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a b s t r a c t

Our aim is to define the kernel of a simple and uniform programming model – the reactor
model –which can serve as a foundation for building and evolving internet-scale programs.
Such programs are characterized by collections of loosely-coupled distributed components
that are assembled on the fly to produce a composite application. A reactor consists of two
principal components:mutable state, in the form of a fixed collection of relations, and code,
in the form of a fixed collection of rules in the style of Datalog. A reactor’s code is executed
in response to an external stimulus, which takes the form of an attempted update to the
reactor’s state. As in classical process calculi, the reactor model accommodates collections
of distributed, concurrently executing processes. However, unlike classical process calculi,
our observable behaviors are sequences of states, rather than sequences of messages.
Similarly, the interface to a reactor is simply its state, rather than a collection of message
channels, ports, or methods. One novel feature of our model is the ability to compose
behaviors both synchronously and asynchronously. Also, our use of Datalog-style rules
allows aspect-like composition of separately-specified functional concerns in a natural
way.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In modern web applications, the traditional boundaries between browser-side presentation logic, server-side ‘‘business’’
logic, and logic for persistent data access and query are rapidly blurring. This is particularly true for so-called web mash-
ups, which bring a variety of data sources and presentation components together in a browser, often using asynchronous
(‘‘AJAX’’) logic. Such applications must currently be programmed using an agglomeration of data access languages, server-
side programming models, and client-side scripting models; as a consequence, programs have to be entirely rewritten or
significantly updated to be shifted between tiers. The large variety of languages involved alsomeans that components do not
compose well without painful amounts of scaffolding. Our ultimate goal is thus to design a uniform programming language
forweb applications, other human-driven distributed applications, anddistributed business processes orweb serviceswhich
can express application logic and user interaction using the same basic programming constructs. Ideally, such a language
should also simplify composition, evolution, and maintenance of distributed applications. In this paper, we define a kernel
programming model which is intended to address these issues and serve as a foundation for future work on programming
languages for Internet applications.
The reactormodel is a synthesis and extension of key ideas from three linguistic foundations: synchronous languages [1–

3], Datalog [4], and the actormodel [5]. FromDatalog, we get an expressive, declarative, and readily composable language for
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Fig. 1. Reactor syntax.

data query. From synchronous languages, we get a well-defined notion of ‘‘event’’ and atomic event handling. From actors,
we get a simple model for dynamic creation of processes and asynchronous process interaction.
A reactor consists of two principal components: mutable state, in the form of a fixed collection of relations, and code,

in the form of a fixed collection of rules in the style of Datalog [4]. A reactor’s code is executed in response to an external
stimulus, which takes the formof an attempted update to the reactor’s pre-reaction state (pre-state).When a stimulus occurs,
the reactor’s rules are applied concurrently and atomically in a reaction to yield a response state, which becomes the initial
state for the next reaction. In addition to determining the response state, evaluation of rules in a reaction may spawn new
reactors, or generate new stimuli for the currently executing reactor or for other reactors. Importantly, newly-generated
stimuli are processed asynchronously, in later reactions. However, we provide a simple mechanism to allow collections of
reactors to react together as a unit when appropriate, thus providing a form of distributed atomic transaction.
As in classical process calculi, e.g., pi [6], the reactor model accommodates collections of distributed, concurrently

executing processes. However, unlike classical process calculi, our observable behaviors are sequences of states, rather
than sequences of messages. Similarly, the interface to a reactor is simply its state (‘‘REST’’ style [7]), rather than a
collection of message channels, ports, or methods. We accommodate information hiding by preventing certain relations
in a reactor’s state from being externally accessible, and by allowing the public relations to serve as abstractions of more
detailed private state (as in database views). A significant advantage of using data as the interface to a component, and
Datalog as a basis for defining program logic, is that the combination is highly ‘‘declarative’’: it allows separately-specified
state updates (written as rules) to be composed with minimal concern for control- and data-dependence or evaluation
order.
Contributions. We believe that the reactor model is unique in combining the following attributes harmoniously in
a single language: (1) data, rather than ports or channels as the interface to a component; (2) synchronous and
asynchronous interaction in the same model, with the ability to generate processes dynamically; (3) expressive data query
and transformation constructs; (4) the ability to specify constraints/assertions as a natural part of the core language;
(5) distributed atomic transactions; and (6) declarative, compositional specification of functionality in an ‘‘aspect-like’’
manner. We believe that Internet components can be developedmore productively and composedmore readily when these
attributes are provided in a single programming model.
This paper is an updated and extended version of [8]. This version fills in many semantic details absent from the earlier

version, corrects errors, and adds additional examples.

2. Reactor basics

A reactor consists of a collection of relations and rules, which together constitute a reactive, atomic, stateful unit of
distribution. The full reactor syntax is given in Fig. 1.
Consider the declaration for OrderEntryA in Fig. 2. OrderEntryA defines a class of reactors that are intended to

log orders—say, for an on-line catalog application. Reactor instances are created dynamically, using a mechanism we will
describe in Section 3.2.
The state of a reactor is embodied in a fixed collection of persistent relations. Relations are sets of (τ1, . . . , τn) tuples,

where each τi is one of the types int, string, or ref reactor-type-name. The primitive types have the usual meanings.
Reactor references, of the form ref reactor-type-name, are described in Section 3.2. Relations are empty when a reactor is
instantiated. In addition to persistent relations, whose values persist between reactions, a reactor can declare ephemeral
relations. These relations are written and read in the same manner as persistent relations, but they are re-initialized as
empty with every reaction.
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Fig. 2. Order entry: Variations.

The state of OrderEntryA consists of two persistent relations, orders and log, each of which is a collection of 3-tuples
of integer values. Relation orders has access annotation public, which means that the contents of ordersmay be read or
updated by any client. By ‘‘update’’, we simply mean that tuples may be added to or deleted from orders; no other form of
update is possible. Relation log, lacking any access annotation, is private, the default, and may thus only be read or updated
by the reactor that contains log.
A reaction begins when a reactor receives an update bundle from an external source. An update bundle is a partial map

from the set of relations of the recipient to pairs of sets (∆+,∆−), where ∆+ and ∆− are sets of tuples to be added and
deleted, respectively, from the target relation. For any update bundle (∆+,∆−), we require that ∆+ ∩ ∆− = ∅ and
∆+ ∪ ∆− 6= ∅. In the examples that follow, an update bundle will typically contain an update to a single relation, usually
adding or deleting only a single tuple. However, an update bundle can in general update any of the public relations of a
reactor, and add and delete an arbitrary number of tuples at a time.
The state of a reactor before an update bundle is received is called its pre-state. A reaction begins when the contents of an

update bundle is applied atomically to the pre-state of a reactor, yielding its stimulus state. The stimulus state of a reaction
is (conceptually) a copy of each relation of the reactor with the corresponding updates from the update bundle applied.
So, for example, in the case of OrderEntryA, if relation orders contained the single tuple (0, 1234, 3) prior to a reaction,
and a reaction is initiated by applying an update bundle with ∆+ = {(1, 5667, 2)} and ∆− = ∅, then the stimulus value
of orders at the beginning of the reaction will be the relation {(0, 1234, 3), (1, 5667, 2)}. We will refer to the ‘‘value of
relation r in the stimulus state’’ and ‘‘the stimulus value of r ’’ interchangeably.
If a reactor contains no rules, the state of its relations at the end of a reaction – its response state – is the same as the

stimulus state, and the reaction stores the stimulus values back to the corresponding persistent relations. Hence in its
simplest form, a reaction is simply a state update. However, most reactors will have one or more rules which compute a
response state distinct from the reactor’s stimulus state (Section 2.1).
Rule evaluation can also define sets of additions and deletions to/from the future state of either local relations or – via

reactor references – relations of other reactors. These sets form the update bundles – one bundle per reactor instance
referenced in a reaction – that initiate subsequent reactions in the same or other reactors. Update bundles thus play a role
similar to messages in message-passing models of asynchronous computation.
From the point of view of an external observer, a reaction occurs atomically, that is, no intermediate states of the

evaluation process are externally observable, and no additional update bundles may be applied to a reactor until the current
reaction is complete.
Fig. 3 illustrates the life cycle of a typical collection of reactors, both from the point of view of an external observer (the

top half of the figure) and internally (the bottom half of the figure schematically depicts reactor M during reaction i). The
pre-state of reactor M during reaction i is labeled -Si, its stimulus state is labeled ^Si, its future state is labeled S^i, and its
response state is labeled Si. The terms pre-state, stimulus state, response state, and future state are meaningful only relative
to a particular reaction, because one reaction’s response state becomes the next reaction’s pre-state, and references to a
reactor’s future state are used (along with the pre-state) to define the stimulus state for a subsequent reaction. The only
‘‘true’’ state, which persists between reactions, is the response state. An external observer therefore sees only a sequence of
response states (more specifically, the response values of public relations). Each rule of a reactor can refer programmatically
to relation values in all four states: it can read the pre-state of a relation (schematically depicted as -r in Fig. 3), the stimulus
state (^r), and the response state (r); it can write the response state and the future state (r^).
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Fig. 3. Reaction schematic.

2.1. Rule valuation

Reactor rules are written in the style of Datalog [4,9]; their syntax is given in Fig. 1. The single rule of OrderEntryA can
be read as ‘‘ensure that log contains whatever tuples are in orders’’. The right-hand side, or body of a reactor rule consists
of one or more body clauses. In OrderEntryA, there is only one body clause, a match predicate of the form orders(id,
itemid, qty). A match predicate is a pattern which binds instances of elements of tuples in the relation named by the
pattern (here, orders) to variables (here, id, itemid, and qty). As usual, we use ‘_’ to represent a unique, anonymous
variable. Evaluation of the rule causes the body clause to be matched to each tuple of orders and binds variables to
corresponding tuple elements. Since the head clause on the left side of the rule contains the same variables as the body
clause, it ensures that log will contain every tuple in orders. Each clause in a rule may be regarded as a predicate in the
logical sense, hence a logical reading of OrderEntryA’s rule would be ‘‘for all id, itemid, qty, if orders(id, itemid,
qty) then log(id, itemid, qty).’’
In general, a rule-decl can be read ‘‘for every combination of tuples that satisfy body, ensure that the head-clause is

satisfied’’ (by adding or deleting tuples to the relation inhead-clause). The semantics of Datalog rule evaluation ensures that
no change is made to any relation unless necessary to satisfy a rule, and – for our chosen semantics – that rule evaluation
yields a unique fixpoint result in which all rules are satisfied. Although our rule evaluation semantics is consistent with
standard Datalog semantics, we have made several significant extensions, including head negation, reference creation, and
the ability to refer to remote reactor relations via reactor references.
Returning to reactor OrderEntryA, let us consider the case where the pre-state values of orders and log are,

respectively, {(0, 1234, 3)} and{(0, 1234, 3)}, and an update bundle has ∆+ = {(1, 5667, 2)} and ∆− = ∅. Then the
stimulus value of orders will be equal to {(0, 1234, 3), (1, 5667, 2)}. No rule affects the value of orders, so the response
value of orders will be the same as the stimulus value. In the case of log, rule evaluation yields the response state
{(0, 1234, 3), (1, 5667, 2)}, i.e., the least change to log consistent with the rule.
Now, starting with the result of the previous OrderEntryA reaction described above, consider the effect of applying

another update bundle such that ∆+ = ∅ and ∆− = {(0, 1234, 3)}. This reaction will begin by deleting (0, 1234, 3) from
orders, yielding the stimulus state orders = {(1, 5667, 2)}, log = {(0, 1234, 3), (1, 5667, 2)}. Evaluating the rule after
the deletion has no net effect on log (since the only remaining tuple in orders is already in log), hencewe get the response
state orders = {(0, 1234, 3)} and log = {(0, 1234, 3), (1, 5667, 2)}. We thus see that the effect of this rule is to ensure
that log contains every orderid ever seen in orders. If we wanted to ensure that log is maintained as an exact copy of
the current value of orders (which would mean that it is no longer a log at all), we could add the additional negative rule
depicted in definition OrderEntryA’ in Fig. 2. The negative rule of OrderEntryA’ has the effect of ensuring that if an
orderid is not present in orders, it will also be absent from log; i.e., it encodes tuple deletion. While negation is commonly
allowed in body clauses for most Datalog dialects, negation on the head of a rule is much less common (though not unheard
of, see, e.g., [10]).
Reactor definitions OrderEntryB and OrderEntryC of Fig. 2 add additional rules that refine the behavior of

OrderEntryA, using references to both pre-state and stimulus values of relations. OrderEntryB defines an ephemeral
nullary relation orderIsNew, which functions as a boolean variable, initially false. The new rule in OrderEntryB sets
orderIsNew to true (i.e., adds a nullary tuple) if orders contains a value not found in log prior to the reaction (i.e., in log’s
pre-state value). The definition of OrderEntryC further refines OrderEntryB by causing any new order whose orderid is
a duplicate of a previously logged orderid to be deleted. The new rule in OrderEntryCmust distinguish the stimulus value
of orders, i.e., ^orders from its response value, i.e., orders, since the rule defines the response value to be something
different from the stimulus value in the case where a duplicate order id is present.
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Fig. 4. Service-style order entry.

Fig. 5. Cell.

It is important to note that the result of rule evaluation is oblivious to the order in which rules are declared. We believe
this feature makes it easier to update the functionality of a reactor in an ‘‘aspect-like’’ fashion [11] by changing the rule
set without concern for control- or data-dependencies. We see this feature demonstrated in the progression of examples
depicted in Fig. 2, where rules can be mixed and matched liberally to yield updated functionality.
Consider now the very different formulation of an order entry reactor depicted in Fig. 4, OrderEntryD. In reactor

type OrderEntryA, the set of all orders active in the system is publicly readable and writable by external clients. In
the alternative OrderEntryD formulation above, the ephemeral relation req functions as a request ‘‘channel’’ or ‘‘port’’:
incoming collections of order entries in an update bundle are processed and cleared (deleted) immediately after the reaction,
since req is ephemeral. Relation req has a public write access annotation, hence it is not externally readable.
Proponents of the ‘‘representational state transfer’’ (‘‘REST’’) style of component interaction [7] embodied by

OrderEntry argue that it makes evolution of web applications easier by exposing state directly, rather than encapsulating
it through access channels/ports/methods in a ‘‘service-oriented’’ style [12]. A notable feature of the reactor model is that
both styles are easily accommodated.
The rules ofOrderEntryD are straightforward, except for rule (1),which creates a newkey. The expressionnew generates

a new and unique instance of a nonce, a trivial reactor whose only function is to serve as a generator of globally-unique
values. It is convenient to use such values as keys. While Nonces contain no rules, in general, when a reactor is instantiated
in a reaction, its rules are evaluated along with the rules of the parent reactor, as we shall see in Section 3.3. Rule (1) is an
unconditional rule, and is an instance of the shorthand notation depicted in Fig. 6(b). It is important to note that rule (1) only
generates one instance of a Nonce per reaction; a rule head clause containing new is satisfied once unique values have been
generated for each instance of new per vector of rule variables that are instantiated by the rule.

2.2. Initialization, constants, and reaction failure

Consider the following rules:

r(x) <- s(x).
not r(x) <- s(x).

These rules are inherently contradictory, since they require that x be both present and absent from relation r. In such cases,
a conflict results. Because rules are conditionally evaluated, conflicts cannot in general be detected statically and must be
detected during rule evaluation. If such a conflict occurs, the reaction fails: the reactor rolls back to its pre-state and no
update bundles are dispatched.
Consider the reactor definition Cell depicted in Fig. 5. Each instance of a Cell is intended to hold exactly one value.

Instances of Cell contain two relations: a public unary relation val containing the publicly-accessible value of the cell,
and a private nullary (i.e., boolean) relation live. Recall that a reactor’s relations are initially empty when the reactor is
instantiated. Rules (1) and (2) together define an idiomwhich will allow us to initialize relations to non-empty values. First,
consider rule (1). Rule (1) defines live to be a constant, since its response value evaluates to non-empty (i.e., ‘‘true’’) at the
end of every reaction. Because of rule (1), -live in rule (2) is nonempty only during the first reaction in which the Cell is
instantiated. Hence val will be initialized to 0 only once, in the reaction in which Cell is created. Thereafter, -live will
be non-null, and the initialization will not recur, allowing val to be freely updated to arbitrary values.
Finally, consider rule (3) of Cell. The three clauses in its body collectively check to see whether val contains more than

one value, i.e., whether it is a singleton. If not, the rule requires that its head clause (left-hand side) be satisfied, i.e., that
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Fig. 6. Notational conventions.

live be set to empty (false). However, any such attempt is inconsistentwith the assertion in rule (1) that live is non-empty
(true), hence any attempt to update Cell without maintaining the singleton invariant will result in a conflict and reaction
failure. We thus see that the reactor model allows ‘‘assertions’’ and ‘‘integrity constraints’’ in the style of databases to be
expressed in precisely the same form as rules that express state updates. When some assertion fails, the reaction rolls back.
Fig. 6(d) depicts a notational convention that will allow us to use live to define rules that represent assertions.
Clients of instances of reactor typeCell are required to ensure that theymaintain its singleton constraint, e.g., by deleting

the current value of the cell before adding a different value. However, if we wished, we could augment the declaration of
Cell to make it easier for clients that wish to update its value to avoid having to delete the previous value by adding the
following rule:

not val(x) <- -val(x), ^val(x’), x <> x’.

This rule is interesting because it refers to all three reactor states we have discussed thus far: pre-state, stimulus state, and
response state. The body of the rule checks to seewhether the stimulus value of val contains an item different from the pre-
state. If so, the offending pre-state item is deleted from the response value of val. Note, however, that it is still possible for
the singleton constraint to fail if a client attempts to insert more than one distinct value in a single update bundle. Fig. 6(c)
depicts a notational conventionwewill use in the sequel whenever wewish to ‘‘assign’’ values to singleton relations such as
val. The example in Fig. 5 illustrates how the declarative nature of reactor rules makes it straightforward to ‘‘progressively
refine’’ existing functionality by adding new features in a non-intrusive way.

3. Reactor composition

In the following sections we explain how reactors interact asynchronously and synchronously; we refer to this as reactor
composition.

3.1. Asynchronous reactor composition

Up to this point, we have not explained how update bundles are generated, only how reactors react when an update
bundle is applied. In this section, we show how updates are generated, and explain how this is intimately connected to
asynchronous interaction.
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Fig. 7. Self-reacting Fibonacci.

Consider the reactor definition Fibonacci in Fig. 7, which computes successive values of a Fibonacci series. The relation
series contains pairs whose first element is the ordinal position of the sequence value, and whose second element is the
corresponding value of the sequence. The value of series is initialized using notational conventions (e) and (f) of Fig. 6.
To compute the next element of the series, we need to first identify the last two elements of the series computed thus far.
Universal quantification is required to determine themaximum element of a series; however, the body of a Datalog rule can
only existential properties directly. To query universal properties, we typically require auxiliary relations. In Fibonacci, we
use the ephemeral relation notLargest to contain all the indices of elements of serieswhich are less than the maximum
index. The body clause not notLargest(n) in rule (2) has the effect of binding n to the largest ordinal index currently
contained in the series.
The relation in the head of rule (2) computing the next value of the Fibonacci sequence has the form series^. A relation

name of this form refers to the future state of the relation. The future state effectively defines the contents of an update
bundle which is processed in a subsequent reaction, after the current reaction ends. Hence, the head of rule (2) defines an
update bundle containing a single pair encoding the next value of the series; this pair will be inserted into series at the
beginning of the next reaction. One can thus think of the future value of a relation as defining an asynchronous update or
dispatching a ‘‘message’’. As a result, successive values of the series are separately visible to external observers as they are
added to the list.
Rule (3), which uses the notation defined in Fig. 6(d), causes the reaction to fail and roll back if both the pre-state and

the stimulus values of run are false. By using this encoding, run serves as a sort of switch which can be used to turn the
self-reaction process on and off. Instances of Fibonacci can react to two distinct classes of update bundles: ‘‘internally’’
generated update bundles containing only new values of the series, and client-generated update bundles which only affect
the value of run. A client cannot update series since series is not public. The Fibonacci reactor does not produce
update bundles affecting the value of run, since it has no rules referring to the future value of run.
In general, distinct reactors operate concurrently and independently. Given this fact, it is possible for an update bundle to

be generated by a client attempting to update the value of runwhile a previous reaction by the same instance is in progress.
Since reactions take place atomically, wemust enqueue pending client updates until the current reaction is complete. To this
end, every reactor has an associated inbox containing a multiset of pending update bundles. When a reaction is complete,
the reactor checks for a new update bundle in the inbox. If it exists, the reactor removes it and uses it to initiate a reaction.
If no update bundle is present, the reactor performs no further computation until a new update arrives. Fig. 3 illustrates this
process. We make no assumptions about the order in which inbox items are processed, except that they must be processed
fairly.
While Fibonacci is designed such that update bundles can only update one relation at a time, update bundles can in

general contain updates to more than one relation. Consider, e.g., a client that wishes to update ordered trees (e.g., XML
trees) maintained on a server. Ordered trees can be maintained using two relations on nodes: a parent–child relation, and a
next sibling relation. In this case, it is natural for an update to affect both relations.

3.2. Reactor references and multi-reactor asynchrony

Up to this point, our examples have only considered a single reactor type. Consider now the definitions for reactors
Sample, Sensor, and Nonce depicted in Fig. 8. Reactor types Sample and Sensor encode a ‘‘classical’’ asynchronous
request/response interaction. To enable two reactor instances to communicate, we use reactor references such as those
stored in relation rSensor. Rule (1) of Sample has the effect of dispatching an asynchronous request for the sensor value
(maintained by a Sensor reactor) whenever a client of Sample updates pulse. The expression s.req^(self) in Rule
(1) contains an indirect reference to (the future value of) relation rSensor: after the reactor reference stored in relation
rSensor is bound to variable s, we refer to relation req of the sensor instance indirectly using the expression s.req^.
Since we refer to the future value of s.req, an asynchronous update bundle is dispatched to the Sensor instance. The
update bundle contains a self-reference to the requesting Sample instance, which is generated by the self construct.
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Fig. 8. Asynchronous query/response.

A Sensor instance responds to a request (in the form of an update to relation req) by dispatching the current value of
the sensor back to the corresponding Sample instance. It does so by setting the Sample’s response relation via the reactor
reference sent by the requester. The response is asynchronous, since r.response^ refers to a future value. The requester
processes the response from the Sensor instance by updating its log relation with the value of the response.
There are two ways of introducing references to reactors. The keyword self evaluates to a reference to the enclosing

reactor. An expression of the form new in a head clause creates a new instance of the appropriate reactor type. The
appropriate reactor type is inferred; e.g., if a relation a is declared as a: (int, ref Acct, ref Acct) then new
instances created by the head clause a(5, new, fromAcct)will have the type Acct. Instantiation expressions may only
appear in non-negated head clauses. Rule (2) of Sample creates instances of the trivial reactor Nonce. Sample uses nonces
to distinguish multiple instances of the same sensor value.
In order to instantiate and connect Sample and Sensor instances together, another reactor must contain rules of the

form
theSampler(new Sample) <- .
s.rSensor(new Sensor) <- theSampler(s).

A request-response cycle between Sample and Sensor instances requires three distinct reactions: the reaction in which
a Sample client sets pulse (which dispatches the request to the sensor), the reaction in which the sensor responds to the
request, and the reaction in which the requester updates the value of log.

3.3. Synchronous reactor composition

While the asynchronous form of process composition depicted in Fig. 8 is similar to that used in many process calculi
and message-based distributed programming models, Fig. 9 depicts an example of synchronous reactor composition that
is somewhat more unusual. In this example, a MiniBank reactor receives requests to transfer money between two Acct
reactors. Such requests are encoded by updates to the ephemeral transferReq relation. As with the example in Fig. 8, we
use references to wire the reactors together. However, unlike the previous example, the remote references in Fig. 9 refer
to response values of relations, not future values. This means that a reaction initiated at a MiniBank reactor will extrude to
include both of the Acct reactors (bound to variables to and from, respectively). This results in a composite, synchronous,
atomic reaction involving three reactor instances. Scope extrusion is an inherently dynamic process, similar to a distributed
transaction—see Section 9 for details. MiniBank uses the notation of Fig. 6(c) to define ‘‘assignments’’ to the singleton
balance relations.
Note that the rules in Acct encode constraints on the allowable values of balance. In a composite reaction, a conflict

(which is heremanifested by a constraint failure) in any of the involved reactors causes the composite reaction to fail. When
a composite reaction fails, all of the reactors revert to their pre-reaction states. A composite reaction is always initiated at a
single reactor instance at which some asynchronously-generated update bundle is processed—in the case of the example in
Fig. 9, reactor instance MiniBank.
Reactors involved in a composite reaction may separately define future values for relations of the same reactor instance.

In such cases, a single update bundle, combining the composite future value updates for all of the involved reactors, is
dispatched at the end of the composite reaction to each target reactor. In this sense, from the point of view of an external
observer, a composite reaction has the same atomicity properties as a reaction involving a single reactor.
The example in Fig. 10 shows how multiple user interface components can be instantiated dynamically based on

the current contents of an associated database. This mimics the process of building dynamic, data-driven user interface
components. The basic idea of DataDisplay is that a button and an output field are generated for each item in a database.
ButtonWidget and OutputWidget are user interface components representing the button and output field generated
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Fig. 9. Classic transaction.

for each item in relation db. ButtonWidget’s buttonListener relation contains a reference (in general, there could be
more than one) to the ‘‘parent’’ DataDisplay reactor; rule (1) has the effect of notifying the parent whenever the button
is pushed.
Rule (9) synchronizes the value of the output field to the value of the quantity currently maintained in the database. Rule

(10) ‘‘wires’’ together corresponding button and database items such that when a button is pressed, the corresponding data
item is decremented.
Ephemeral relations currDbItems and oldDbItems along with rules (4) and (5) compute the set of itemids present

before and after the reaction. Using this information, rules (6) and (7) together create new widgets whenever a new item is
added to db, while rule (8) deletes a widget whose corresponding item has been deleted from the database.
Note that the auxiliary ephemeral relations currDbItems and oldDbItems are not just included for clarity, they are

necessary to correctly compute the set of old and new items. Consider, for example, a rule of the form

. . . <- db(i, _, _), not -db(i, _, _)

One might initially expect i to be bound only to newly-added items in the database. However, i will actually be bound
to every itemid in the database, since for any itemid i in the database, there always exists some widgets b and o such that
〈i, b, o〉 is not in the pre-state of db. In other words, as written, the second body clause will always succeed, regardless of
the value of i. This phenomenon can occur whenever unbound variables (such as the wildcards used above) are used in a
negative body clause.
The rules which wire the database, the output field, and the button together constitute a dependency loop which would

be tricky to manage if written in a traditional language. However, the normal Datalog evaluation process evaluates such
recursive loops without difficulty.

4. Reactor semantics overview

In the next several sections, we formalize the operational semantics of the reactor model. The first two sections contain
preliminaries: in Section 5, we review standard concepts from the semantics of Datalog with negation. In Section 6, we
define basic notation for reactor concepts we will use in the rest of the paper.
The reactor model takes the point of view that each reactor instance maintains a set of relations which the instance

‘‘owns and manages’’ autonomously. However, as we have observed, a reactor can synchronously read or write the state of
a different, remote reactor via reactor references. To facilitate formalizing the semantics of synchronous reactor interaction,
Section 7 contains a sequence of source transformations which will serve to define a single ‘‘virtual address space’’ of
relations. The transformed relations have the property that they may in principle contain tuples from different reactor
instances of the same type. However, as we will see in Section 9, our operational semantics properly models the fact that
each reactor independently manages only the persistent state defined by its own relation instances. To model synchronous
multi-reactor reactions, the operational semantics temporarily copies the state of remote reactors into the state of the reactor
instance which initiated the reaction. The augmentation transformation defined in Section 7.3 allows the initiating reactor
to manage both its own state and temporarily-copied state of remote reactors in a uniform way.
Section 8 defines additional source transformations on the program resulting from the transformation of Section 7. These

additional transformations eliminate head negation by defining auxiliary relations which encode addition and deletion
information separately.
The transformations of Sections 7 and 8 rewrite a reactor program T consisting of multiple reactor definitions into a

single ‘‘normal’’ (i.e., with body negation) Datalog program that captures the synchronous execution semantics of all of the
reactor definitions in T . This approach might seem to imply that every reactor in a distributed system needs to contain the
code of all other reactors in the system. In practice, however, a reactor need only be aware of the rules of reactors which
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Fig. 10. Data-driven UI.

are accessible via reference types that are elements of relations declared in T , i.e., peer reactors with which it has already
agreed to interact.1

In Section 9, we complete the definition of the semantic model for reactors using a labeled transition system. This
transition system carries out the following functions:

• It orchestrates the creation and processing of update bundles, messages that take the form of state updates. Once paired
with its recipient reactor, an update bundle can initiate a reaction; dually, reactors may generate update bundles (by
defining future values of remote relations); the transition semantics takes care of delivering these bundles to their
destination.
• It models multiple concurrent, autonomous reactions and asynchronous interactions among such reactions.
• It orchestrates copying of relation values from remote reactors to the initiating reactor. The initiating reactor evaluates
all the local and remote rules needed to define the state resulting from the synchronous reaction, and the state transition
system ensures that the results of the synchronous reaction are copied back to remote reactors as necessary.
• It defines an optimistic locking protocolwhich ensures that the results of a synchronous composite reaction are computed
atomically from the point of view of any external observer, and which allows multiple concurrent reactions to access a
common reactor instance, provided that the results of the reactions do not conflict.
• It handles state rollback in the event that a reaction yields a conflict: an inconsistent state in a predicate is asserted to be
both true and false (alternatively, in which a tuple is both inserted and deleted into the same relation).

In Section 10, we show that the notions of stratification and safety defined for normal Datalog programs extend in a
straightforward way to reactor programs.

1 It is possible to further weaken this ‘‘mutual knowledge’’ requirement, see Section 13.
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5. Datalog background

In this section, we review basic concepts from logic programming and Datalog [13]. We will occasionally deviate from
standard definitions when appropriate for our context.

5.1. Basic definitions

A term is either a constant, a variable, or a built-in function applied to constants or variables. An atom consists of an n-ary
predicate symbol and a list of arguments such that each argument is a term. We will consider both user-defined predicates
(which we will also refer to as relations) and built-in predicates, such as equality, inequality, and arithmetic comparison. We
allow function symbols only in arguments to built-in predicates. A literal is an atom or a negated atom. A clause is a finite
list of literals. A ground clause is a clause which contains neither variables nor function symbols. A unit clause is a clause
containing only one literal. A fact is a positive ground unit clause.
A Herbrand interpretation (or just ‘‘interpretation’’) is a set of facts. A Herbrand model is a Herbrand interpretation that

satisfies every formula belonging to a given set of closed formulas (a given set of facts and rules). A positive Datalog program
contains ruleswith only positive atoms. For such programs, there exists a leastHerbrandmodel such that any otherHerbrand
model is a superset of this model. A normal Datalog program is a Datalog program in which negation may appear in body
clauses, but not in the head. For normal programs, the existence of a least Herbrand model is no longer guaranteed.

5.2. Stratification semantics for normal programs

To ensure that a least Herbrand model exists without unduly affecting expressiveness, we will restrict the set of normal
Datalog programs we consider to those that are stratified [14–16]. The main idea behind stratification is to partition the
program such that for any relation, we fully compute its contents before applying the negation operator. For example, a
program consisting of the following rules is not stratified because it contains recursion through negation:

q(x) <- p(x,y), not q(y).
p(1,2) <- .

Given a Datalog program P , its dependency graph D is a directed graph 〈N, A〉with N the set of all user-defined predicate
symbols in P and a ∈ A an edge from p to q if p and q are user-defined predicate symbols in the body and head clauses
of a rule r , respectively. An arc between user-defined predicate symbols p and q is marked if the body clause that has p as
predicate symbol is negative. P is stratified if there exists no cycle in D containing a marked arc.
The stratum of a node in the dependency graph is the maximum number of negative arcs on a path leading to that node.

Intuitively, the stratum of a computed relation r is the maximum number of negations that can be applied in evaluating r .
When a Datalog program is stratified, we can designate a single Herbrand model as its semantics by evaluating all the

rules of a stratum in the minimal model of the preceding stratum to obtain another minimal model. This unique minimal
model is called the perfect model.

5.3. Computing a solution

Given a set of rules R, the immediate consequence operator ΓR for normal Datalog programs is amapping on sets of ground
atoms and is defined for aHerbrand interpretation I as follows:ΓR(I) = {A|A ∈ I or there exists a ruleA← L1∧· · ·∧Ln ∈ [[R]]
such that Li ∈ I for all positive literals Li and Lj /∈ I for all negative literals Lj ≡ ¬L}, where [[R]] denotes the set of all ground
instances of a set of rules R. Γ ∗R (I) is the limit of the sequence of sets J0, J1, . . . such that J0 = I and Jk = ΓR(Jk−1) for k > 0.
For the purpose of this paper we will apply ΓR on one rule at a time.
We can partition a stratifiable program P into a collection of sets of rules P = Po, . . . , Pn such that each Pj consists of the

rules of P whose head relation is in stratum j. Let Io be an initial Herbrand interpretation. For 0 < j ≤ n, the sequence of
instances Ij is defined as follows:

Ij = Ij−1 ∪ Γ ∗Pj−1(Ij−1).

The final instance In provides the semantics of P under a stratification Po, . . . , Pn.
The standard rule evaluation strategy for a stratified program P

(1) computes a stratification of P
(2) partitions P into P0, . . . , Pn such that each Pj consists of the rules of P whose head belongs to stratum j
(3) given an initial instance I0, computes the instances Ij for 0 < j ≤ n as above, yielding solution In.

Since we require that the full state of a reactor be computed during each reaction, we compute the interpretation of
its Datalog program exhaustively (bottom-up), in contrast to some evaluation strategies that compute queries on-demand
(top-down) as required by a particular query.
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Fig. 11. Small-step operational semantics for eval.

5.4. Additional semantic restrictions

A Datalog program is domain independent if the solution depends only on the initial set of facts and not on the universal
set of all facts. A program is weakly finite [9] if applying the immediate consequence operator a finite number of times on
a finite set of facts yields a finite set of results; i.e., infinite results can only be obtained via infinite recursion. Both domain
independence andweak finiteness are desirable properties for Datalog programs intended to represent computations. Since
these properties are in general undecidable, we will adopt a conservative syntactic characterization called safety [9] which
guarantees domain independence and weak finiteness.
A Datalog rule is safe if all of its variables are limited. A variable is limited if:

(1) it occurs as an argument to a non-negated user-defined predicate in the body
(2) it occurs as one of the arguments to the built-in equality predicate and all of the other variables that occur in the same
clause are limited.

A program is safe if all of its rules are safe. Consider a few examples:

answer(x) <- mynumber(x), not zero(x). // 1
P(x) <- Q(y), R(z), x = y * z. // 2
P(x) <- Q(y), R(z), y = x * z. // 3

Rule (1) is safe, but removing mynumber(x) renders it unsafe because x then is not limited. Rule (2) is safe because x
is the only non-limited argument to the equality predicate, hence its value is uniquely determined by y and z. By contrast,
rule (3) is not safe, since both arguments contain non-limited variables and the value of x is not uniquely determined by y
and z.

5.5. Datalog evaluation

The evaluator is defined as a relation ↪→ on pairs of evaluation states. An evaluation state is a pair 〈I, i〉where

• I is a set of literals defining an interpretation.
• i is the index of the current stratum under evaluation.

Fig. 11 shows two small-step semantic rules which capture the behavior of the evaluator. The first rule specifies a single
step in which the immediate consequence operator ΓR is applied to the current Herbrand interpretation I to obtain the next
interpretation I ′ for a given rule R. R is a non-deterministically chosen rule from the stratumunder current evaluation Pi ∈ P .
If applying ΓR modifies the state by inferring new facts, then the ↪→ relation transitions to the next state corresponding to
I ′. If, on the other hand, there exists no rule that can be evaluated which modifies the current state, then the evaluation of
the current stratum ends and is marked appropriately by incrementing the stratum index. The evaluation stops when the
last stratum has been fully evaluated.

6. Basic reactor formalities

In this section, we will define some basic reactor notation that will be used in the rest of the paper.
A reactor program T is a collection T1, T2, . . . , Tn of reactor type definitions, each defined using the reactor grammar of

Fig. 1, with the proviso that a rule-declmay contain at most one instance of the new keyword in its head-clause.
Each type definition T has the form

def reactor-type-name = · · ·

hence, we will frequently use reactor-type-name to denote the corresponding type definition.
Each reactor type T defines a collection of ephemeral relations ephemeral(T ), declared using the syntactic form

relation-decl of Fig. 1 and the ephemeral keyword; similarly, it defines a collection of persistent relations persistent(T ),
declared using the same syntactic formwithout the ephemeral keyword. The access attributes public, public read, and
public writemay be used in the declaration to allow (possibly restricted) access to a relation by other reactors; otherwise,
the relation is private, and not accessible to remote reactors. To simplify exposition, we will assume in the sequel that all
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reactor names for a program T are globally unique. The set of persistent relations declared in T are given by persistent(T );
the set of ephemeral relations declared in T are given by ephemeral(T ).
A local literal is a literal of the form

[not] ref( . . . )

where ref has the form t, -t, ^t, or t^, for some relation t .
A remote r-literal is a literal of the form

[not] r.ref( . . . )

where ref is as above and r is a variable bound to a reactor reference. If r is a reference to a reactor of type S, then the
relation referred to in ref (say p) must be a public relation, i.e., declared using the public access attribute in the definition
of S. Furthermore, if the remote r-reference occurs in a head-clause, then p must be declared using either the public or
public write attributes; if the reference occurs in a body-clause, then p must be declared using either the public or
public read attributes.
A reactor reference of the form r denotes the response value of relation r; -r denotes the prestate value of r; r^ denotes

the future value of r, and ^r denotes the stimulus value of r.

7. Semantics of reactor references

In this section, we show how we can ‘‘compile away’’ reactor constructs which manipulate reactor references by
translating such constructs into ordinary Datalog. This translation process serves to define the semantics of reference-
manipulating constructs.
The first phase of the reference translation process (Sections 7.1 and 7.2) formalizes when remote reactors are read and

written by another reactor via a reactor reference. The formalization works by introducing two auxiliary relations for every
reactor of type T : active_T and touched_T, and transforming the rules of the original program to use these new relations
appropriately. Intuitively, touched_T will become true for reactor instance t of type T whenever a remote reactor accesses
relations of t . Similarly, active_Twill become true for reactor t whenever a remote reactor writes a relation of t . The relations
touched_T and active_T will be examined by the concurrent transition semantics of Section 9 to determine when and how
to access the state of remote reactors. Importantly, the relation active_T is also used to ensure that only the rules of reactors
which have been written to are evaluated in the current reaction.
The second phase of the reference translation process (Section 7.3) encodes the semantics of synchronous reactions, in

which multiple reactor instances which refer to one another via references are evaluated atomically. This augmentation
translation adds an extra column to every relation r of reactor type T . This column contains reactor references (of type T )
which encode the reactor instance which ‘‘owns’’ the tuples of r .
The final phase of the reference translation process (Section 7.4) formalizes the semantics of reactor instantiation and

initialization, i.e., the new construct.

7.1. Formalizing remote reactor writes and reaction scope: The active transformation

The first step of the reference translation process makes reaction scope explicit by adding to all reactor definitions a
relation called active_T, where T is the reactor’s type. The active_T relation defines the semantics of ‘‘scope extrusion’’, the
process by which multiple reactors react together synchronously. Only those reactor instances for which active_T is true
are included in the scope of the current reaction. The basic idea is to set active_T to true for reactor instance t whenever a
relation of t is written, and to guard all rules with a test of active_T in such a way as to ensure that a rule is only executed
for reactor instances that are part of the current reaction scope.
In every reactor in the program the transformation adds the declaration

public ephemeral active_T : ().

We assume, without loss of generality, that there is no pre-existing relation called active_T.
Next, we non-recursively transform each rule such that

[not] r.a(e) [^] <-body. becomes [not] r.a(e) [^] <- body, active_T ().
r.active_U() [^] <- body, active_T ().

[not] a(e) [^] <-body. becomes [not] a(e) [^] <- body, active_T ().

where T is the type name of the reactor containing the rules that are being transformed, and U is the type name of the
reactor r .
Since all rules are now guarded by an active_T relation, the active_T relation of the reactor instance that initiated the

reaction (i.e. received an update bundle) must be set to true. We therefore require that an update bundle write the active_T
relation of the receiving reactor, but conveniently the transformation already handles this.



J. Field et al. / Theoretical Computer Science 410 (2009) 168–201 181

Example 1. Let us consider how an example program is transformed. The following example models a simple
publisher/subscriber mechanism, but for simplicity the mechanism handling subscription and unsubscription have been
left out. Here is what the program looks like before (left) and after (right) the transformation:

def Pub = {
public data : (int).
subscriber : (ref Sub).

s.copy(x) <- data(x), subscriber(s).

}

def Sub = {
copy : (int).
intStore : (int).

intStore(x) <- copy(x).
}

def Pub = {
public data : (int).
subscriber : (ref Sub).
public ephemeral active_Pub : ().
s.copy(x) <- data(x), subscriber(s),

active_Pub().
s.active_Sub() <- data(x), subscriber(s),

active_Pub().
}

def Sub = {
public copy : (int)
intStore : (int)
public ephemeral active_Sub : ().
intStore(x) <- copy(x), active_Sub().

}

Example 2. Intuitively, the semantics of the active_T relations is intended to expose the control flow implicit in the scope
extrusion process via an explicit data dependency. The example in the left column at first glance seems benevolent enough.
Intuitively, however, we should not accept it, because q is not fully computed before it is tested for non-membership, but
this test is necessary to extrude the scope to the reactor of type R2 whose rule adds tuples to q. The right column shows
the transformed example after adding the two active_T relations. The example is now non-stratifiable due to the relation
active_R2 for the reactor of type R2. This relation effectively acts as a ‘‘summary node’’—a relation which guards all rules
and is writtenwhen the scope extrudes. A negative cycle is created between q, s, and active_R2. This negative cyclemakes
concrete our intuition that the example in the left column should not be an acceptable program.

// The rules are stratifiable, but the
// program should intuitively be rejected

def R1 = {
r : (int, int, ref R2).
public q : (int).
s : (int).

s(x) <- not q(x).
z.t(y, x) <- s(x), r(x, y, z).

}

def R2 = {
p : (int, int, ref R1).
public t : (int, int).

y.q(x) <- p(z, x, y).
}

// After introducing the active relation
// the hidden negative cycle is exposed

def R1 = {
r : (int, int, ref R2).
public q : (int).
s : (int).
public active_R1 : ().

s(x) <- not q(x), active_R1().
z.t(y, x) <- s(x), r(x, y, z),

active_R1().
z.active_R2() <- s(x), r(x, y, z),

active_R1().
}

def R2 = {
p : (int, int, ref R1).
public t : (int, int).
public active_R2 : ().

y.q(x) <- p(z, x, y), active_R2().
y.active_R1() <- p(z, x, y), active_R2().

}

7.2. Formalizing remote reactor reads: The touched transformation

In this section, we define the touched_T relation, which records those remote reactor instances of type T which could be
accessed in the current reaction (this set can be an overapproximation of the set of reactor instances which are going to be
read or written in the current reaction). For each reactor of type T , we add a declaration of the form

public ephemeral touched_T : ().
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Let rule R be a rule of the form:

head <- clause1, . . . , clausen.

containing one or more remote literals r .
For each clausei which binds r we add the following additional rules to T ’s declaration:

r.touched_Tj() <- clausei.

where Tj is the reactor type name of r respectively.
This construction ensures that the touched_Tj relation of reactor instance r becomes true whenever a relation of r is read

or written by another reactor.

7.3. Flattening inter-reactor references: The augmentation transformation

The augmentation transformation in this section readies reactors for synchronous reaction by allowing them to be
treated together as single ‘‘virtual’’ reactor. The augmentation transformation is applied after the active_T, touched_T, and
instantiation (new) transformations, which are each applied independently to source rules.
The program is given as a set of reactor declarations, named R1, . . . , Rk. We assume, without loss of generality, that

relation names are globally unique, i.e. any relation name is declared at most once.
In each reactor declaration R rewrite each rule
[not] r.h(e) [^] <- r1. [^|-] b1(x1), . . . , rn. [^|-] bn(xn),

[^|-] c1(y1), . . . , [^|-] cm(ym),
predicates.

as

[not] h(r, e)
[
ˆ
]
<- [^|-] b1(r1, x1), . . . , [^|-] bn(rn, xn),

[^|-] c1(s, y1), . . . , [^|-] cm(s, ym),
predicates[s\self].

and rewrite
[not] h(e) [^] <- r1. [^|-] b1(x1), . . . , rn. [^|-] bn(xn),

[^|-] c1(y1), . . . , [^|-] cm(ym),
predicates.

as
[not] h(s, e) [^] <- [^|-] b1(r1, x1), . . . , [^|-] bn(rn, xn),

[^|-] c1(s, y1), . . . , [^|-] cm(s, ym),
predicates[s\self].

where s is a fresh identifier, and [x\y]means ‘‘put x instead of y in the preceding expression’’.
The transformation does two things: it replaces all references to self with a fresh identifier, s, and it augments the

relations by adding reactor references as the first column of every relation. Note that the transformation also alters the
active_T relations added by the previous transformation. The occurrence of active_T() in the body of each rule gets
replaced by active_T(s); and r.active_T() in the head gets replaced by active_T(r).

Example 3. Consider the example from last section. We now take the program with the active relation already added, and
pass it through the augmentation transformation. Here is the program before (left) and after (right):

def Pub = {
public data : (int).
subscriber : (ref Sub).
public ephemeral active_Pub : ().
s.copy(x) <- data(x), subscriber(s),

active_Pub().
s.active_Sub() <- data(x), subscriber(s),

active_Pub().
}

def Sub = {
public copy : (int)
intStore : (int)
public ephemeral active_Sub : ().
intStore(x) <- copy(x), active_Sub().

}

// Rules from Publisher

copy(s,x) <- data(id1,x),subscriber(id1,s),
active_Pub(id1).

active_Sub(s) <-
data(id2,x),subscriber(id2,s),
active_Sub(id2).

// Rules from Subscriber

intStore(id3,x) <-
copy(id3,x),active_Sub(id3).
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7.4. Formalizing reactor creation: The instantiation transformation

The new construct is used to instantiate new reactors. To model this behavior, wemust generate fresh reactor references
appropriately for each rule containing new (recall that new can occur at most once in any rule head). But what behavior is
‘‘appropriate’’?
Consider the following examples. We would like the rule

r(new) <- .

to produce exactly one new reactor per reaction. The rule

r(x, new) <- t(x)

should generate a distinct reactor for every value of x, in every reaction. A program containing the rules

s(x, new) <- t(x). // 1
s(x, new) <- t(x). // 2

should produce the same result as a program containing a single instance of the rule; moreover, replacing rule (2) above
with the rule s(x, new) <- q(x) should also yield the same result when the contents of t and q are identical.
In general, we want a rule of the form

r(x1,i, new, xi+1,n) <-body.

to generate a fresh reference value for every tuple of values 〈x1,i, xi+1,n〉which satisfy the rule, in every reaction.
Wemake the intuition above precise by transforming rules containing new to standard Datalog, augmentedwith functors

(term constructors).
In every reactor of type T in the program, the transformation adds the declaration

public ephemeral reactions_T : (int).

The idea is that reactions_T relations maintain a count of the number of reactions that the containing reactor has undergone
since being instantiated. This countwill be used to ensure that distinct reference values are appropriately generated for each
reaction.
After applying the augmentation transformation of Section 7.3, each rule in a reactor of type T containing an instance of

newwill have the form

r(s, x1,i, new, xi+1,n) <- body, active_T(s).

Let us assume that relation r has a declaration of the form

. . . r: (T1,i, ref S, Ti+1,n).

where T1,i and Ti+1,n are vectors of types.
We transform the rule above into the following three rules:

r(s, x1,i, s’, xi+1,n) <- body, reactions_T(s, j), active_T(s)
s’ = new_r_i <s, j, x1,i, xi+1,n>. // 1

active_S(s’) <- body, reactions_T(s, j), active_T(s)
s’ = new_r_i <s, j, x1,i, xi+1,n>. // 2

reactions_S(s’, k) <- body, reactions_T(s, j), active_T(s)
s’ = new_r_i <s, j, x1,i, xi+1,n>, k = 0. // 3

Here, new_r_i < · · · > is a functor (data constructor) defined for each relation r in which new appears in position i in the head
of some rule. The first argument (s) of the functor encodes a reference to the reactor’s ‘‘parent’’ (i.e., the reactor generating
the new reference); the second argument (j) is the current reaction count, and the remaining arguments contain the values
to which the other variables in the original rule are bound. Embedding the parent reference in the encoding of a newly-
generated (child) reference value ensures that the each reference value is globally unique. In addition to ‘‘installing’’ the
newly-generated reference in its containing relation (rule 1 above), we must also ‘‘activate’’ the reactor rules for the type
corresponding to the reference (rule 2), and initialize the reaction count for the newly-generated reactor to 0 (rule 3)
Finally, for every reactor of type T , we add the following two rules

reactions_T(s, j’) <- -reactions_T(s, j), active_T(s), j’ = j+1. // 4
reactions_T(s, j) <- -reactions_T(s, j), active_T(s). // 5

Rules 4 and 5 together increment the reaction count for a reactor of type T on every reaction.
It is straightforward to define a total order on generated reactor references (e.g., based on a total ordering for relation

names). This property will be used in the operational semantics defined in Section 9.
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Fig. 12. Rewrite rules defining the semantics of reactor rule evaluation in terms of normal datalog.

8. Eliminating head negation

We handle negation in head clauses by transforming reactor rules to normal Datalog rules. First, we treat each of the
four states of a given relation as distinct relations from the point of standard Datalog semantics. The goal of reactor rule
evaluation is to determine a unique, minimal solution for the response and future values of local and remote relations. Let
ri represent the response or future value of a local relation we wish to compute. If the reactor has just been created all the
relations are empty by default; ephemeral relations are always initially empty. Let ^r∆

+

i and ^r∆
−

i be the addition and the
deletion sets of the update bundle applied to the reactor. We will use r (x) to denote the relation r applied to a tuple of
arguments (x). The basic idea for determining the solution to ri is to:

(1) introduce a pair of auxiliary relations (r∆
+

i ,r
∆−

i ) which contains the sets of tuples that will be added to and deleted from
ri;

(2) eliminate negation in head clauses by transforming the program to a normal Datalog program containing references to
r∆
+

i and r∆
−

i .

The resulting program is the input to the evaluator presented in Section 5.5. Fig. 12 shows how our rewriting technique
transforms a program with negation in the head clauses to a program without them. The rules apply recursively. Let us
define r∆

+

i , r
∆−

i , r^
∆+

i and r^∆
−

i the sets of additions and deletions to the response and future states of the persistent and
ephemeral relations.
Rewrite rule (I) computes the set of tuples to be added to ri as the set of tuples that the body clauses resolve to. Rule

(II) computes the deletion set very similarly; the only difference is adding a body clause which makes sure that a tuple gets
deleted from a relation only if it was already there in the stimulus state. The extra clause ensures that this rewriting rule
does not introduce domain dependence—see Section 10.1 for details. Our rewriting approach does not update relations in
place during a reaction; accounting for the addition and the deletion sets in the rules must be therefore done explicitly by
modifying the rules. As a result, rewrite rule (III) restricts the matching for the tuples in ri to the ones that are not in the
deletion set; it also adds another rule which matches tuples in the addition set. Conversely, rule (IV) allows matching on
tuples in the deletion set, as well as restricting matching to tuples not in the addition set. Rules (V) and (VI) do not apply for
ephemeral relations because they do not have a future state.
Let us consider the order entry example in Fig. 2. After applying the head negation transformation the rule in the reactor

of type OrderEntryA’will result in the following set of rules:

log∆
+

(id, itemid, qty) <- orders(id, itemid, qty).
log∆

−

(id, itemid, qty) <- ^log(id, itemid, qty),
not ^orders(id, itemid, qty),
not orders∆

+

(id, itemid, qty).
log∆

−

(id, itemid, qty) <- ^log(id, itemid, qty),
orders∆

−

(id, itemid, qty).

Note that the tuple (id, itemid, qty)will be deleted from log if it is in the prestate and either is in the deletion set
of orders or it is neither in the prestate, nor in the addition set of orders.

9. Semantics of reactor interaction

In this section, we define the operational semantics of distributed reactor interaction, using the rules depicted in Fig. 13.
These rules effectively define a ‘‘scheduler’’ that initiates concurrent reactions and orchestrates the interchange of data
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Fig. 13. High-level operational semantics.

among reactor instances. The transition relation of the operational semantics defines a computation onworlds. A world has
the form

P ,N ` q1, . . . , qk, sk+1, . . . , sn.

The components of a world are defined as follows:

• The program P is an ordered collection of subprograms P1, . . . , Pm derived from a given reactor program T by first
transforming T using the transformations described in Sections 7 and 8, then stratifying the resulting collection of
Datalog rules into subprograms P1, . . . , Pm, as described in Section 5.2.
• The network N is a multiset of update bundles, each of which has the form (βi, Iβi), where β is a reactor reference, and I is
a Herbrand interpretation containing only facts of the form r^∆

+

(β, x) or r^∆−(β, x), representing future additions or
deletions, respectively, to reactor β
• A set of initiating reactors sk+1, . . . , sn. An initiating reactor is a reactor at which an uncompleted reaction has been
initiated. Each sj takes the form 〈bαj , Iαj , ij〉, where bαj is an update bundle, Iαj is an interpretation (over all of the relations
defined by the transformation of T ), and ij is an integer defining the current stratum ofP being executed by the reactor.
• A set of quiescent reactors q1, . . . , qk. A quiescent reactor is a reactor that is not an initiation site for an active reaction.
Each qi takes the form (αi, Iαi), where α is a reactor reference and Iαi is an interpretation containing only facts of the form
-r(α, x). We thus see the persistent state of a reactor is encoded by terms over pre-state values of relations.

Each reactor in a world occurs exactly once in the world state, either as a quiescent reactor or as an initiating reactor.
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In the world representation described above, we view a relation as a set of facts, i.e., a ground Herbrand interpretation,
rather than as a named collection of tuples. While the two views of state are semantically equivalent, the ‘‘soup of
atoms’’ Herbrand representation accommodates state manipulation involving multiple relations more readily than a state
representation using sets of maps from names to tuples.
The rules of Fig. 13 require a number of auxiliary functions, primarily to manage operations on the Herbrand

interpretations representing reactor states. The formal definitions of these functions are given in Fig. 14, here we provide
more intuitive definitions.

]: Multiset union.
↪→: The Datalog evaluation relation as defined in Section 5.5. Note that the translations of Sections 7 and 8 have

the property that when a remote reactor is written, the reactor’s reference is added to a relation of the form
active_T∆

+

; when it is read, the reference is added to a relation of the form touched_T∆
+

.
init(I0, I∆): Given an an interpretation I0 representing the persistent state of a quiescent relation and an interpretation I∆

representing the contents of an update bundle, yields an initial interpretation I ′ suitable for evaluation. I ′ contains
I0, as well as stimulus values for relations generated by applying I∆ to I0.

conflict(I): Given an interpretation I , determines whether I contains a conflict, i.e., whether the encoding of response or
future state in I contains both a fact and its negation.

revert(S, I): Given a set of reactor references S and an interpretation I representing the current state of the reaction, yields
a collection of quiescent reactors of the form (α, Iα) such that α ∈ S, and Iα contains only the prestate values of
α’s relations. In other words, this operation ‘‘rolls back’’ the state of the reactors in S to their pre-reaction values.

persist(I): Given an interpretation I representing the current state of the reaction, yields a collection of quiescent reactors
of the form (αi, Iαi), whose prestate values are computed from response values of the corresponding relations in I .
The response values are in turn computed from relations of the form r∆

+

and r∆
−

and the stimulus values of the
corresponding relations. The references αi correspond to the active (written) reactors in the current reaction. This
operation has the effect of updating the persistent state of reactors involved in the reaction with the new state
resulting from the reaction.

bundles(I): Given an interpretation I representing the current state of the reaction, yields a collection of update bundles
corresponding to the future state values of relations computed in I .

uptodate(q, I): Given the contents of a quiescent reactor q and an interpretation I representing the current state of the
reaction, determines whether the response values of relations of q in I are identical to the prestate values of the
corresponding relations in q, i.e., that the state ‘‘snapshot’’ createdwhen q’s statewas incorporated into the current
reaction has not been invalidated by updates to qmade by other reactions.

Let us now look at the intuition behind each of the rules in the semantics. It may be useful to read the following
descriptions in parallel with the inference rules given in Fig. 13.

start A reactor takes an update bundle addressed to it off the network and applies the update bundle to obtain the
stimulus state used for the reaction. It also sets the index of the current stratum that is to be evaluated to zero, the
bottom stratum.

eval This corresponds to a single step of the evaluator, where no further intervention by the scheduler is required.
read If, on inspection of the evaluator state, the scheduler observes that at least one new reactor reference was added to

a relation of the form touched_T∆
+

, then for each new reactor reference in touched_T∆
+

, the scheduler creates
a ‘‘snapshot’’ of its state and copies it into the state of the reaction.

conflict If the reaction state contains a conflict, the reaction rolls back. The update bundle that initiated the reaction is not
re-queued on the network.

prepare If all strata have been fully evaluated (the evaluation has reached a fixpoint) and no conflict was detected during
evaluation, then the scheduler prepares to lock all reactor instances that are active in the current reaction (except
for the initiating reactor, which is effectively already locked). The set of locks to be acquired is represented by the
set L.

acquire If the state of a reactor instance that is to be locked has not changed since its snapshot was taken, we lock the
reactor instance by removing it from the externally-visible world (its state is preserved in the reaction state I).
Since reactor references are totally ordered (see Section 7.4), we acquire locks in order of reference value to avoid
deadlocks.

retry Conversely, if the state of a reactor instance that is to be locked has changed since its snapshot was taken, then the
reaction rolls back and the update bundle that initiated the reaction is re-queued on the network; the reaction can
thus be re-initiated in the future. This rule effectively encodes a form of optimistic transaction.

commit If all reactor instances involved in a reaction were successfully locked, we generate the persistent values of the
written relations, release them for future reactions, and add update bundles to the network. This rule also has the
effect of ‘‘materializing’’ newly-instantiated reactors created during the reaction.

any This rule states that any combination of reactors that can react in isolation can react in any context containing
them.
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Fig. 14. Auxiliary functions used in the operational semantics.

10. Translation properties

This section presents results which show that the program transformation which eliminates negation in head clauses
preserves two important properties we care about: safety and stratification. Recall that the rewriting transformation
assumes no remote references to other reactor instances are present. We then define what it means for a program
before applying the augmentation transformation to be D-stratified. Lastly we informally show that the augmentation
transformation yields stratifiable augmented programs.

10.1. Removing head negation

Given a Datalog program P with possible negative head clauses, the rule/relation dependency graph G is a directed graph
〈N, R, A〉with N the set of all predicate symbols in P , R the set of all rules in P , and a ∈ A either one of the following:

• An edge from n ∈ N to r ∈ R if n is a predicate symbol in the body of rule r . An edge between n ∈ N and r ∈ R is marked
if the body clause that has n as predicate symbol is negative.
• An edge from r ∈ R to n ∈ N if n is a predicate symbol in the head of rule r . An edge between r ∈ R and n ∈ N is marked
if the head clause that has n as predicate symbol is negative.

Definition 4. A program is head-negation-stratified if there exists no cycle in the corresponding rule/relation dependency
graph G containing a marked edge. �
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Theorem 5. If a program with negation in head clauses is head-negation-stratified then the program obtained via the
transformation in Fig. 12 is stratified.

Proof. Starting from a dependency graph with no negative cycles, the only way to get a negative cycle is by adding edges—
from either extra body clauses or new rules altogether. Adding a negatively marked edge between two nodes already
reachable from each other can create a negative loop, but adding a positive edge can also have the same effect if the existing
path contains a negatively marked edge. Given that the original dependency graph has no negative cycles, a negative cycle
can only be created through the newly created relations, r∆

+

i and r∆
−

i . For a cycle to be created it is necessary that it exist
a rule that reads, and another one that writes, a newly created relation.

• Rewrite rules (V) and (VI) write the future states r^∆
+

i and r^∆
−

i , but the future state cannot be read, and therefore they
cannot create a loop.
• Rewrite rule (I) writes r∆

+

i and rewrite rules (III) and (IV) read it.
Rules (I) and (IV) can create a negative loop only if there also exists another rule body← head; the loop would then

contain r∆
+

i , body, and head. But in this case, the original program would not be head-negation-stratifiable as it would
have a negative loop between head, body, and ri. Therefore rules (I) and (IV) cannot create a negative loop.
Rules (I) and (III) can create a negative loop only if there also exists a rule of the form not ri ← head; the loop would

then contain r∆
−

i and head. But in this case, the original program would not be head-negation-stratifiable as it would
have a negative loop between ri and head. Therefore rules (I) and (III) cannot create a negative loop.
• Rewrite rule (II) writes r∆

−

i , and rewrite rules (III) and (IV) read it.
Rules (II) and (IV) can create a negative loop only if there also exists another rule ri ← head; the loop would then

contain r∆
+

i and head. But in this case, the original program would not be head-negation-stratifiable as it would have a
negative loop between ri and head. Therefore rules (II) and (IV) cannot create a negative loop.
Rules (II) and (III) can create a negative loop only if there also exists a rule of the form not ri ← head; the loop

would then contain r∆
−

i and head. But in this case, the original program would not be head-negation-stratifiable as it
would have a negative loop between ri and head. Therefore rules (II) and (III) cannot create a negative loop. �

Definition 6. A rule is head-negation-safe if all of its variables are head-negation-limited. A variable is head-negation-limited
if it occurs as:

• an argument to a non-negated user-defined predicate in the body
• an argument to a negated user-defined predicate in the body and it is used only in negated head user-defined predicates
involving response states
• one of the arguments to the built-in equality predicate and all of the other variables that occur in the same clause are
limited.

A program is head-negation-safe if all of its rules are head-negation-safe. �

Intuitively, the reason for allowing variables occurring in some negated body clause B to appear in the negated head
clause H is that the rule has to remove every value occurring in H which is not in B. It does not need to compute the set of
all values not occurring in B—which may not be finite.

Theorem 7. If a program with negation in head clauses is head-negation-safe then the program obtained via the transformation
in Fig. 12 is safe.

Proof. We will show that this property holds for each program rule r that is rewritten.
Rewrite rule (I):

• If r’s body has no negative clause then the transformation trivially preserves safety.
• Otherwise the rule does not apply.

Rewrite rule (II):

• If r’s body has no negative clause: the transformation trivially preserves safety.
• If r’s body contains at least one negated clause and the variables occurring in this clause are used only in the negated head
clause: the rewrite rule transforms the negated head clause into a positive head clause which can use variables occurring
only in the original negated body clause. Nevertheless, the rewrite rule also adds a corresponding positive body clause
which now bounds the variables used by the head clause. This renders the transformed r rule safe.

Rewrite rule (III):

• If r’s body has no negative clause, the concern is that the variable occurring in the newly added negative clause may not
be bounded in a positive body clause but used in the head clause; this is obviously false by construction.
• If r’s body contains at least one negated clause and the variables occurring in this clause are used only in the negated head
clause, the rewrite rule leaves body and head unmodified and therefore cannot affect the result of the transformation.
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Rewrite rule (IV):

• If r’s body has no negative clause, the concern is that head is using variables occurring solely in the negated body clause.
This property would then hold for the transformed r, which thus would not be safe. Rewrite rule (II) applies now, and
will result in a safe rule.
• If r’s body contains at least one negated clause and the variables occurring in this clause are used only in the negated
head clause, the rewrite rule preserves safety up to rule (II).

Rewrite rule (V): The argument is the same as for rewrite rule (I).
Rewrite rule (VI):

• If r’s body has no negative clause: the transformation trivially preserves safety.
• Otherwise the rule does not apply. �

10.2. Augmentation and stratification

Given an initial reactor type C , and given the types of all reactors, we define the extended rule/relation stratification graph
G on the program before augmentation as a directed graph 〈N, R, A〉 obtained by applying the following steps repeatedly
until the reaction scope has been fully extruded—i.e. no new reactor types can possibly be added to the reaction scope. Let
S = {C}.

• Let Ccrt iterate over the set of newly added reactor types in S.
• For every rule r in Ccrt which writes a remote relation p in Ci of a type that already exists in S, treat p as a local relation.
• For every rule in Ccrt which reads andwrites only local relations, build the rule/relation graph as explained in Section 10.1.
• For every rule r in Ccrt which writes a remote relation p in Ci of a type that does not already exist in S:
. Add a node to N for each predicate symbol in Ci, and a node to R for each rule in Ci.
. For each rule r ′ in the current extended stratification graph which read relations in Ci, update A to contain an edge
from n ∈ N corresponding to the relation being read to r ′ ∈ R if n is a predicate symbol in the body of rule r ′. The edge
between n ∈ N and r ′ ∈ R is marked if the body clause that has n as predicate symbol is negative.
. For rule r build the rule/relation graph as explained in Section 10.1.
. S = S ∪ Ci.

• For every rule r in Ccrt which instantiates a new reactor of type Cj that does not already exist in S, S = S ∪ Cj.

Definition 8. A set of reactor types is D-stratified if there exists no cycle in the corresponding extended stratification graph
G containing a marked edge. �

Note that we are interested in a program to be stratified after the active_T relation has been added, for reasons explained
in Section 7.1.

Theorem 9. If a set of reactor types is D-stratified then the program obtained via augmentation is head-negation-stratified.

The augmentation transformation creates a global relation for all corresponding relations p in reactors of the same type.
But, before augmentation all relations p in reactors of identical type that the rules may refer to were represented by a
single node via the graph construction above. Therefore, no edges are either created, nor deleted, by the transformation, and
the marks on the edges remain unchanged. Practically, the augmentation transformation creates a monolithic dependence
graph which is isomorphic to the extended stratification graph constructed above. It follows that stratification of the graph
is unaffected by the augmentation transformation.

11. Extended examples

In this section, we complete the exposition of the reactor model with a collection of extended examples. These examples
show how a number of common distributed programming patterns can be concisely encoded in the reactor model. All of
the examples in this section make extensive use of the notational abbreviations defined in Fig. 6.

Example 10 (AJAX-Style Web Form). Figs. 15–17 depict code for a simple AJAX (asynchronous Javascript and XML) web
application, due to Bercik [17]. In this style of application, individual elements on a web page can be updated via
asynchronous server requests. In contrast to traditional ‘‘page at a time’’ web applications, this approach minimizes the
amount of data that needs to be exchanged between browser and server, which can in turn yield more responsive user
interfaces and a reduced load on the server.
Figs. 15–17 represent browser code, server code, and database code, respectively, for a web form containing fields in

which a user can enter a US zip (postal) code, a city name, and aUS state name.When the user enters a zip code, a background
server request (XMLHttpRequest) is dispatched, which ultimately has the effect of looking up the zip code in a database
and returning the city and state to which the zip code corresponds back to the browser. The returned values are then used
to complete the city and state fields on the web form (the user can overwrite the server-generated field values if desired).
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Fig. 15. AJAX address lookup form: HTML and JavaScript client code.

Despite the conceptual simplicity of the web form example, a large amount of code in multiple programming languages
is required to build a robust AJAX application. In this case, the browser code (Fig. 15 is written in a combination of HTML and
Javascript; the server code (Fig. 16) is written in PHP; SQL queries and data definitions are used to access the database
(Figs. 16 and 17); and XML is used to transmit data from the server back to the browser (Figs. 16 and 15). Specialized
Javascript libraries are also needed to dispatch the server request and process the XML response. The result is code that
is complex and fragile, even for a very simple application.
By contrast, consider the reactor definitions in Figs. 18 and 19. While the reactor model is a foundational model, not

a full-blown programming language, it is expressive enough to accurately model all of the essential operations present in
the example. Here, reactors are used to model ‘‘widgets’’ representing single form fields (InputWidgets), the contents of
of the page containing the main web form (AjaxPage), server side code (Server) and the zip code database (ZipDB). In
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Fig. 16. AJAX address lookup form: PHP server code.

Fig. 17. AJAX address loookup form: Database code.

addition, we alsomodel the behavior of a rudimentaryweb browser (Browser). From this example, we see that reactors can
compactly and uniformlymodel the synchronous interaction between thewebpage code and the browser, the asynchronous
interaction between the browser and the server, the synchronous interaction between the server and the database, and the
requisite logic used to connect these components together. Contrast the ‘‘three-tier’’ style of this example with the example
in Fig. 10, which encapsulates its ‘‘business logic’’ in a single reactor.

Example 11 (Three-Tier Web Application). Fig. 20 depicts another web application which mimics the structure of a
conventional three-tier application for catalog ordering. In a manner similar to the previous example, page content
in browser is modeled by the OrderPage reactor type, which is instantiated with various primitive widget reactors—
OutputWidget and ButtonWidget from Fig. 10 (in the case of ButtonWidget, the type of its buttonListener relation
must be changed from (ref DataDisplay) to (ref OrderPage) to account for its new ‘‘parent’’ type) and a new
FormWidget—depending on the type of page being displayed. Instances of OrderPage perform local (i.e., ‘‘browser-side’’)
computation which performs basic form validation.
One limitation of our current model is that all reactor references must be strongly typed, hence the need to update the

declaration of ButtonWidget to refer to a different ‘‘parent’’ reactor type, which makes it difficult to model a browser
reactor that can render arbitrary pages represented as reactors. In the future, we will consider more flexible type system
which would allow a completely generic browser, oblivious to the type of the page, to be defined.
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Fig. 18. Reactor-based address lookup form: ‘‘client’’-related definitions.

Example 12 (Small Workflow System). Consider a workflow system (shown in Fig. 21) where employees handle incoming
cases (say, problem reports) and attempt to resolve them. Regardless if a case is resolved or not, it is eventually archived
to signify that no more work should be carried out on that case. Of course, it can be important to know the entire history
of unresolved cases whether they are archived or not. To this end, the system outlined in Fig. 21 declares the relations
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Fig. 19. Reactor-based address lookup form: ‘‘server’’-related definitions.

inbox, unresolved, and archive. Cases received from the outside world through the inbox are initially duplicated to
unresolved and eventually put in archive although they may continue to exist in unresolved.
Incoming cases are allocated to employees who each has a work queue. Employees interact with the system through a

GUI where they can mark cases resolved, archived or deallocated. These GUI events are handled through the public relation
GUIevent.
In the normal workflow employees can navigate freely between the various states, as long as two rules are satisfied:

(1) every case that has not been archived must be allocated, and (2) any resolved item should be archived (although it will
stay in thework queue for post-review until the employee explicitly deallocates it). These two rules are encoded by the lines
marked (1) and (2) in the example. The two rules demonstrate a desirable coding style, where the constraints are separate
from the GUI handling and any other rules that may modify the relations; this improves compositionality with future rules.

Example 13 (Aspect-like Modeling of Logging and Access Control). The reactor code in Figs. 22 and 23 is based on an example
due to Hankin et al. [18]. Fig. 22 depicts a simple application in which a RequestMgr reactor responds to requests by
telephone company customers for billing information (via the ephemeral relation getBill). The billing information is
derived by combining information in two databases: WP, a database of ‘‘white pages’’ listings, and BillDB, a billing database.
In Fig. 23, we augment the definition of RequestMgr in Fig. 22 with additional rules which add logging and access

control functionality. The last two rules of the example encode assertions representing alternative access control policies.
These rules have the effect of rolling back reactions which violate the policies. Hankin et al. [18] implement the basic billing
functionality of Fig. 22 in the KLAIM process calculus [19], then add access control facilities using aspect-like [11] extensions
to the core calculus. The aspect extensions can modify the behavior of the underlying application by inserting or removing
expressions of the original program (in this case, by inserting code around database accesses which validates access control
policies).
As with aspect-like approaches, the reactor model allows many ‘‘additive’’ behaviors, such as the new functionality of

Fig. 23, to be incorporated into an existing program as additional rules, without requiring that existing code be modified.
On the other hand, aspect languages typically provide meta-constructs to define ‘‘pointcuts’’ at which new behavior is
introduced via syntactic pattern-matching; the reactor model provides no analogous functionality. Existing functionality
in a reactor program can generally be altered or removed only by editing rules in place. By contrast, [18] allow ‘‘advice’’ to
be definedwhich has the effect of conditionally eliminating existing behaviors. Nevertheless, we believe that the rule-based
style of the reactor model usually allows conceptually independent behaviors to be specified as distinct collections of rules,
which in turn means that the scope of required edits is minimized when application requirements change.
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Fig. 20.Mini three-tier web application.

Example 14 (Refactoring from Synchronous to Asynchronous Interaction). The examples in Figs. 24 and 25 both implement
the functionality of the example in Fig. 8, which we considered earlier. Reactor SyncSample below is an entirely
synchronous variant of the sensor sampling reactor Sample of Fig. 8. Reactor AsyncSample of Fig. 25 is rather more
interesting. Like Sample, it is asynchronous. However, AsyncSample does not require that either the sensor or the sampling
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Fig. 21. Example from a workflow system for case handling.

Fig. 22. Telephone records management system.

reactor handle asynchronous requests and responses. Instead,weuse an auxiliary ‘‘agent’’ reactor,SampleAgent, which first
reacts synchronously with SyncSensor, then (in a separate reaction) reacts synchronously with AsyncSample. Using such
auxiliary agents, we can refactor synchronous reactor interaction to asynchronous interaction with minimal change to the
original reactor code.

Example 15 (Business Process for Order Fulfillment). The example in Fig. 26 depicts a simple business process example
modeling order fulfillment. In this example, a Gateway reactor processes requests to fulfill a certain quantity of items (in
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Fig. 23. Telephone records management system augmented with logging/authorization functionality.

Fig. 24. Fully synchronous sensor sampling.

Fig. 25. Fully asynchronous sensor sampling.

this example, only one type of item is considered, for simplicity). The Gateway maintains an ordered list of references to
Warehouse reactors which are capable of fulfilling the order. When a request is received, a new Processor reactor is
spawned specifically to fulfill the (single) request. The Processor reactor asynchronously queries each warehouse on the
list to determine if it can fulfill the order itself; if not, the remainder of the order is passed on to the next warehouse on the
list for fulfillment, and so on. If all of the requested items can be supplied, an asynchronous response is sent to the requester,
indicating success. Otherwise, a failure response, containing the number of items unfulfilled, is dispatched. The FIRST and
EMPTY expressions are syntactic for rules and auxiliary relations which compute the first element of a list, and test a list for
emptiness, respectively.
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Fig. 26. Order fulfillment workflow.

This example in Fig. 26 illustrates how auxiliary reactors can be instantiated that carry out independent ‘‘task threads’’, in
a manner similar to process replication in standard process calculi. The example also illustrates how the data manipulation
components of the language (here, e.g., the machinery used to manage lists of warehouses) interact naturally with process
creation and inter-process communication.

Example 16 (Views Defined by Rules: Shopping Cart Management). The example in Fig. 27 models shopping cart manage-
ment for a catalog order application. Reactor type CartManager is intended to manage a shopping cart for a single user
interaction (‘‘session’’). Each CartManager instance contains a ‘‘public’’ view of private cart data maintained on behalf of
all users by reactor DB. Relation currCart contains the public contents of a single user cart, and allCartsmaintains the
private contents of all shopping carts currently managed in the system, along with auxiliary information about users and
shipping information for each cart. The client interacts with the public cart (currCart) by reading and writing its contents
directly. The rules of CartManager synchronize the public contents of currCart with private internal data; hence cur-
rCart functions as a view, in the database sense, of the private DB data. Note that the shipping information is maintained
by DB, rather than CartManager instances. The CartManager rules are concerned only with synchronizing the public and
private cart data. As before, EMPTY is syntactic sugar for auxiliary rules/relations which test a relation for emptiness. SUM is
sugar for rules/relations which compute the sum of the quantity values for each item in a cart.
The cart synchronization rules must account for various edge conditions: e.g., when there is a pre-existing private cart

that can be used to populate the public cart, and when there is no pre-existing cart at all. This is quite straightforward to do
by composing rules that separately handle each edge case, but would likely require much more thought and care if written
in a non-declarative style. Similarly, the rule-based computation allows the distinct ‘‘concerns’’ of cart synchronization and
shipping logic to be specified and managed independently, in an aspect-like manner.

12. Related work

Fundamentally, reactors are ‘‘reactive systems’’ [20], combining and extending features from several, largely unrelated
areas of research: synchronous languages, Datalog [4], and the actor model [5].
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Fig. 27. Shopping cart management.

Esterel [1], Lustre [2], Signal [3], and Argos [21] are prominent synchronous languages. In synchronous languages, the
term causality refers to dependencies, and all have restrictions on cyclic dependencies. Esterel only admits a program if
all signals can be inferred to be either present or absent (as opposed to unknown); this is referred to as constructiveness.
Esterel adopts a strict interleaving semantics, i.e. it assumes that reactions cannot overlap temporally. In Esterel signals are
broadcast instantaneously so that all receptors of the signal will see it in the same instant and the signal will only exist
in that reaction. The reactor model, on the other hand, supports both synchronous and asynchronous broadcasts (readers
can react when a relation is changed) as well as synchronous and asynchronous point-to-point communication (by writing
directly into a public relation of the receiver).
Lustre and Signal also limit cyclic dependencies, but add sampling in the form of the construct x = Exp when BExp

meaning that Exp should be evaluated only when BExp is true. This facility provides a sophisticated way of reading values
from preceding reactions other than the immediately previous one. In the reactor model, such predicates can be expressed
directly asx(Exp) <- BExpwherex should be a singleton relation. Argos is based on State Charts andhierarchical automata
and distinguishes itself from other synchronous languages by being graphical.
Generally speaking, the group of synchronous languages does not allow cycles in the data flow graph — only pre-state to

response-state connections are permittedwhen referring to the same variable. In the reactormodel, stratification provides a
more refined classification that widely allows recursionwhile ruling out cases where the fixed point could be ambiguous (of
course, programs may still loop infinitely). Reactors provide several features not found in synchronous languages, namely
asynchrony, generativity, and distributed transactions. We are not familiar with any other language that combines these
features.
Active databases [22] commonly express triggers of the form Event–Condition–Action (ECA), where the action is carried

out if on receipt of a matching event the condition holds true. This can be expressed as action <- event, condition
in the reactor model. The reactor model eliminates the distinction between conditions and events, and adds support for
distribution, process generation, and synchronous composition.
Transaction Datalog [23] introduces transactions and database updates to Datalog. In Transaction Datalog, inserts and

deletes are special atoms in rule bodies, and backward derivation rather than forward derivation is used. To achieve
concurrency in transactions a concurrent conjunction operator, |, is added. In the reactor model, all rules execute
concurrently within the same reaction (subject to stratification) by default, and thus sequentiality, rather than concurrency,
must be programmed explicitly when needed. We feel this increases the opportunity for aggressive parallelization. Another
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piece of work on Datalogwith updates is DatalogU [24], which follow a similar approach to Transaction Datalog, but without
transactions. DatalogU proposes a semantics in which deletions are performed before insertions so that newly inserted
facts cannot be deleted immediately. The reactor model augments the features found in these Datalog variants with a
framework for distribution, communication, and generativity (the ability to create new reactors), and allows deletion to
happen concurrently with the rest of the computation.
In [25] an approach to deletion is presented which focuses only onmodifying the extensional database. The semantics of

rules with updates in the head is given by re-writing them into equivalent update-free rules that are XY-stratified—a special
subcase of locally stratified programs. These programs can express all programs under inflationary fixpoint semantics.
Deletions (and additions) in this approach occur as additional commands, separate from the program, which request the
removal (or addition) of extensional facts. In this context, a deletion request is handled by simply not copying a fact to the
database.
U-Datalog [26] has an non-immediate update semantics, in which updates are collected and applied in parallel to the

databasewhen the query evaluation is completed. This approach lackswhatwe think of a nice property thatwhen a reaction
quiesces all the rules have been re-satisfied.
In [27], rules which update the database by retracting tuples are regarded as integrity constraints, and programs with

rules containing retractions are translated into normal programs. Consistency is restored by making one of the positive
literals in the rule body false. This can be updates to the database, database initial facts, or the facts inferred from the rules.
The semantic is nondeterministic.
In [28] procedural and declarative update languages are proposed which all have saturation semantics—a form of

inflationary semantics. This means that facts can be added to the database, but never deleted. [29] defines Datalog-A, an
extension of Datalog with updates; this approach promotes explicitly procedural constructs and uses a Dynamic Logic to
specify their semantics.
The constructive semantics of LDL [30] for Datalog programs with updates is top-down. The declarative semantics of LDL

programs imposes an update dependency restriction on programs. If p is the head predicate symbol of a rule s.t. the definition
of p contains an update predicate (addition or deletion) p has the update dependency property. A set of rules is legal if every
head predicate symbol that has the update dependency property is defined by a single rule. In the case in which the order
of applying the updates is relevant, the program is rejected or the user can specify procedurally the order of execution.
KLAIM [31] is a process calculus type of programming language based on Linda. It has asynchronous communication

based on creating tuples which will be received by any number of processes. There is a shared data space, though multiple
located tuple spaces can exist at a time. The language is procedural in the sense that it expresses implementation as opposed
to specifications, and operations are ordered.
Orc [32] is an orchestration language for distributed computation. The composition operators for services are parallel

composition, sequencing, and selective pruning. The model does not have any computational power; it relies on services to
provide this capability. The basic semantics is asynchronous, but it also provides a particular flavor of synchronous semantics
which ensures that all internal events are processed as soon as possible, before any external response can be processed.
TCC [33] presents a declarative approach that starts from an asynchronous computational model (CCP) and ensures a

timed computational model in which computation is deterministic and time is bounded. The language supports hierarchical
andmodular construction of applications via parallel composition and pre-emption. To express time-out TCC introduces the
notion of negative information. The absence of some positive information is interpreted as negative information solely at a
point where the computation has quiesced, and can only trigger more activity in the next computation interval.
Aspect-oriented programming [11] addresses the separation and composition of orthogonal, but interacting, concerns of

a program. Reactors do not have the features usually identified with aspects (point-cuts, advice, etc.), but instead provide
one general mechanism for composition of rules in a non-intrusive and well-defined manner.
Other approaches to Internet application programming include Flapjax [34] (an event-stream and message library built

on top of JavaScript), and Links [35] (a code generation approach, where the code for several tiers is generated from one
source).
What differentiates us from the existing approaches beyond the technical details is a uniform programmingmodel which

synthesizes concepts from several domains without the usual complexity associated with this process. The semantic and
syntactic machinery for capturing all these features in a single programming model mostly consists in minimal extensions
to the standard Datalog semantics.

13. Future work

While this paper has not focused on implementation, there are two broad areas that are amenable to optimization: query
incrementalization, and efficient implementation of synchronous composite reactions through low-overhead concurrency
control. The former has already been studied in the Datalog community (e.g., [36]), and we intend to adapt those results
appropriately to our setting. In the case of synchronous reactions, recent results on efficient implementation of software
transactions (e.g., [37]) are likely to be relevant.
Other issues we plan to investigate include: (1) contract/interface type systems; (2) various abstraction facilities, such as

reactor and rule parametricity and high-order rules, that read, write, and deploy other rules; (3) more sophisticated access
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control mechanisms; (4) function symbols (functors); (5) reactor garbage collection; (6) a truly distributed implementation;
(7) support for long-running (rather than atomic) transactions.
Our semantic account of the reactor model has treated a collection of reactor types as defining an augmented program,

whose evaluation is orchestrated by the rules defined in Section 9. However, it is neither necessary nor desirable in a practical
system to require that the set of all reactor types be translated into a single program. It it only necessary that each reactor
be aware of the other reactors that it interacts with within a given reaction. A truly distributed implementation will build
the stratification graph and evaluate the rules incrementally. The following issues would need to be addressed in a practical
distributed implementation of the reactormodel. Given an initiating reactorwhich selects an update bundle off the network,
we would like it to be the case that:

• The initiating reactor is responsible for defining the scope of the reaction by including all, and only, the reactor types
reachable from it via writing a remote relation, or instantiating a new reactor type. The augmentation transformation
only applies to the set of reactor types in the reaction scope. Likewise, the transformation which removes head-clause
negation applies to the set of augmented reactor types in the reaction scope instead of the augmented program reflecting
the set of all reactor types. Wemust extend the definition of head-negation-stratified and stratified programs to account
for sets of reactor types rather than just augmented programs.
• The initiating reactor is responsible for the evaluation of all, and only, the rules in the reaction scope. This distributed
evaluator evaluates rules in the same order as the evaluator presented in Section 5.5. Also, no rule in the distributed
evaluator is executed until all instances of tuples for the rule’s relation instances have been ‘‘loaded’’ into the evaluator’s
relations.
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