ij})$. By Lemma 5, for distinct i and j,

$$d_{ij}(PE_{ij}Q) = (PE_{ii}Q)(PE_{jj}Q) = 0.\text{ Also we have } d_{ii}^{k-1}(PE_{ii}Q) = (PE_{ii}Q)^k = PE_{ii}Q \neq 0.$$

Thus $d_{ij} = 0$ and $d_{ii}^{k-1} = 1$. Hence $D = \text{diag}(d_{11}, \ldots, d_{nn})$. Now we take

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \oplus 0.$$

Then

$$A^kD = \begin{pmatrix} d_{11} & kd_{22} \\ 0 & d_{22} \end{pmatrix} \oplus 0$$

and

$$(AD)U = \begin{pmatrix} d_{11}^k & \sum_{p=0}^{k-1} d_{11}^p d_{22}^{k-p} \\ 0 & d_{22}^k \end{pmatrix} \oplus 0.$$
Since
\[A^k D = P^{-1} (PA^k Q) P = P^{-1} (PAQ)^k P = (AD)^k, \]
we have
\[k-1 \sum_{p=0}^{k-1} d_{11}^p d_{22}^{k-p} = kd_{22}. \]
Then
\[\sum_{p=0}^{k} d_{11}^p d_{22}^{k-p} = kd_{22} + d_{11}. \]
Multiplying both sides by \(d_{11} - d_{22} \) to obtain
\[d_{11}^{k+1} - d_{22}^{k+1} = (k - 1)d_{11}d_{22} + d_{11}^2 - kd_{22}^2. \]
As \(d_{ii} = d_{ii} \) for all \(i \), we therefore have \((k - 1)d_{22}(d_{11} - d_{22}) = 0 \). Hence \(d_{11} = d_{22} \). Similarly we can show that \(d_{ii} = d_{jj} \) for all \(i, j \). This concludes the result.

Remark 3. In [5], Hua obtained the structure of bijective additive maps \(L \) on space of all \(n \times n \) matrices over a division ring such that \(L(I_n) = I_n \) and \(L(ABA) = L(A)L(B)L(A) \) for all \(A, B \).

Theorem 2. Let \(F \) be algebraically closed of characteristic 0 or greater than \(k \). Let \(L \) be a nonzero linear map on \(S_n(F) \) such that \(L(A^k) = L(A)^k \) for all \(A \). Then there exists an orthogonal matrix \(P \) such that
\[L(A) = \lambda PAP^t \]
for all \(A \), where \(\lambda^{k-1} = 1 \).

Proof. Let \(A \) be a rank one idempotent in \(S_n(F) \). Then there exists an orthogonal matrix \(Q \) in \(M_n(F) \) such that \(QAQ^t = E_{11} \). Hence we may assume that \(A = E_{11} \). By Lemma 6, \(L(A) \) is of rank one, and hence by Lemma 2 and
Corollary 3 in [7], we have either

\[L(A) = PAP^t \quad \text{for all } A \] (2)

for some matrix \(P \), or

\[\text{Im } L = \langle M \rangle \]

for some rank one matrix \(M \) in \(S_n(F) \). Since \(L(I_n) \) is nonsingular by Lemma 6, \(L \) is of the form (2) and \(P \) is nonsingular.

Now let \(P^tP = D = (d_{ij}) \). Then for \(s \neq j \), Corollary 1 implies that

\[d_{sj}(PE_{sj}P^t) = (PE_{ss}P^t)(PE_{jj}P^t) = 0. \]

Also we have

\[d_{ss}^{-1}(PE_{ss}P^t) = (PE_{ss}P^t)' = PE_{ss}P^t \neq 0. \]

Thus \(d_{sj} = 0 \) and \(d_{ss}^{-1} = 1 \). Hence \(D = \text{diag}(d_{11}, \ldots, d_{nn}) \). Suppose \(d_{11} \neq d_{22} \). Let

\[A = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \neq 0, \quad \text{where } i^2 = -1. \]

Then \(A^2 = 0 \) and hence \(I(A)^k = I(A^k) = I(0) = 0 \). On the other hand \(L(A) = PADP^{-1} \), and

\[AD = \begin{pmatrix} d_{11} & id_{22} \\ id_{11} & -d_{22} \end{pmatrix} \neq 0 \]

is not nilpotent (since \(d_{11} - d_{22} \neq 0 \)), which is a contradiction. Thus \(d_{11} = d_{22} \). Similarly \(d_{11} = d_{jj} \) for every \(j \), and hence \(P^tP = \alpha I_n \) with \(\alpha^{k-1} = 1 \). This completes the proof.

Remark 4. Theorem 1 and Theorem 2 are false if \(\text{char } F = p > 0 \) and \(k = p^s \) for some positive integer \(s \). Take \(V = S_n(F) \) or \(M_n(F) \). Let \(B \) be a fixed \(k \)-potent matrix in \(V \). Then the linear map \(L \) on \(V \) defined by

\[L(A) = A + (\text{tr } A)I_n \quad \text{or} \quad L(A) = \langle \text{tr } A \rangle B \]

has the property that \(L(A^k) = L(A)^k \) for all \(A \) in \(V \), since \((\text{tr } A)^k = \text{tr}(A^k) \).
3. LINEAR MAPS PRESERVING IDEMPOTENT OR TRIPOTENT MATRICES

In this section we shall characterize all linear maps \(L \) on \(n \times n \) matrices preserving \(k \)-potents, where \(k = 2 \) or 3.

Lemma 7. Let \(\text{char } F \neq 2, 3 \) and \(K = \{ A \in M_n(F) | A^3 = A \} \). Then for any \(A, B \in K \), one has \(A \pm B \in K \) if and only if \(AB = BA = 0 \).

Proof. Suppose that \(A \pm B \in K \). Then

\[
(A + B)^3 = A^3 + A^2B + BA^2 + ABA + AB^2 + B^2A + BAB + B^3
\]
\[
= A + B,
\]
\[
(A - B)^3 = A^3 - A^2B - BA^2 - ABA + AB^2 + B^2A + BAB - B^3
\]
\[
= A - B.
\]

Thus we have

\[
A^2B + BA^2 + ABA + AB^2 + B^2A + BAB = 0,
\]
\[
- A^2B - BA^2 - ABA + AB^2 + B^2A + BAB = 0.
\]

After adding and subtracting, we get respectively

\[
AB^2 + B^2A + BAB = 0,
\]
\[
A^2B + BA^2 + ABA = 0.
\]

Multiplying by \(X \) on the left and right of (3) for \(X = B \) and \(B^2 \), we have

\[
2BAB + B^2AB^2 = 0,
\]
\[
2B^2AB^2 + BAB = 0.
\]

Thus \(BAB = 0 \), and from (3),

\[
\]
Hence

$$BA = B^3A = B(B^2A) = B(-AB^2) = -BAB B = 0.$$

By a similar argument we can show from (4) that $AB = 0$.

The converse is obvious.

Lemma 8. Let L be a nonzero linear map on $M_n(F)$ preserving k-potent matrices, where $k = 2, 3$ and $\text{char } F = 0$ or $\text{char } F > k$. Then $L(E_{11}), \ldots, L(E_{nn})$ are mutually orthogonal rank one matrices.

Proof. Lemma 2 in [2] and Lemma 7 imply that $L(E_{11}), \ldots, L(E_{nn})$ are mutually orthogonal matrices. The result follows then from Lemma 3 that $L(E_{ii}) \neq 0$ for all i.

Theorem 3. Let L be a nonzero linear map on $M_n(F)$ preserving k-potent matrices, where $k = 2, 3$ and $\text{char } F = 0$ or $\text{char } F > k$. Then there exists a nonsingular matrix P such that

$$L(A) = \lambda PAP^{-1} \quad \text{for all } A$$

or

$$L(A) = \lambda PA'P^{-1} \quad \text{for all } A,$$

where $\lambda^{k-1} = 1$.

Proof. Let A be a rank one idempotent. Then A is similar to E_{11}. By Lemma 8 we see that $L(A)$ is of rank one. By a result in [6] and Lemma 1, we have that either

$$L(A) = \begin{cases} PAQ & \text{for all } A \\ PA'Q & \text{for all } A \end{cases}$$

(5)

for some matrices P and Q, or $\text{Im } L$ consists of rank one or zero matrices. For $k = 2$, Lemma 8 implies that $L(I_n) = \sum_{i=1}^{n} L(E_{ii}) = I_n$, and hence L is of the form (5) and $PQ = I_n$.

Let \(k = 3 \). By Lemma 8, \(L(I_n) \) is a nonsingular matrix, and thus \(L \) is of the form (5). Let \(QP = D = (d_{ij}) \). Then for \(i \neq j \),
\[
d_{ij}(PE_{ij}Q) = (PE_{ii}Q)(PE_{jj}Q) = 0,
\]
\[
d_{ii}^2(PE_{ii}Q) = (PE_{ii}Q)^3 = PE_{ii}Q \neq 0.
\]
Thus \(d_{ij} = 0 \) and \(d_{ii}^2 = 1 \). Hence \(D = \text{diag}(d_{11}, \ldots, d_{nn}) \). Suppose that \(d_{11} \neq d_{22} \). Take
\[
A = \begin{pmatrix}
-1 & -2 \\
1 & 2
\end{pmatrix} \oplus 0.
\]
Then \(A^2 = A \) and \(L(A) = PADP^{-1} \) or \(PA^tDP^{-1} \). Since
\[
AD = \pm \begin{pmatrix}
-1 & 2 \\
1 & -2
\end{pmatrix} \oplus 0 \quad \text{and} \quad A^tD = \pm \begin{pmatrix}
-1 & -1 \\
-2 & -2
\end{pmatrix} \oplus 0
\]
are both not 3-potent, we have a contradiction. Hence \(d_{11} = d_{22} \). Similarly we can show that \(d_{ii} = d_{jj} \) for all \(i, j \). This completes the proof.\(\blacksquare \)

When \(k = 2 \), Theorem 3 was obtained independently by Beasley and Pullman in [1]. The result with the additional hypothesis that \(L(I_n) = I_n \) is due to Beasley and Pullman.

Theorem 4. Let \(F \) be an algebraically closed field with \(\text{char } F \neq 2 \) or 3. Let \(L \) be a nonzero linear map on \(S_n(F) \) preserving \(k \)-potent matrices, where \(k = 2, 3 \). Then there exists an orthogonal matrix \(P \) such that
\[
L(\lambda A) = \lambda PAP^t
\]
for all \(A \) where \(\lambda^{k-1} = 1 \).

Proof. Let \(E_1, \ldots, E_n \) be \(n \) mutually orthogonal rank one idempotents in \(S_n(F) \). Then \(L(E_i) \) is \(k \)-potent for each \(i \). By Lemma 2 in [2] and Lemma 7, \(L(E_1), \ldots, L(E_n) \) are mutually orthogonal. Hence for any \(\lambda_1, \ldots, \lambda_n \) in \(F \),
\[
L\left(\left(\sum_{i=1}^{n} \lambda_i E_i\right)^k\right) = \left[L\left(\sum_{i=1}^{n} \lambda_i E_i\right)\right]^k.
\]
Let \(A \in S_n(F) \) be a diagonalizable matrix. Then \(A \) is a linear combination of \(n \) mutually orthogonal rank 1 idempotents in \(S_n(F) \). Hence \(L(A^k) = L(A)^k \). Thus by Remark 1, \(L(E_i) \neq 0 \) for each \(i \). This proves that \(L(E_i) \) is of rank one. By Lemma 2, \(L \) preserves matrices of rank \(\leq 1 \). Applying Corollary 3 in [7] and using arguments similar to that in the proof of Theorem 3, we obtain the result.

Remark 5. Let \(L \) be a nonzero linear map on the space of \(n \times n \) complex Hermitian matrices preserving \(k \)-potent matrices, where \(k = 2, 3 \). Following the arguments in the proof of Theorem 4 and using a theorem of Loewy on rank 1 preserves in [8], we can show that \(L(A) = \lambda PAP^* \) or \(L(A) = \lambda P^*A^*P^* \) for some unitary matrix \(P \) and some real number \(\lambda \) with \(\lambda^{n-1} = 1 \). For \(k = 2 \), this was obtained in [9] by a different method. The analogous result for real symmetric matrices also holds.

REFERENCES

Received 25 July 1990; final manuscript accepted 22 March 1991