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SUMMARY

Gradients of vascular endothelial growth factor
(VEGF) induce single endothelial cells to become
leading tip cells of emerging angiogenic sprouts. Tip
cells then suppress tip-cell features in adjacent stalk
cells via Dll4/Notch-mediated lateral inhibition. We
report here that Smad1/Smad5-mediated BMP sig-
naling synergizes with Notch signaling during selec-
tion of tip and stalk cells. Endothelium-specific inacti-
vation of Smad1/Smad5 in mouse embryos results
in impaired Dll4/Notch signaling and increased
numbers of tip-cell-like cells at the expense of stalk
cells. Smad1/5 downregulation in cultured endothe-
lial cells reduced the expression of several target
genes of Notch and of other stalk-cell-enriched tran-
scripts (Hes1, Hey1, Jagged1, VEGFR1, and Id1-3).
Moreover, Id proteins act as competence factors for
stalk cells and form complexes with Hes1, which
augment Hes1 levels in the endothelium. Our findings
provide in vivoevidence for a regulatory loopbetween
BMP/TGFb-Smad1/5 and Notch signaling that or-
chestrates tip- versus stalk-cell selection and vessel
plasticity.

INTRODUCTION

Increasing demands for blood supply during embryogenesis,

wound healing, and certain diseases require the formation of

new blood vessels by sprouting angiogenesis (De Smet et al.,

2009; Eilken and Adams, 2010). Sprouting angiogenesis involves

the selection of a leading tip cell and the trailing stalk cells in

a vessel, elongation of the new sprout, anastomosis, perfusion,

and ultimately the stabilization of the newly formed vessel. Gradi-

ents of vascular endothelial growth factor (VEGF)-A trigger the

selection of single endothelial cells (ECs) to become the leading

tip cells that guide emerging sprouts (Gerhardt et al., 2003;
Develo
Ruhrberg et al., 2002). In response to VEGF-A/VEGFR2-medi-

ated signaling, tip cells become enriched in Delta-like 4 (Dll4),

a ligand for Notch, and instruct adjacent ECs to become stalk

cells via Dll4/Notch1-mediated lateral inhibition (Hellström

et al., 2007; Harrington et al., 2008; Lobov et al., 2007). In the

stalk cells, Hes1 and Hey1 target genes for Notch signaling,

downregulate the levels of VEGFR2 and Dll4, and thereby tran-

siently decrease the responsiveness to the tip-cell-inducing

stimuli. This mechanism balances the numbers of tip cells re-

quired for effective sprouting and network formation (Hellström

et al., 2007; Leslie et al., 2007; Noguera-Troise et al., 2006;

Ridgway et al., 2006; Siekmann and Lawson, 2007). The tip

and stalk cell phenotypes are remarkably transient and ex-

changeable as ECs dynamically shuffle position along the angio-

genic sprout and compete for the tip cell position (Jakobsson

et al., 2010). A continuous re-evaluation of VEGFR/Dll4/Notch

signaling is required when migrating ECs meet new neighbors,

yet which other signals regulate this tip and stalk cell shuffling

remains obscure. Hence, this requires the identification of candi-

date pathways that may trigger this cellular competition.

Many signaling components of the bone morphogenetic pro-

tein (BMP) and transforming growth factor type beta (TGFb)

pathways play pivotal but often poorly defined roles in angiogen-

esis in development and disease (David et al., 2009; Pardali et al.,

2010). Mutations in the genes encoding the endothelial-specific

TGFb coreceptor Endoglin/CD105 (ENG) and Activin receptor-

like kinase 1 (ALK1), a type I receptor, cause hereditary haemor-

rhagic telangiectasia. Moreover, targeted inactivation of ALK1

can complement anti-VEGF therapies to inhibit normal and

tumor angiogenesis in mouse and humans (Hu-Lowe et al.,

2011). Smad1 and Smad5 are intracellular effector proteins of

BMP and TGFb/Endoglin/ALK1 signaling in ECs. The genetic

inactivation of Smad1 or Smad5 in mice results in early embry-

onic lethality due to several embryonic and extraembryonic

defects that include cardiovascular malformations (Chang et al.,

1999; Lechleider et al., 2001; Tremblay et al., 2001; Yang et al.,

1999). The endothelium-specific inactivation of Smad5 results,

however, in normal and viable animals (Umanset al., 2007), which

suggests that Smad1 functionally compensates for Smad5

absence in angiogenic endothelium.
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Cross-signaling between Notch and BMP/Smad pathways

has been documented in various cell types (Bai et al., 2007;

Dahlqvist et al., 2003). For instance, Smad-mediated BMP

signaling acts as a competence factor for the robust expression

of target genes of Notch, and the crosstalk of both signaling

cascades is required for the inhibition of the projection neuron

fate in the future photoreceptors in Drosophila (Quillien et al.,

2011). In ECs, Smad1 and Smad5 form upon receptor-mediated

activation a complex with the Notch intracellular domain (NICD)

to potentiate downstream target gene expression for both path-

ways (Itoh et al., 2004). Hes and Hey/Herp are primary target

genes of Notch signaling and encode basic helix-loop-helix

(bHLH) proteins that function as transcriptional repressors

of, for example, VEGFR2/3, Dll1, Dll4, and Jagged1 (Henderson

et al., 2001; Kobayashi and Kageyama, 2010; Kobayashi et al.,

2009). Downstream of BMP/Smad signaling, members of the

Id family of HLH proteins negatively regulate cell differentiation

and stimulate cell cycle progression (Norton and Atherton,

1998; Zebedee and Hara, 2001). In cultured cells, Id1 stimulates

EC migration and tube formation (Valdimarsdottir et al., 2002),

and Hey1 antagonizes BMP/Id1-induced migration of ECs by

promoting Id protein degradation (Itoh et al., 2004). Conversely,

in neuronal progenitor cells Id proteins interact directly with Hes1

through their HLH domain and suppress the DNA-binding

activity of Hes1 and thereby release the negative feedback

loop of Hes1 on its own promoter and stabilizing Hes1 expres-

sion (Bai et al., 2007). Interestingly, the formation of Id/Hes1

heteromers preserves the ability of Hes1 to affect other target

genes that ultimately leads to inhibition of precocious neurogen-

esis. Thus, these roles for the TGFb family members and Notch

signaling summarized above prompted us to study the impor-

tance of Smad1/5 in embryonic angiogenesis, specifically in

the regulation of Dll4/Notch-mediated suppression of the tip

cell behavior.

Here we present evidence that crosstalk between Smad1/5

and Notch signaling orchestrates angiogenic sprouting in

midgestation mouse embryos by securing the right balance

between tip and stalk cells. Genetic coinactivation of Smad1

and Smad5 in ECs results in defective vascular remodeling,

excessive sprouting, impaired tip cell polarity, and embryonic

lethality. We demonstrate that Smad1/5 regulate directed EC

migration and synergistically activate the expression of target

genes of Dll4/NICD in stalk cells. Furthermore, downstream of

Smad1/5, Id proteins strengthen Notch signaling by forming

heteromers with Hes1 proteins, leading to increased/stabilized

Hes1 levels in the endothelium. Hence, Smad1/5 act as crucial

regulators of stalk cell competence and blood vessel plasticity.

RESULTS

Smad1- and Smad5-Mediated Signaling Is Required
for the Developing Vasculature
Endothelium-specific (Tie2-Cre) Smad1;Smad5 knockout (KO)

mice were generated to investigate the role of these cognate

Bmp-Smads during angiogenesis. Doing so, we also observed

a crucial gene dosage effect for Smad1- and Smad5-mediated

signaling in the endothelium. Compound Smad1 and Smad5

heterozygosity (Tie2-Cre+/0;Smad1fl/wt;Smad5fl/wt) was compat-

ible with normal development and postnatal life (data not shown).
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A further decrease in the number of Smad1 (Tie2-Cre+/0;

Smad1fllfl;Smad5fl/wt) orSmad5 (Tie2-Cre+/0;Smad1fl/wt;Smad5fl/fl)

alleles resulted in normal onset of angiogenesis at embryonic

day (E) 9.5 (data not shown), but such embryos still died later

during gestation (E14.5). This is due to severe angiogenesis

and lymphangiogenesis defects characterized by severe bleed-

ings, edema, or a combination of both, and cardiac defects (Fig-

ure 1A, data data not shown). Blood and lymphatic vessels were

hyperplastic and abnormal (data not shown). Embryos lacking all

four Smad1 and Smad5 alleles in ECs (Tie2-Cre+/0;Smad1fl/fl;

Smad5fl/fl) developed earlier and more severe angiogenesis

defects, leading to embryonic lethality already at E 10.5 (Figures

1B and 1D). In this study, we further analyzed the endothelium-

specific Smad1;Smad5 double knockout embryos (dKOEC).

Such embryos underwent vasculogenesis at E8.5 with normal

formation of dorsal aorta and cardinal vein as visualized upon

breeding into a R26R background (Figure 1B). Remodeling of the

embryonic and extraembryonic primitive vascular plexi occurred

in control E9.5 embryos, but this was severely impaired in dKOEC

stage-matched littermates (Figures 1C and 1D). Severely

affected mutant embryos had vestigial heart development and

increased apoptosis mainly in non-ECs from the 24–25 somite

(S) stage onward (Figures S1A and S1B available online). There-

fore, embryos with less than 24 S were analyzed, unless stated

otherwise. Altogether, these results illustrate that Smad1/5-

mediated signaling is dispensable for vasculogenesis but is

essential for embryonic angiogenesis. At least one functional

Smad1 or Smad5 allele is required to safeguard the onset of

sprouting angiogenesis, but later events in vessel development

or stability may require higher demands (more intact alleles) for

Smad1/5-mediated signaling.

Smad1/5 Signaling Regulates Sprouting Angiogenesis
The early lethality of the dKOEC embryos prevented the use of

traditional organ-based sprouting angiogenesis models such

as the midbrain of E10.5 embryos or the retina of neonatal

mice to investigate tip and stalk cell formation. Therefore, we

took advantage of the stereotypical formation of sprouts in

the thin roof of the hindbrain of E9.5 embryos (Figures 1D

and S1C) to study early sprouting angiogenesis. In control

embryos, sprouts emerged bilaterally from the perineural vas-

cular plexi at the level of the otic vesicles and anastomosed

medially in the roof of the hindbrain in a rostro-caudal fashion.

Mutant embryos formed large sinusoid-like vessels instead of

the normal ramified network of capillaries. Interestingly, more

sprouts formed on both sides of mutant embryos, yet few or

none anastomosed medially (Figures 2A–2C). These sprouts

were, however, pyramid-shaped and broader than in stage-

matched controls (Figure 2A, boxed areas). Sprouting from the

dorsal aorta was also increased in mutants, resulting in nu-

merous ectopic intrasomitic vessels (Figure 2D) in addition to

the intersomitic vessels that were guided between morphologi-

cally normal somites (data not shown). siRNA-mediated down-

regulation of Smad1 and Smad5 (Smad1/5KD) in human umbilical

vein endothelial cells (HUVECs) resulted in a tubulogenesis

assay in Matrigel substrate in an increased number of branching

points when compared with the nontargeting (NT) siRNA-trans-

fected cells (Figures S2A–2C). We next determined whether

impaired pericyte recruitment or EC proliferation contributed to
Inc.



Figure 1. Normal Vasculogenesis but Impaired

Angiogenesis in dKOEC Embryos

(A) E13.5 control embryo (left) and embryos containing one

functional allele of Smad1 or Smad5 in ECs.

(B–D) Embryos lacking the four alleles of Smad1 and

Smad5 in endothelium. (B) Control andmutant E8.5whole-

mount and sectioned R26R reporter embryo stained with

X-gal (blue). (C and D) Whole-mount and flat-mounted

X-gal stained yolk sacs of control and mutant E9.5

R26R reporter embryos. In (D) magnified views are shown

of the head and roof of the hindbrain (middle and right

panels). cv, cardinal vein; da, dorsal aorta; s, somites.

Scale bars: 250 mm (left panels) and 150 mm (D, middle and

left panels).

See also Figure S1.
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the sprouting defect in the mutant vessels. Pericytes were

recruited to the dorsal aorta and major vessels of the yolk sac

of both control and mutant littermates (Figure S2D). Vessels of

the perineural vascular plexus were still devoid of pericyte

coverage in both control and mutant embryos at this develop-

mental stage (data not shown), indicating that impaired pericyte

recruitment does not underlie the angiogenic defect observed in

this region in mutants. However, there was a significant reduc-

tion in the number of phospho-H3/CD31-positive proliferating

ECs, which may affect sprout elongation in dKOEC embryos (Fig-

ures 2E and 2F). Altogether, these data suggest that Smad1/5

are key regulators of sprouting angiogenesis and that excessive

sprouting and reduced proliferation may contribute to the ob-

served coalescence of vessels into large sinuses in mutant

embryos.
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Further analysis of dKOEC sprouts revealed

severe defects in EC function and in tip cell

and stalk cell formation. Tip cells were polarized

in control embryos in a similar fashion as ECs

grown in two-dimensional cultures (Pi et al.,

2007), with a compacted Golgi apparatus facing

the leading edge of the cell (Figures 2G and

S3A). In contrast, the localization and com-

paction of the Golgi apparatus in tip cells of

mutant embryos was random, suggesting that

Smad1/5 are required for polarity and directed

cell migration of tip cells. Similarly, Smad1/5KD

HUVECs undergoing directed cell migration in

Dunn chambers showed a random localization

of the Golgi apparatus, whereas the Golgi appa-

ratus predominantly localized at the leading

edge of control cells (Figure S3B). Next, we per-

formed transwell migration assays using com-

plete growth medium containing VEGF as che-

moattractant to evaluate the requirement of

Smad1/5 for migration of ECs. Significantly

fewer Smad1/5KD ECs migrated when com-

pared to NT siRNA-transfected ECs (Fig-

ure S3C). Similarly, a decreased number of

Smad1/5KD ECs underwent directed cell migra-

tion toward the source of complete growth

medium in Dunn chambers (Figure S3D). In-

terestingly, these Smad1/5KD ECs presented
cobblestone morphology with cytoskeletons composed of

disorganized filaments of F-actin (Figure S3E). In contrast, the

NT siRNA-transfected ECs were elongated with well-organized

parallel filaments of F-actin aligned toward the source of chemo-

attractant (Figure S3E). Altogether these results demonstrate

that Smad1/5-mediated signaling is a crucial regulator of tip

cell polarity and directed migration of ECs.

In addition to the polarity defect in mutant tip cells, all ECs

facing the migration front had numerous ectopic and spiky filo-

podia, whereas robust filopodia were restricted exclusively to

tip cells in E9.5 control embryos (Figure 2H). Similarly, there

was a significant increase in the number of filopodia formed by

Smad1/5KD HUVECs when compared with control cells (Figures

S3F–S3H). The increased filopodia formation was observed

in ECs cultured with or without a chemoattractant gradient,
01–514, March 13, 2012 ª2012 Elsevier Inc. 503



Figure 2. Smad1/5 Signaling Regulates

Angiogenesis

(A) Dorsal vascular plexus (anti-CD31/anti-Nrp1)

in flat-mounted hindbrain roofs (E9.5). Asterisks

and boxed areas (right panels) show sprouts

quantified in (B).

(B and C) Quantification of sprouts (B) and dorsal

anastomoses (C).

(D) Dorsal aortae (anti-CD31) from control and

dKOEC E9.5 embryos. Arrowheads show ectopic

sprouts.

(E and F) Quantification of proliferation (phospho

H3-positive ECs) in the dorsal vascular plexus.

(G) Position of the Golgi apparatus (anti-GM130)

in tip cells.

(H) Filopodia (anti-Nrp1) in endothelium (anti-

CD31). Boxed region in (G and H) are magnified in

right panels. tc, tip cell.

Quantifications are averages from several em-

bryos (B, C, nR 21; E, nR 11). Scale bars: 200 mm

(A, left panels), 20 mm (A, boxed area; G, left

panels); 150 mm (D and F, left panels); 40 mm (H);

4 mm (G, boxed area), and 7 and 10 mm (H, boxed

area, left and right, respectively).

See also Figures S2 and S3.

Developmental Cell

Smad1/5 and Notch Signaling Regulates Stalk Cells

504 Developmental Cell 22, 501–514, March 13, 2012 ª2012 Elsevier Inc.



Developmental Cell

Smad1/5 and Notch Signaling Regulates Stalk Cells
suggesting that Smad1/5 negatively regulate filopodia formation

regardless of the migration status of the cell. The average length

of these filopodia, however, did not differ between Smad1/5

and NT siRNA treated cells under these conditions (Figures

S3F–S3H). The ectopic formation of filopodia suggested that

the stalk cells acquire tip-cell-like features in the absence of

Smad1/5.

Smad1/5-Mediated Signaling via Id Proteins Is Essential
for Stalk Cell Competence
To gain a better understanding on the activities of Smad1/5 in

the angiogenic endothelium, we analyzed the localization of

the receptor-activated and C-terminally phosphorylated (p-)

Smad1/5/8 proteins and compared it with the protein localization

of known target genes for Smad1/5/8. The nuclear p-Smad1/5/8

staining in control E9.5 embryos revealed an ubiquitous localiza-

tion and activity of BMP/Smad signaling throughout the venous

and arterial endothelium, including tip and stalk cells (Figures

3A and S4A). Nuclear p-Smad1/5/8 staining was absent in

dKO endothelium but was normal elsewhere (Figure 3A), demon-

strating that BMP-Smad signaling cascade is efficiently silenced

in the endothelium of dKOEC embryos and that Smad8 (if pre-

sent) is not sufficient to compensate for the absence of the two

other Smad proteins. Next, wemonitored the activation of down-

stream target gene expression in reporter mouse embryos that

are transgenic for a gene composed of a BMP response element

(BRE) from the Id1 promotor driving green fluorescent protein

synthesis (BRE:GFP; Monteiro et al., 2008). Despite the ubiqui-

tous localization of p-Smad1/5/8 in the endothelium, we found

a scattered, non-tip-cell distribution of GFP in the endothelium

of E9.5 BRE:GFP embryos (Figure 3B). To confirm our observa-

tions, we analyzed the distribution of Id proteins using an anti-

body that detects all Id family members (Figure 3C). In control

embryos, the Id proteins showed a scattered distribution in

embryonic and extra-embryonic endothelium recapitulating the

GFP localization in BRE:GFP embryos. This scattered distribu-

tion appeared to be highly dynamic and transient in the ECs,

as it was found restricted to nonsprouting endothelium and

the early stalk cells of emerging angiogenic sprouts, whereas

‘‘late’’ stalk cells from elongated sprouts and all tip cells were

always devoid of Id/GFP in E9.5 embryos (Figures 3B–3D). Id

proteins were undetectable in ECs of dKOEC E9.5 embryos but

were preserved elsewhere (Figure 3C). This suggests that ubiq-

uitous phosphorylation of Smad1/5 results in distinct activation

of target genes in tip versus stalk cells at E9.5 and that—

downstream of Smad1/5—a dynamic regulation of Id proteins

may be required for proper stalk cell commitment/formation. In

retinal angiogenesis, however, different or additional roles for

Id proteins may be anticipated because Ids/gfp were more

broadly distributed in the endothelium and were often scattered

present in tip, as well as in stalk, cells (Figures S4B and S4C).

Competition chimeric Matrigel tube formation assays were

performed with control (NT siRNA) and Smad1/5KD HUVECs

(1:1 ratio) to address Smad1/5-mediated signaling regulating

EC function via Id proteins (Figures 3E, 3F, S4D, and S4E). Under

such competitive conditions, ECs deficient for Smad1/5

signaling preferentially localized in the leading tip cell position

of the tubular branches (Figure 3E). Furthermore, there was

a significantly higher number of branching points formed in the
Develo
chimeric tubular networks when compared to the ones formed

by control ECs only (Figure S4D). Conversely, ECs overexpress-

ing either Id1 or Id3 were excluded from the leading tip cell posi-

tion in chimeric tubular networks when cocultured with mock

transfected ECs (1:1 ratio; Figure 3F). Moreover, there was

a significantly lower number of branching points in nonchimeric

tubular networks composed of ECs overproducing Id1 or Id3

when comparedwithmock transfected control ECs (Figure S4E).

This decreased number of branching points was rescued

in chimeric tubular networks composed of a mixture (1:1) of

mock transfected ECs with Id1 or Id3 overexpressing ECs,

suggesting that Id1/3 expression inhibits branching/sprouting.

Altogether, these data confirm that downstream of Smad1/5,

Id proteins play a crucial and transient role in early stalk cell

commitment/selection and suggest that the presence or ab-

sence of Id proteins in individual ECs may influence their poten-

tial to respond to the angiogenic stimuli to become tip or stalk

cells.

Mutual Interdependence of Notch- and Smad1/5-
Mediated Signaling
Stalk cells are transiently induced by pulses of Dll4/Notch

signaling. It has been shown that a target gene of Notch, Hey1

(Herp2), negatively regulates Id protein production in cultured

ECs (Itoh et al., 2004). The presence of the Smad1/5-dependent

Id proteins in the early stalk but not in stalk cells of elongated

sprouts made us hypothesize that Id proteins may play an earlier

role than Notch in regulating stalk cell selection. To evaluate

a possible cross-signaling between BMP and Notch cascades,

we developed an ex vivo midgestation angiogenic sprouting

model and examined the effects of acknowledged pharmacolog-

ical inhibitors of either pathway (Figure 4A). Dorsal aorta and

intersomitic vessels in cultured explants of dorsal tissue of

E9.5 BRE:GFP embryos preserved the scattered distribution of

Id/GFP proteins observed in vivo in the embryos (Figure 4A

versus Figures 3B and 3C). Interference with Notch signaling

by the g-secretase inhibitor DAPT resulted in increased numbers

of cells producing GFP and sprouts from the dorsal aorta.

Similarly, treatment with BMP2 increased the number of GFP-

positive ECs (Figure 4A), but no ectopic sprouting was observed.

The combined treatment with DAPT and BMP2 had an additive

effect resulting in the majority of ECs producing GFP, but

BMP2 counteracted the DAPT-induced excessive sprouting

from the dorsal aorta. Combined treatment of Dorsomorphin,

a BMP receptor inhibitor, and DAPT inhibited GFP overproduc-

tion below levels of nonstimulated controls (Figure 4A). An

expression analysis was performed on these cultured embryo

explants and ECs to address the interplay between both path-

ways. In HUVECs, Id1/2/3 transcripts increased only in response

to BMP6 and not to BMP2 or BMP4 (Figure S5). Therefore,

HUVECs were stimulated with BMP6 instead of BMP2. Treat-

ment of explants with DAPT effectively downregulated Hey1,

whereas upregulated Id2 and Id3 (Figures 4B and 4E), suggest-

ing that the Notch-mediated inhibition of BMP signaling can be

mediated by Hey1 (Itoh et al., 2004). Consistent with the expan-

sion of the GFP-domain in BRE:GFP explants, the combined

treatment with BMP2 and DAPT resulted in an additive induction

of Id2 (Figure 4B). Inhibition of Notch signaling in HUVECs

increased Id1-3 expression when combined with stimulation by
pmental Cell 22, 501–514, March 13, 2012 ª2012 Elsevier Inc. 505



Figure 3. Smad1/5 Signaling Regulates Stalk Cell Competence via Id Proteins

(A) Anti-p-Smad1/5/8 staining in endothelium of E9.5 control and dKOEC littermates. Nuclei of tip and stalk cells are highlighted by dashed lines.

(B) GFP localization (BRE:GFP) in early stalk cells (middle panels) and elongated sprouts (bottom).

(C) Id protein localization in wild-type yolk sac artery (top panels) and embryonic vasculature (middle panels). Absence of Id proteins in mutant sprouts (bottom

panels). Yellow and white arrowheads indicate pan-Id/GFP positive or negative cells respectively. Asterisks represent red blood cells.

(D) Schematic representation of the dynamic p-Smad1/5/8 and Id/BRE:GFP localization in developmental angiogenic sprouts.

(E) Chimeric tube formation assay and quantification of Smad1/5KD (green, calcein) or WT (red, DiI-AC-LDL) leading ‘‘tip’’ cells.

(F) Chimeric tube formation assay and quantification of Id1OE/Id3OE (green, calcein) or WT (red, DiI-AC-LDL) leading ‘‘tip’’ cells. sc, stalk cell; tc, tip cell.

Quantifications are averages from several sprout/tubular structures (E, nR 50; F, nR 49). Scale bars from top to bottom: 30 mm, 40 mm, 15 mm, and 30 mm in (A);

50 mm, 15 mm, 15 mm, and 15 mm in (B); 30 mm, 15 mm, 15 mm, and 30 mm in (C).

See also Figure S4.
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Figure 4. Cross-Signaling between Notch and Smad1/5 Pathways

(A) GFP localization in endothelium (anti-CD31) in E9.5 BRE:GFP dorsal

explants exposed to different treatments. The arrows heads show ectopic

intrasomitic vessels. Quantification of GFP-positive ECs from dorsal aorta.

(B–E) mRNA expression analysis of Id1-3 in embryo explants (B) and HUVECs

(C). Hes1 and Hey1 expression in embryo explants (D) and HUVECs (E). Scale

bars: 50 mm.

See also Figure S5.
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BMP6 (Figure 4C). Next, we analyzed the effect of BMP signaling

on the Notch target genes Hey1 and Hes1. Explants treated with

BMP2, or HUVECs treated with BMP6, had increased Hes1 and

Hey1 transcript levels, whereas treatment with Dorsomorphin

dramatically downregulated Hes1 and Hey1 expression (Figures

4D and 4E). The combined treatment with BMP6 and Dll4 syner-

gistically stimulated Hes1 and Hey1 expression in HUVECs (Fig-

ure 4E). These results further confirm a regulatory loop between

the BMP and Notch signaling cascades in the endothelium, and

suggest that in early stalk cells BMPs/Smad1/5 enforce Notch

signaling to cooperatively activate target gene expression
Develo
(Hes1 and Hey1), whereas Notch signaling negatively regulates

Id expression.

Smad1/5 Deficiency Impairs Notch Signaling
in Angiogenic Endothelium
To evaluate whether Smad1/5 signaling reinforces Notch

signaling during stalk cell formation during development, we

evaluated the vascular distribution of Dll4 and NICD. In control

embryos, tip cells showed a marked enrichment of Dll4 when

compared with stalk cells. In contrast, Dll4 was not enriched in

tip cells in mutants but was equally distributed in tip and stalk

cells (Figure 5A). Despite this aberrant distribution of Dll4 in

mutant ECs, Notch1 still became ligand-activated, proteolyti-

cally cleaved, and targeted to the nucleus as revealed by the

staining of NICD in dKOEC embryos (Figure 5B). This nuclear

staining, however, was equally present in presumptive tip and

stalk cells, contrasting with the clear enrichment of NICD in

stalk cells of control embryos. The widespread and overlapping

distribution of Dll4 and NICD in mutant ECs suggested that the

downregulation of Dll4 ultimately failed in mutant stalk cells.

Hence, Smad1/5 are dispensable for Notch activation per se

but are critical for proper downstream expression and/or activity

of target genes of Notch.

To investigate how Smad1/5 signaling affects Notch signaling

and stalk cell features, Smad1/5 loss and Id gain-of-function

experiments were performed in HUVECs. Time course tran-

scription analyses demonstrated that 1 hr after stimulation with

serum-rich medium, the expression levels of Id2, Id3, Hes1,

Jagged1, and VEGFR1 were highly upregulated in confluent

control HUVECs transfected with NT siRNA. After 90 min, the

level of this set of stalk-cell-enriched transcripts decreased

with a concomitant upregulation of Hey1 mRNA levels. The

peak of Id1 expression appeared only 2 hr after the stimulus (Fig-

ure 5C). Smad1/5 siRNA-mediated downregulation effectively

inhibited Id1/2/3 expression, as well as the expression of the

Notch target genes Hes1 and Hey1, and the other stalk-cell-

enriched transcripts, Jagged1 and VEGFR1. In contrast, the

expression of the tip cell enriched transcripts Dll4, VEGFR2,

and VEGFR3 was upregulated in the Smad1/5KD HUVECs,

whereas PDGFB expression remained unaffected. These results

demonstrate that in the absence of Smad1/5, the levels of tip-

cell-enriched transcripts increase at the expense of the stalk-

cell-enriched transcripts. This confirms our in vivo observations,

where the absence of Smad1/5 resulted in abrogated NICD

signaling, and stalk cells acquired tip-cell-like features. We

next performed Id1 and Id3 gain-of-function experiments (Fig-

ure 5D). Interestingly, Id1 and, to a greater extend, Id3 overpro-

duction, resulted in a dramatic increase of Hes1 expression. The

expression of other stalk-cell-enriched transcripts, VEGFR1 and

Hey1, was only mildly affected, except for Jagged1, which was

drastically downregulated. Furthermore, Id1/3 overproduction

resulted in downregulation of VEGFR2, VEGFR3, and Dll4,

whereas PDGFB remained unaffected. Similar results were

obtained using Id2 (data not shown). Similarly to Id overproduc-

tion, Hes1 and NICD overproduction resulted in a marked down-

regulation of the tip-cell-enriched transcripts Dll4 and VEGFR3

but also PDGFB (Figure S6). The endogenous Hes1 transcript

levels also decreased in response to overproduction of Hes1

protein, suggesting activation of the negative autoregulatory
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Figure 5. Smad1/5-Mediated Regulation of Dll4/Notch Signaling in Endothelial Cells

(A and B) Aberrant Dll4 (A) and NICD (B) localization in dKOEC angiogenic sprouts. In (B), left andmiddle panels are identical. Boxed areas of presumptive tip cells

are magnified at the right. Asterisks represent red blood cells.

(C and D) Effect of Smad1/5 siRNA (C) or Id1/3 overexpression in the regulation of tip- and stalk-cell-enriched transcripts in HUVECs.

(E and F) p-Smad1/5/8, Id1, and Hes1 proteins levels after Sm1/5 siRNA-mediated downregulation (E) and Id1/3 overexpression (F) in HUVECs. sc, stalk cell;

tc, tip cell; tlc, tip-cell-like cells. Scale bars from left to right: 25 mm in (A); 30 mm in (B) left and middle panels and 5 mm in right panels.

See also Figure S6.
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loop of Hes1. Furthermore, Hes1 overproduction increased the

levels of the stalk-cell-enriched transcripts Hey1, whereas

NICD overproduction increased the levels of Hey1 and VEGFR1.

Ids and Jagged1 expression was not affected either by Hes1 or

NICD overproduction. Altogether, these results confirm a crucial

role for Smad1/5 and Id proteins in the regulation of stalk-cell-

enriched transcripts and suggest that this effect may be par-

tially achieved by a positive regulation/stabilization of Hes1

expression.
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Therefore, we next evaluated if Hes1 protein levels are simi-

larly affected by pSmad1/5 and Id proteins in HUVECs. High

levels of p-Smad1/5/8 and Id proteins were strongly detected

1 hr after stimulation with complete growth medium in NT

siRNA-transfected ECs. Smad1/5KD led to a strong inhibition of

p-Smad1/5, Id, and Hes1 protein levels (Figure 5E). Levels of

Id and Hes1 proteins were already decreased in Smad1/5KD

ECs from 0 min after stimulation, suggesting that it effec-

tively inhibits basal levels of signaling. Conversely, Id1 or Id3
Inc.



Figure 6. Interaction of Hes1 and Id Proteins in ECs

(A) Endogenous Hes1 and Id localization in HUVECs treated with Dll4, BMP6, DAPT, or Dorsomorphin.

(B) Hes1/Ids heteromers detected by in situ PLA using pan-Id and Hes1 antibodies.

(C) PLA signal quantification of (B).

(D and E) Reduced levels of Hes1/Ids heteromers upon Smad1/5 siRNA transfection.

(F and G) Dynamic regulation of Hes1/Ids and Hey1/Id3 heteromers in function of time. p values were calculated using two-tailed Student’s t test (C and D,

n R 71; G, n R 105). dorso, dorsomorphin hydrochloride.

Scale bars: 15 mm (A and F), 15 mm (B and D). See also Figure S7.
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overproduction increased the levels of Hes1 prior to complete

growth medium stimulation when compared to the mock trans-

fected ECs (Figure 5F). Upon stimulation, however, the levels

of Hes1 proteins in the mock transfected cells raised and

became equally high as in the Id1/3 overexpressing cells (data

not shown), likely reflecting that plateau levels of Hes1 have

then been reached faster. Therefore, the presence of Id proteins

allowed a fast increase ofHes1 transcription and protein produc-

tion confirming that Smad1/5 signaling via Id proteins is required

to stabilize Hes1 expression in ECs.

We next hypothesized that the Id-mediated Hes1 stabilization

would depend on Id/Hes1 protein-protein interactions in ECs.

Therefore, we used an in situ proximity ligation assay (PLA) for
Develo
detection of Id/Hes1 heteromers. Notch activation by coated

Dll4 effectively increased the levels of Hes1 protein but had little

effect on the levels of Id proteins (Figure S7A). Treatment with

BMP6 increased Hes1 and Id protein levels. The stimulation

with Dll4 or BMP6 induced the formation of Id/Hes1 heteromers

above the levels of nonstimulated ECs (Figures S7B and S7C).

The combined stimulation of BMP6with Dll4 had an even greater

effect on the levels of both Hes1 and Id-proteins and resulted in

an additive increase (6-fold) in the number of heteromers formed

when compared to basal levels (Figure 6A–6C). Inhibition of

either pathwaywith DAPT or Dorsomorphin significantly reduced

the number of these heteromers (Figures 6B, 6C, S7B, and S7C).

Similarly, siRNA-mediated downregulation of Smad1/5 also
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resulted in a significant reduction of the number of Id/Hes1

heteromers in HUVECs stimulated with Dll4 and BMP6 (Figures

6D and 6E), eliminating possible off-target effects of Dorsomor-

phin (Hao et al., 2010). Altogether, these results demonstrate that

Hes1 and Id proteins functionally interact and form complexes

in ECs.

We have shown that Id proteins localize in early stalk cells, but

not in stalk cells of elongated sprouts, that Id proteins stabilize

Hes1 expression, and have confirmed previous reports showing

that the Notch pathway negatively regulates Id expression in

ECs, probably via Hey1. We hypothesized that upon an angio-

genic stimulus Id proteins would stabilize Hes1 expression and

that afterwards the increasing Notch signaling/Hey1 levels will

reduce Id protein levels in stalk cells. Therefore, we performed

a PLA time course experiment to reveal the dynamics of Ids/

Hes1 versus Id3/Hey1 complexes in ECs upon complete growth

medium stimulation (Figures 6F and 6G). Indeed, Ids/Hes1

complexes peak at 1 hr after stimulation and were formed prior

to the formation of Hey1/Id3 complexes. In contrast, the number

of Hey1/Id3 complexes peaked with a delay of 30 min (90 min

after stimulation) with a concomitant and rapid reduction of

Id/Hes1 complexes. Later, at 2 hr after stimulation, the number

of Hey1/Id3 complexes also decreased, whereas those of Ids/

Hes1 rose higher again. It has been reported that protein-protein

interactions of Hey1 with Id proteins reduce Id protein levels by

targeting them for degradation (Itoh et al., 2004). Therefore,

these results suggest that Hey1 may indirectly destabilize Hes1

gene expression by negatively regulating the levels of Id proteins

in the endothelium and, as such, probably contribute/generate

Id/Hes1 oscillations that may influence how ECs interpret the

angiogenic stimulus for becoming either a tip or stalk cell.

DISCUSSION

Here we demonstrate that the EC-specific inactivation of

Smad1/Smad5 primarily impairs tip cell polarity and Notch-

mediated stalk cell selection; we also report hyper-sprouting

from the dorsal aorta. Recently, it has been reported in zebrafish

that BMP signaling regulates the initial sprouting steps from axial

vein but—unlike in the mouse model—not from the dorsal aorta

(Wiley et al., 2011). Importantly, the different loss-of-function

approaches used in both organisms target slightly different

aspects of the BMP/TGFb signaling cascades. The genetic dele-

tion of Smad1/5 in mouse not only affects BMP signaling but can

also interfere with Alk1/TGFb signaling (Pardali et al., 2010);

whereas noggin and dominant negative Bmpr1 overexpression

or the use of pharmacological inhibitors like SL327 will affect

in zebrafish also the non-Smad-mediated signaling (MAP/ERK

signaling), without interfering with Alk1-mediated BMP9-10/

TGFb signaling. The differences in loss-of-function defects in

the zebrafish and mouse models may also reflect intrinsic varia-

tions in the spouting program used by these organisms.

Several BMPs have been implicated in EC migration in vitro,

and Id proteins have been shown to be the mediators for this

BMP-Smad1/5 induced EC migration (Itoh et al., 2004; Valdi-

marsdottir et al., 2002). Accordingly, we demonstrate that

Smad1/5 are ubiquitously phosphorylated in tip cells, stalk cells,

and other ECs throughout the arterial and venous endothelium.

However, the distribution of Id proteins is not ubiquitous in the
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embryonic vasculature but is restricted to stalk cells flanking

early tip cells and scattered ECs in nonsprouting endothelium

but never in tip cells. This localization pattern suggests that

Smad1/5 may activate distinct target genes in tip and stalk cells,

and that target genes for BMP-Smad1/5 different from Id genes

are probably implicated in the regulation of tip cell polarity

and directed cell migration. The molecular mechanism that

drives the differential expression of target genes for activated

Smad1/5 proteins in tip and stalk cells remains unclear. Yet,

microarray analysis revealed that BMP2 and BMP6 induce

Myosin X in ECs (Pi et al., 2007). Furthermore, Myosin X is

required for filopodial formation, cell alignment, and directed

cell migration. Myosin X translocates the BMP-receptor ALK6

into filopodia to reinforce the BMP-induced directed cell migra-

tion. Thus, Myosin X and other putative target genes for

p-Smad1/5 in tip cells remain to be identified and/or confirmed

in tip cells in vivo.

ECs are plastic and have the competence to become tip, as

well as stalk, cells in a process largely controlled by Dll4/Notch

signaling in response to precise doses of VEGF, which are on

themselves induced by hypoxia (Gerhardt et al., 2003; Hellström

et al., 2007). It has been proposed that tip and stalk cells are in

flux in angiogenic vessels and prepattern the vessel continuously

for efficient and robust tip cell selection upon stimulation with

VEGF (Bentley et al., 2009; Hellström et al., 2007). Indeed, tip

and stalk cells are highly transient. This results in cell shuffling

and in a dynamic competition for the tip cell position, which

involves differential regulation of VEGFR levels in a Notch-

dependent manner (Jakobsson et al., 2010). Oscillatory expres-

sion of genes encoding Delta-like ligands and also of target

genes for Notch can contribute to cellular competition and EC

priming, as demonstrated in other cell types (Kobayashi et al.,

2009; Shimojo et al., 2008), however up to date, oscillatory

gene expression has not been demonstrated in endothelium.

So far it remained unclear whether other pathways would

assist in establishing oscillatory gene expression patterns of

genes encoding Notch components in the angiogenic endothe-

lium.We propose amodel where cross-signaling between Notch

and p-Smad1/5 orchestrates tip cell/stalk cell competence/

selection and may generate oscillatory target gene expression

of both pathways (Figure 7A). Id proteins localize scattered in

ECs in E9.5 embryos and play a transient but crucial role in stalk

cell competence and selection. This scattered localization

pattern of Id proteins in the endothelium suggests that single

ECs may dynamically experience high over low to no Id protein

levels with time and that dynamic pulses of Id protein synthesis

occur. Interestingly, it has been shown that periodic waves

of Smad1/5/8 phosphorylation can generate oscillatory target

gene expression in mouse fibroblasts (Yoshiura et al., 2007).

Furthermore, several Notch signaling pathway-related genes

are EC-specific p-Smad1/5 target genes. In particular, Jagged1

is regulated directly by Smad1/5 and its protein transactivates

Notch signaling in the neighboring cells in culture (Morikawa

et al., 2011). We propose that the mutual interdependence

between Notch and Smad1/5 signaling demonstrated here can

result in dynamic amplification but also subsequent inhibition

of downstream targets of either cascade (Figure 7A). When

present in sufficiently high levels, Id proteins would play a cell-

autonomous and permissive role in ECs toward stalk cell
Inc.



Figure 7. Schematic Model of the Role of Smad1 and Smad5 in

Dll4/Notch-Mediated Stalk Cell Behavior

(A) In wild-type embryos, the Dll4-rich leading tip cell (red) of the emerging

sprout activates in adjacent cells higher levels of Notch signaling which directs

them to acquire a stalk cell behavior (blue). Notch activation and target gene

expression (Hey and Hes) downregulates the expression of VEGFR2, VEGFR3

andDll4, and upregulates VEGFR1 resulting in stalk cell behavior. Downstream

of Smad1/5 signaling, Id proteins release the negative autoregulatory loop of

Hes1 in stalk cells. Conversely, increasing levels of the Notch target Hey1 will

progressively inhibit Id steady-state levels, which will then indirectly cause

attenuation of the Notch pathway by Hes1 downregulation.

(B) Absence of Id proteins in Smad1/5 deficient ECs will result in Hes1

downregulation. High levels of VEGFR2 and Dll4, and deficient Notch target

gene expression in stalk cells turn them into a tip-cell-like cell phenotype (pink)

and prevents the downregulation of Notch1 signaling (nuclear NICD accu-

mulation) in the leading ‘‘tip’’ cells. The failure to balance tip versus stalk cell

ratios and to transiently stabilize stalk cells, together with impaired tip cell

polarity and directed migration, is likely to cause excessive sprouting and

vessel coalescence in mutant embryos.
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competence, likely even prior to the perception of the first angio-

genic stimulus. Upon perceiving this angiogenic stimulus, ECs

will become enriched in VEGFR2/Dll4 levels, and this in turn

will increase Notch signaling in neighboring cells. Neighboring

cell(s) with high levels of Id proteins will respond with a fast

and robust amplification of (some of) the target genes of Notch

signaling by the Id-mediated release of the negative autoregula-

tory loop of Hes1 (Bai et al., 2007). Direct binding of Hes1 to Dll1

andDll4 promoters is reported to negatively regulate the expres-

sion of Dll1/Dll4 in stem cells (Kobayashi and Kageyama, 2010;

Kobayashi et al., 2009). Accordingly, we showed that overex-

pression of Hes1 or of Ids in ECs results in a downregulation of

Dll4 and of other different tip cell markers. As a consequence,

these neighboring cell(s) with high levels of Id proteins will readily

become the early stalk cells. ECs with lower levels of Id proteins

will experience a moderate Notch/Hes1 response insufficient to

trigger the stalk cell program. The observations in the Smad1/5
Develo
mutant embryos and the chimeric competition experiment

suggest that ECs are most sensitive to ‘‘tip’’ cell selection

when they have the lowest levels of Id-proteins, a cellular context

in favor of a swift induction of Dll4 upon VEGFR2 signaling. The

Id-mediated stabilization of Hes1 in scattered ECs would result

in a (direct) downregulation of Dll4 and other Hes1 target genes

in the cells competent to become stalk cells, and as such

ensuring a fast and robust initial selection of tip and stalk cells.

The regulation of other target genes for Ids and Hes1 may also

contribute with this process. Furthermore, p-Smad1/5 will con-

comitantly enforce the Notch pathway by forming complexes

with NICD and synergistically activating target genes for Notch

(Itoh et al., 2004), such as Hey and Hes in the cells that are

now acquiring stalk cell features. This will further reduce the

levels ofDll4 and the responsiveness to VEGF by downregulating

VEGFR2 and VEGFR3, and upregulating VEGFR1 (Holderfield

et al., 2006; Jakobsson et al., 2010). As the sprout elongates

and Notch signaling levels augment in the stalk cells, the levels

of Hey1 increase gradually resulting in the formation of Hey1-Id

complexes and an accelerated degradation of Id proteins (Itoh

et al., 2004). This will in turn decrease the number of Hes1-Id

complexes and reconstitute the negative autoregulatory loop

of Hes1 attenuating the Notch pathway in the stalk cell. This

decreasing Notch activity can render stalk cells again permissive

for cell shuffling and to acquire tip cell features.

Inhibition of Notch signaling results in increased tip cell

formation (Hellström et al., 2007), and we show that under

such condition Id distribution gets expanded. This suggests

that Id proteins alone do not induce stalk cells, but play a permis-

sive role toward Notch/Hes1 signaling and stalk cell induction.

Compound Id1;Id3 knockout mice are characterized by a local

decrease in sprouting within the central nervous system (CNS)

(Lyden et al., 1999). Despite that tip cell/stalk cell distribution

was not reported, it is likely that Id2 functionally compensates

for the absence of Id1 and Id3 in the vasculature of these

compound mutants, except in the central nervous system where

Id2 is not expressed. The angiogenic defect in these mutants

is milder than in the embryos lacking Smad1 and Smad5 in

the endothelium, which further supports our findings of other

non-Id-mediated Smad1/5 functions, such as EC polarity and

directed cell migration, in the developing vasculature.

The complex formation between p-Smad1/5 and NICD (Itoh

et al., 2004) is expected to be required in stalk cells for a robust

target gene expression of both pathways. In the absence of

Smad1/5 in ECs (Figure 7B), Notch signaling is impaired and

results in an increased number of filopodial protrusions and

higher levels of several tip cell-enriched transcripts (VEGFR2/3,

Dll4) at the expense of stalk cell-enriched transcripts (Id1-3,

Hes1, Hey1, Jagged1, and VEGFR1). As a consequence, Dll4

does not become downregulated in Smad1/5 deficient stalk

cells, a process reported to require a Notch-dependent differen-

tial regulation of VEGFR1/2 levels (Henderson et al., 2001; Hold-

erfield et al., 2006; Jakobsson et al., 2010), or probably direct

repression of Dll1 and Dll4 by Hes1 (Kobayashi et al., 2009).

High and ubiquitous VEGFR2-Dll4 levels coupled to impaired

Notch signaling (downstream of NICD) in mutant stalk cells

drives them to acquire a tip-cell-like cell phenotype and to accu-

mulate nuclear NICD in the leading tip-cell-like-cells (Figure 7B).

Therefore, the complex phenotype that results from the absence
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of Smad1 and Smad5 in ECs results from the failure to balance

the tip versus stalk cell ratio, excessive sprouting and defective

directed cell migration. The sum of these defects is likely to

cause the ‘‘local’’ fusion of neighboring tip-cell-like cells/sprouts

that coalesce into sheets of sinusoid-like vessels in the mutant

embryos. Our results put forward that BMP/TGFb signaling

via Smad1/5 is an integral coplayer in priming vessel plasticity,

initial stabilization of tip/stalk cell distribution, and regulation of

directed cell migration during mouse early-onset angiogenic

sprouting.

EXPERIMENTAL PROCEDURES

Mice

All animal procedures were performed in accordance with the Animal Welfare

Committee guidelines of KU Leuven, Belgium. Mice strains and genotyping of

Smad1 and Smad5 floxed or recombined alleles, and the transgenic BRE:GFP

allele are described in the Supplemental Experimental Procedures.

Whole-Mount Detection of b-Galactosidase Activity, In Situ

Hybridization, and TUNEL Assay

Whole-mount staining with 5-bromo-4-chloro-3-indolyl-beta-D-galacto-

pyranoside (X-gal; R0941 Fermentas, Glen Burnie, MD, USA), histology on

paraffin-embedded tissue sections and TUNEL assay (11684795910 Roche,

Madison, WI, USA) were performed in accordance with standard procedures.

RNA in situ hybridization and Nkx2.5 riboprobe synthesis was performed as

described in Umans et al. (2003).

Quantifications

In vivo quantifications were done on high resolution confocal images for

the discrimination between endothelial and nonendothelial cells. All images

(field size 9983998 mm) were number coded and evaluated in a blinded

way. The number of HUVECs or filopodia length and number were identified

by nuclear staining (DAPI, Invitrogen, Grand Island, NY, USA) and/or cytoskel-

eton staining (phalloidin, Invitrogen). More details are provided in the Supple-

mental Experimental Procedures. All experiments were repeated at least three

times.

Immunofluorescence

Dissected embryos and retinas were fixed for 2 hr inMEMFA (2 mMEGTA, 1 mM

MgSO4, 0.1 M MOPS, [pH 7.4], and 3.7% formaldehyde) at RT or overnight in

Dent’s fixative (8:2 methanol:DMSO) at �20�C and stored in methanol

at �20�C. Embryos were incubated overnight with primary or secondary anti-

bodies (22�C –25�C). Primary antibodies against CD31 (clone MEC13.3) and

GM130 (610822) were from BD Biosciences (San Diego, CA, USA); Nrp1

(AF566) and Dll4 (AF1389) from R&D Systems (Minneapolis, MN, USA);

C-terminally phophorylated Smad1/5/8 (9511S) from Cell Signaling (Danvers,

MA, USA); Id1z8 (sc-427), and GFP (sc-9996) from Santa Cruz; alpha smooth

muscle actin (M0851) from Dako (Carpinteria, CA, USA), and NICD (ab8925),

Desmin (ab8592), Hes1 (ab87395), and pH3 (ab5176) from Abcam. Alexa Fluor

488 and 568 donkey secondary antibodies were from Invitrogen. Confocal

images were acquired with a BioRad Radiance 2100 microscope.

Culture of Dorsal Midgestation Embryo Explants

E9.5 embryos were dissected in ice-cold 10% FCS in Dulbecco’s modified

eagle medium (DMEM; Gibco, Life Technologies, Grand Island, NY). The

roof of the hindbrain and neural tube were explanted and cultured. These

dorsal explants were cultured on Millicell cell culture inserts (PICM0RG50

Millipore, Billerica, MA, USA) in DMEM supplemented with 20% FBS and

50 mg/ml endothelial cell growth supplement (Millipore) in a humidified incu-

bator at 37�C 5% CO2 for 6 hr. Growth factors (100 ng BMP2/ml, gift from

W. Sebald and J. Nickel) and/or N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-

phenylglycine t-Butyl Ester, DAPT (100 mM, Calbiochem) or Dorsomorphin

(10 mM, Tolcris) were applied directly to the medium. Details on EC medium

and culture protocol are in Supplemental Experimental Procedures.
512 Developmental Cell 22, 501–514, March 13, 2012 ª2012 Elsevier
Gene Expression Analysis

RNA was extracted and purified with RNeasy purification columns (Qiagen,

Germantown, MD, USA). Reverse transcription was performed using MuMLV

reverse transcriptase (Fermentas), oligo-dT, and random primers (Invitrogen).

Real-time qPCR on mouse dorsal explants was performed on ABI7000 using

the SYBRgreen amplification reagent (Eurogentec, AnaSpec, Fremont, CA,

USA). The expression analysis on HUVECs was performed using a LightCycler

480 Real-Time PCR System and LightCycler 480 SYBR Green I Master

(Roche). Primer sequences are listed in the Supplemental Experimental

Procedures.

Western Blot Analysis

Cells were lysed in Tropix lysis buffer. Total protein content was measured

using a Bradford protein assay kit (Bio-Rad Laboratories, Hercules, CA,

USA). Samples were run on SDS-polyacrylamide gels, transferred onto

PVDF membranes and incubated with appropriate antibodies overnight at

4�C. Incubation with HRP-conjugated secondary antibodies was for 30 min

at RT. Primary antibody against Hes1 (ABIN307170) was from LiveSpan

Technologies (Newton, MA, USA), Id1z8 (sc-427) from Santa Cruz, phospho-

Smad1/5/8 (9511S) from Cell Signaling and Tubulin (ProBio Health, Beverly

Hills, CA, USA) and HRP-conjugated secondary antibodies (Jackson Immu-

noResearch, West Grove, PA, USA). Detection was with ECL reagent

(PerkinElmer, Waltham, MA, USA).

Cell Culture and Transfection

HUVECs (Lonza, Basel, Switzerland) were cultured in EGM-2MV microvas-

cular endothelial cell growth medium-2 (fullEC medium, Lonza) and used

between passages 6–9 from purchase. Silencing of endogenous Smad1 and

Smad5 was performed by cotransfection of ON-TARGET plus SMARTpools

of Smad1 and Smad5 siRNAs (Dharmacon, Chicago, IL USA) or nontargeting

control siRNA at a final concentration of 5 nM in starvation medium

(EBM medium with 0,1% FBS, no growth factors), using Lipofectamine 2000

(Invitrogen). The following expression plasmids were kindly provided by

P. ten Dijke (pCDNA3-Id1 and pBlueScript II-Ks-Id3), R. Kageyama (Hes1),

and R. Kopan (pCD2-NICD). Details on Dunn and Boyden chamber migration

assays, time course experiments, and Matrigel tube formation assays are

provided in the Supplemental Experimental Procedures.

In Situ Proximity Ligation Assay

Confluent HUVECs were serum starved for 12 hr, trypsinized, and plated on

14 mm coverslips that were first coated overnight with 0.1% gelatin at 4�C.
When appropriate, 1 mg/ml Dll4 (R&D Systems) was included in the gelatin

solution. DAPT (10 mM, Calbiochem) and Dorsomorphin (10 mM, Tolcris)

were added directly to starvation medium containing VEGF (10 ng/ml; R&D

Systems) at cell seeding. After 8 hr of culture, HUVECs were fixed in 2% para-

formaldehyde in PBS for 20 min and subjected to in situ PLA using Duolink

Detection kit (Olink Bioscience, Uppsala, Sweden). Cells were serum starved

for 12 hr, and stimulated with fullEC medium for PLA time course experiments.

Samples were fixed every 30 min and treated as previously described. Anti-

bodies and PLA protocol can be found in the Supplemental Experimental

Procedures.

Statistical Analysis

Statistical evaluation was done by student t test. p values <0.05 were con-

sidered significant: *p < 0.05; **p < 0.01; ***p < 0.001. Error bars represent

SEM in all figures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.devcel.2012.01.007.
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