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Abstract

Erdős et al [Greedy algorithm, arithmetic progressions, subset sums and divisibility, Discrete Math. 200 (1999) 119–135.] asked
whether there exists a maximal set of positive integers containing no three-term arithmetic progression and such that the difference
of its adjacent elements approaches infinity. This note answers the question affirmatively by presenting such a set in which the
difference of adjacent elements is strictly increasing. The construction generalizes to arithmetic progressions of any finite length.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let N denote the set of positive integers. A subset of N is said to be �-free if it contains no �-term arithmetic
progression (��3). We also say progression-free instead of �-free if the value of � is irrelevant. An �-free set is called
maximal if it is not properly contained in any other �-free set. Maximal �-free sets are clearly infinite. In the sequel, the
notation {a1, a2, . . .} with ak ∈ N assumes that a1 < a2 < · · · . The following question was asked in [1]:

Does there exist a maximal 3-free set {a1, a2, . . . , an, . . .} ⊆ N with the property that limn→∞(an+1 −an)=∞?

The authors noted that the answer was almost certainly affirmative, which is confirmed in this note. We construct a
maximal 3-free subset of N such that the difference of its adjacent elements increases strictly, and hence approaches
infinity. Moreover, the rate of growth of this difference can be made arbitrarily fast. A generalization of the construction
extends the result to progressions of any finite length. The examples obtained show that, essentially speaking, maximality
is unrelated to traditional notions of largeness for progression-free sets, such as asymptotic density and sum of the
reciprocals of their elements.

2. The construction

Let A ⊆ N be an �-free set (��3). We say that a positive integer b is a hole of A if b is not in A and adding b to A
does not create any �-term arithmetic progression. Thus, a progression-free set is maximal if it has no holes. A finite
progression-free set is perhaps closest to the notion of maximality if its holes are all greater than its largest element.
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However (surprisingly at first glance), the constructions below involve finite progression-free sets with minimum holes
less than their second largest elements. Starting with the case �=3, we call feasible each finite set A={a1, . . . , an} ⊆ N

such that n�3 and:

• A is 3-free;
• A has a hole which is less than an−1;
• a2 − a1 < a3 − a2 < · · · < an−1 − an−2 < an − an−1;
• an−1 �2an−2 + 3 and an �2an−1 + 3.

An example is the set {a, 2a + 3, 4a + 9}, where a ∈ N is arbitrary.
Let A be a feasible set with minimum hole b (which is less than an−1). Define

an+1 = 2an − b, an+2 = 2an+1 + 3, and an+3 = 2an+2 + 3.

We claim that the set A′ = {a1, . . . , an, an+1, an+2, an+3} ⊆ N is also feasible and its minimum hole is greater than b.
Clearly, A′ satisfies the last two conditions from the definition of a feasible set; note that an − an−1 < an+1 − an

is equivalent to b < an−1. Suppose that A′ contains a 3-term progression P; clearly one of the newly added elements
an+1, an+2, an+3 belongs to P. If P has two terms among a1, . . . , an−1, its difference d is less than an−1. Hence, the
third term ak satisfies ak �an−1 +d < 2an−1 < an, which is impossible. So at most one term of P is in {a1, . . . , an−1}.
On the other hand, an+2 and an+3 are evidently too large to be in P, implying that P = {ai, an, an+1} for some i < n.
In view of an+1 = 2an − b we infer that ai = b. But b /∈ A, which proves that A′ is 3-free .

Let us now show that c = an+2 − 2 = 2an+1 + 1 is a hole of A′. It is clear that c /∈ A′. Suppose that adding c to A′
creates a 3-term progression P; then P must contain c. Like above, an+3 is too large to be in P. Similarly, c is too large
to form a progression with some two numbers among a1, . . . , an, an+1. And if an+2 is in P, then P has difference 2,
which is easily rejected. Therefore, c is a hole of A′ which is less than its second largest element an+2.

Finally, the minimum hole of A′ is strictly greater than b, because the inclusion of an+1 eliminates b as a hole:
{b, an, an+1} is a 3-term progression.

Thus, by adding three new elements, every feasible set can be expanded to a feasible set whose minimum hole is
greater than the one of the original set. With this in mind, we carry out an inductive construction starting from an
arbitrary feasible set of size 3. At each step the current feasible set is updated as explained above. The procedure gives
rise to an infinite set A. By the properties of feasible sets, A is 3-free and the difference of its adjacent elements is strictly
increasing. Moreover, A is maximal because a hole at any finite stage is destined to be eliminated by the definition of
some later term. In conclusion:

There exists a maximal 3-free set {a1, a2, . . . , an, . . .} ⊆ N with the property that an − an−1 < an+1 − an for all
n > 1. In particular, limn→∞(an+1 − an) = ∞.

The construction readily generalizes to all � > 3. Let A={a1, a2, . . . , an} ⊆ N, n��, be an �-free set with the properties:
A has a hole less than an−1; the difference of adjacent elements is nondecreasing and an − an−1 is greater than the
previous differences; an−1 �2an−2 + 3 and an �2an−1 + 3. An example of such a set is, for instance, {a1, a2, . . . , a�}
with any a1 ∈ N and ai = 2ai−1 + 3 for 2� i��. Let b be the minimum hole of A. Define � − 2 new elements
an+1, . . . , an+�−2 so that {b, an, an+1, . . . , an+�−2} is an �-term progression. This eliminates the current minimum
hole b. Then define two more elements by an+�−1 = 2an+�−2 + 3 and an+� = 2an+�−1 + 3. An argument similar to the
above shows that the new set is �-free and has a hole which is less than an+�−1. The difference of adjacent elements is
nondecreasing, with an+� − an+�−1 strictly greater than the previous differences. Finally, by definition each of the last
two elements is at least twice the previous one plus 3. So one may apply an inductive construction again, obtaining a
maximal �-free set {a1, a2, . . . , an, . . .} such that the difference an+1 − an approaches infinity. More exactly:

For each � > 3 there exists a maximal �-free set {a1, a2, . . . , an, . . .} ⊆ N such that an − an−1 �an+1 − an for
all n > 1, with strict inequality for infinitely many n. In particular, limn→∞(an+1 − an) = ∞.

3. Comments

When constructing maximal progression-free sets inductively, at each finite stage one may try avoiding holes between
elements already defined. In one way or another, such constructions would be based on the greedy algorithm. But the
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examples known seem to indicate that in greedily generated progression-free sets, the difference of adjacent elements
is unlikely to approach infinity (on the contrary, perhaps this difference drops down to 1 infinitely often). From this
viewpoint, the idea to allow appropriately chosen “small” holes is essential for our simple construction. In the case �=3,
the choice of an+1 is indispensable to this idea, while there is a great deal of flexibility in how an+2 and an+3 are defined.
In particular, they can be chosen so that the difference of adjacent elements grows arbitrarily fast, hence producing
maximal 3-free sets as thin as desired. Furthermore (in the case � = 3 again), the set {a1, a2, . . . , an, . . .} obtained in
the process of construction satisfies ai > 3ai−2 for all i�3, regardless of the initial feasible set {a1, a2, a3}. It follows
that a2n+1 > 3na1 and a2n+2 > 3na2 for all n�1. Therefore,

∑∞
n=11/an < 3

2 (1/a1 + 1/a2) < 3/a1. By choosing a1
large enough, one can obtain maximal 3-free sets with the sum of the reciprocals of their elements arbitrarily small.
Analogous conclusions hold for maximal �-free sets as well. Such observations confirm the intuitively obvious fact that
maximality of progression-free sets implies neither high asymptotic density nor large sum of the reciprocals of their
elements.
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