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Abstract

In this paper we extend a recent result of Collin–Rosenberg (a solution to the minimal surface equation in the Euclidean disc has
radial limits almost everywhere) to a large class of differential operators in Divergence form. Moreover, we construct an example
(in the spirit of Collin and Rosenberg [2]) of a minimal graph in M

2 × R, where M
2 is a Hadamard surface, over a geodesic disc

which has finite radial limits in a measure zero set.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article nous généralisons un résultat récent de Collin–Rosenberg (une solution de l’équation de surface minimale sur
le disque euclidien admet une limite radiale presque partout) à une vaste classe d’opérateurs différentiels sous forme divergence.
De plus, nous construisons un exemple (dans le même esprit que Collin et Rosenberg [2]) d’un graphe minimal dans M

2 × R,
où M

2 est une surface de Hadamard, sur un disque géodésique, qui admet une limite radiale finie sur un ensemble de mesure nulle.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

It is well known that a bounded harmonic function u defined on the Euclidean disc D has radial limits almost
everywhere (Fatou’s Theorem [3]). Moreover, the radial limits cannot be plus infinity for a positive measure set. For
fixed θ ∈ S

n−1, the radial limit u(θ) (if it exists) is defined as,

u(θ) = lim
r→1

u(r, θ),

where we parametrize the Euclidean disc in polar coordinates (r, θ) ∈ [0,1) × S
1.

In 1965, J. Nitsche [7] asked if a Fatou’s Theorem is valid for the minimal surface equation, i.e., does a solution
for the minimal surface equation in the Euclidean disc have radial limits almost everywhere? This question has been
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solved recently by P. Collin and H. Rosenberg [2]. Moreover, in the same paper [7], J. Nitsche asked: what is the
largest set of θ for which a minimal graph on D may not have radial limits? Again, this question was solved in [2]
if one allows infinite radial limits. That is, they construct an example of a minimal graph in the Euclidean disc with
finite radial limits only on a set of measure zero. In this example, the +∞ radial limits (resp. −∞) are taken on a set
of measure π (resp. π ).

The aim of this paper is to extend both results. In Section 2, we extend Collin–Rosenberg’s Theorem to a large
class of differential operators in divergence form (see Theorem 2.1). We show this applies to minimal graph sections
of Heisenberg space. In Section 3, we construct an example of a minimal graph in M

2 × R over a geodesic disk
D ⊂ M

2 (M2 is a Hadamard surface) for which the finite radial limits are of measure zero. Also, the +∞ radial limits
(resp. −∞) are taken on a set of measure π (resp. π ).

2. Fatou’s Theorem

Henceforth (B, g) denotes the n-dimensional unit open ball, i.e.,

B = {
(r, θ); 0 � r < 1, θ ∈ S

n−1},
in polar coordinates with respect to g, g a C2-Riemannian metric on B. Define G := G(r, θ) = √

det(g). Moreover,
we denote by ∇ the Levi-Civita connection associated to g and by divg its associated divergence operator. Also, L1(B)

denotes the set of integrable functions on (B, g).
Set u ∈ C2(B)-function and Xu be a C1(B)-vector field so that its coordinates depend on u, its first derivatives and

C1(B)-functions.
For fixed θ ∈ S

n−1, the radial limit (if it exists) u(θ) is defined as,

u(θ) = lim
r→1

u(r, θ).

Theorem 2.1. Let (B, g,G,u,Xu) be as above. Assume that

a) α � G(r, θ) � β for all (r, θ) ∈ [1/2,1) × S
n−1, α and β positive constants.

b) |Xu| � M on B, i.e., Xu is bounded on B.
c) g(∇u,Xu) � δ|∇u| + h, where δ is a positive constant and |h| ∈ L1(B).

Let |f | ∈ L1(B). If u is a solution of,

divg(Xu) � (or �)f on B,

then u has radial limits almost everywhere.

Remark 2.1. This Theorem 2.1 does generalize the theorem of Collin and the second author [2]. Consider the
prescribed mean curvature equation for graphs in Euclidean space, i.e., let |H | ∈ L1(B) and u ∈ C2(B) satisfy,

div

( ∇u√
1 + ‖∇u‖2

)
= H,

the graph of u over B is a graph with mean curvature H . We consider the flat metric, 〈,〉, in B, and so ∇ and div are
taken in the flat metric.

Since we are considering the flat metric, G(r, θ) = rn−1, so item (a) is easy to check. Item (b) follows from:

‖Xu‖ =
∥∥∥∥ ∇u√

1 + ‖∇u‖2

∥∥∥∥ � 1.

To check item (c), we use,
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〈∇u,Xu〉 =
〈
∇u,

∇u√
1 + ‖∇u‖2

〉
= ‖∇u‖2√

1 + ‖∇u‖2

= 1 + ‖∇u‖2√
1 + ‖∇u‖2

− 1√
1 + ‖∇u‖2

=
√

1 + ‖∇u‖2 − 1√
1 + ‖∇u‖2

� ‖∇u‖ − 1,

so, we obtain item (c) for h ≡ −1 whose absolute value is integrable in B with the flat metric.

Proof of Theorem 2.1. First, let us prove the case:

divg(Xu) � f.

For r < 1 fixed, set B(r) the n-dimensional open ball of radius r . Let η : R → (0,+1) be a smooth function so that
0 < η′(x) < 1 for all x ∈ R. Define ψ := η ◦ u.

On the one hand, by direct computations and item (c), we have:

divg(ψXu) = ψ divg(Xu) + g(∇ψ,Xu) � ψf + η′g(∇u,Xu)

� ψf + η′(δ|∇u| + h
) = δη′|∇u| + (ψf + η′h)

= δ|∇ψ | + (ψf + η′h),

thus ∫
B(r)

divg(ψXu) � δ

∫
B(r)

|∇ψ | + C, (2.1)

where C is some constant. This follows since |h| and |f | are L1-functions on B.
On the other hand, by Stokes’ Theorem and items (a) and (b), we obtain for r < 1 fixed:∫

B(r)

divg(ψXu) =
∫

∂B(r)

ψg(Xu,υ) �
∫

∂B(r)

M

= M

∫
θ∈Sn−1

G(r, θ) dθ � Mβ

∫
θ∈Sn−1

= Mβωn−1, (2.2)

where υ is the outer conormal to ∂B(r) and ωn−1 is the volume of S
n−1.

So, from (2.1), (2.2) and letting r go to one, we conclude that |∇ψ | is integrable in B, i.e.,∫
B

|∇ψ | < ∞. (2.3)

Since
∣∣ ∂ψ

∂r

∣∣ � |∇ψ |, we have from Fubini’s Theorem and (2.3):

∣∣∣∣∣
∫

θ∈Sn−1

( 1∫
0

∂ψ

∂r
G(r, θ) dr

)
dθ

∣∣∣∣∣ =
∣∣∣∣
∫
B

∂ψ

∂r

∣∣∣∣ �
∫
B

|∇ψ | < ∞.

Thus, as G(r, θ) is bounded below by a positive constant, for r > 1/2 and almost all θ ∈ S
n−1,

lim
r→1

ψ(r, θ) − ψ(0,0) =
1∫

0

∂ψ

∂r
(r, θ) dr < ∞,

that is, ψ has radial limits almost everywhere. Since ψ = η ◦ u, we conclude u has radial limits almost everywhere
(which may be ±∞).
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For

divg(Xu) � f,

we just have to follow the above proof by changing η : R → (−1,0) so that 0 < η′(x) < 1 for all x ∈ R. �
2.1. Applications

Moreover, we will see now how Theorem 2.1 applies to get radial limits almost everywhere for minimal graphs in
ambient spaces besides R

3. We work here in Heisenberg space, but it is not hard to check that we could work with
minimal graphs in a more general submersion (see [6]).

First, we need to recall some definitions in Heisenberg space (see [1]). The Heisenberg spaces are R
3 endowed

with a one parameter family of metrics indexed by bundle curvature by a real parameter τ �= 0. When we say the
Heisenberg space, we mean τ = 1/2, and we denote it by H.

In global exponential coordinates, H is R
3 endowed with the metric:

g = (
dx2 + dy2) +

(
1

2
(y dx − x dy) + dz

)2

.

The Heisenberg space is a Riemannian submersion π : H → R over the standard flat Euclidean plane R
2 whose

fibers are the vertical lines, i.e., they are the trajectories of a unit Killing vector field and hence geodesics.
Let S0 ⊂ H be the surface whose points satisfy z = 0. Let D ⊂ R

2 be the unit disc. Henceforth, we identify domains
in R

2 with its lift to S0. The Killing graph of a function u ∈ C2(D) is the surface:

Σ = {(
x, y,u(x, y)

); (x, y) ∈ D
}
.

Moreover, the minimal graph equation is:

divR2(Xu) = 0;
here divR2 stands for the divergence operator in R

2 with the Euclidean metric 〈,〉, and

Xu := α

W
∂x + β

W
∂y,

where

α := y

2
+ ux, β := −x

2
+ uy,

and

W 2 = 1 + α2 + β2.

Thus, for verifying u has radial limits almost everywhere (which may be ±∞), we have to check conditions (a),
(b) and (c). Item (a) is immediate since we are working with the Euclidean metric.

Item (b) follows from,

|Xu|2 = α2 + β2

1 + α2 + β2
� 1.

Now, we need to check item (c). On the one hand, using polar coordinates x = r cos θ and y = r sin θ , we have:

W 2 = 1 + α2 + β2 = 1 + u2
x + u2

y + (yux − xuy) + x2 + y2

4

= 1 + |∇u|2 + 〈∇u, (−y, x)
〉 + x2 + y2

4

� 1 + |∇u|2 − |∇u|∣∣(−y, x)
∣∣ + x2 + y2

4

= 1 + |∇u|2 − r|∇u| + r2

,

4
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thus

W �

√
1 +

(
|∇u| − r

2

)2

�
∣∣∣∣|∇u| − r

2

∣∣∣∣.
We need a lower bound for W in terms of |∇u|. To do so, we distinguish two cases:

Case |∇u| � 5/4. Since

1 − r|∇u| + r2

4
� 1 − 5r

4
+ r2

4
� 0 for all r � 1,

we obtain

W �

√
|∇u|2 + 1 − r|∇u| + r2

4
� |∇u|.

Case |∇u| > 5/4. We already know that

W �
∣∣∣∣|∇u| − r

2

∣∣∣∣,
thus, for |∇u| > 5/4, it is easy to see that∣∣∣∣|∇u| − r

2

∣∣∣∣ � 3

10
|∇u| for all r � 1.

So, in any case, for δ = 3/10 > 0,

W � δ|∇u|. (2.4)

On the other hand,

〈∇u,Xu〉 = u2
x + u2

y + 1
2 (yux − xuy)

W

= 1 + u2
x + u2

y + (yux − xuy) + x2+y2

4

W
− 1 + 1

2 (yux − xuy) + x2+y2

4

W

= W 2

W
+ h = W + h � δ|∇u| + h,

where we have used (2.4) and h denotes the bounded function,

h = − 1 + 1
2 (yux − xuy) + x2+y2

4√
1 + u2

x + u2
y + (yux − xuy) + x2+y2

4

,

that is, item (c) is satisfied. So,

Corollary 2.1. A solution for the minimal surface equation in the Heisenberg space defined over a disc has radial
limits almost everywhere (which may be ±∞).

3. An example in a Hadamard surface

The aim of this section is to construct an example of a minimal graph in M
2 × R over a bounded geodesic disk

D ⊂ M
2 (M2 is a Hadamard surface) for which the finite radial limits are of measure zero.

We need to recall preliminary facts about graphs over a Hadamard surface (see [4] for details). Henceforth,
M

2 denotes a simply connected Riemannian surface with Gauss curvature bounded above by a negative constant,
i.e., KM2 � c < 0.
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Fig. 1. We move the points along ∂D.

Let p0 ∈ M
2 and D be the geodesic disk in M

2 centered at p0 of radius one. Re-scaling the metric, we can assume
that

max
{
KM2(p); p ∈ D

} = −1.

From the Hessian Comparison Theorem (see e.g. [5]), ∂D bounds a strictly convex domain. We assume that ∂D is
smooth, otherwise we can work in a smaller disc. We identify ∂D = S

1 and orient it counter-clockwise.
We say that Γ is an admissible polygon in D if Γ is a Jordan curve in D which is a geodesic polygon with an

even number of sides and all the vertices in ∂D. We denote by A1,B1, . . . ,Ak,Bk the sides of Γ which are oriented
counter-clockwise. Recall that any two sides cannot intersect in D. Set D the domain in D bounded by Γ . By |Ai |
(resp. |Bj |), we denote the length of such a geodesic arc.

Theorem 3.1. (See [8].) Let Γ ⊂ M
2 be a compact polygon with an even number of geodesic sides A1,B1,A2,B2, . . . ,

An,Bn, in that order, and denote by D the domain with ∂D = Γ . The necessary and sufficient conditions for the
existence of a minimal graph u on D, taking values +∞ on each Ai , and −∞ on each Bj , are the two following
conditions:

1.
∑n

i=1 |Ai | = ∑n
i=1 |Bi |,

2. for each inscribed polygon P in D (the vertices of P are among the vertices of Γ ) P �= D, one has the two
inequalities:

2a(P ) < |P | and 2b(P ) < |P |.

Here a(P ) = ∑
Aj ∈P |Aj |, b(P ) = ∑

Bj ∈P |Bj | and |P | is the perimeter of P .

The construction of this example follows the steps in [2, Section III], but here we have to be more careful in the
choice of the first inscribed square and the trapezoids. We need to choose them as symmetric as possible.

Let us first explain how we take the inscribed square: Let L = length(∂D) and γ (x0, x1) be the geodesic arc in D
joining x0, x1 ∈ ∂D. Fix x0 ∈ ∂D and let α : R/[0,L) → ∂D an arc-length parametrization of ∂D (oriented counter-
clockwise). Set x1 = α(L/2). Consider x±

0 (s) = α(±s) and x±
1 (s) = α(L/2 ± s) for 0 � s � L/2 (cf. Fig. 1), and

denote:
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Fig. 2. How does the length change?

B1(s) = γ
(
x+

0 (s), x−
1 (s)

)
,

A1(s) = γ
(
x−

1 (s), x+
1 (s)

)
,

B2(s) = γ
(
x+

1 (s), x−
0 (s)

)
,

A2(s) = γ
(
x−

0 (s), x+
0 (s)

)
.

Hence (cf. Fig. 2), ∣∣A1(s)
∣∣ + ∣∣A2(s)

∣∣ <
∣∣B1(s)

∣∣ + ∣∣B2(s)
∣∣ for s close to 0,∣∣A1(s)

∣∣ + ∣∣A2(s)
∣∣ >

∣∣B1(s)
∣∣ + ∣∣B2(s)

∣∣ for s close to L/2.

Thus, there exist s0 ∈ (0,L/2) so that∣∣A1(s0)
∣∣ + ∣∣A2(s0)

∣∣ = ∣∣B1(s0)
∣∣ + ∣∣B2(s0)

∣∣.
So, given a fixed point x0 ∈ ∂D, we have the existence of four distinct points p1 = α(s0), p2 = α(L/2 − s0),

p3 = α(L/2 + s0) and p4 = α(−s0) ordered counter-clockwise so that

|A1| + |A2| = |B1| + |B2|,
where

B1 = γ (p1,p2),

A1 = γ (p2,p3),

B2 = γ (p3,p4),

A2 = γ (p4,p1).

In analogy with the Euclidean case [2],

Definition 3.1. Fix a point x0 ∈ ∂D, let pi , i = 1, . . . ,4 be the points constructed above associated to x0 ∈ D, then
Γx0 = A1 ∪ B1 ∪ A2 ∪ A3 is called the quadrilateral associated to x0 ∈ D and it satisfies:

|A1| + |A2| = |B1| + |B2|,
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Fig. 3. Scherk domain.

where

B1 = γ (p1,p2),

A1 = γ (p2,p3),

B2 = γ (p3,p4),

A2 = γ (p4,p1).

Moreover, the interior domain Dx0 bounded by Γx0 is the square inscribed associated to x0 ∈ D (note that Dx0 is
a topological disc), and B1 is called the right side (cf. Fig. 3).

Second, let us explain how to take the regular trapezoids: As above, fix x0 ∈ ∂D (from now on, x0 will be fixed
and we will omit it) and parametrize ∂D as α : R/[0,L) → ∂D. Let 0 � s1 < s2 < L, or equivalently, two distinct
and ordered points pi = α(si) ∈ ∂D, i = 1,2. The aim is to construct a certain trapezoid in the region bounded
by γ (p1,p2) and α([s1, s2]). To do so, set s̄ = s1+s2

2 , i.e., p̄ = α(s̄) is the mid-point. Define p±(s) = α(s̄ ± s) for
0 � s � s̄.

Set:

l1(s) = Length
(
γ
(
p1,p

−(s)
))

,

l2(s) = Length
(
γ
(
p−(s),p+(s)

))
,

l3(s) = Length
(
γ
(
p+(s),p2

))
,

l4(s) = Length
(
γ (p2,p1)

)
.

Hence, for s close to zero,

l1(s) + l3(s) > l2(s) + l4(s),

by the Triangle Inequality, and for s close to s̄,

l1(s) + l3(s) < l2(s) + l4(s),

since l1 and l3 go to zero and l4 has positive length (cf. Fig. 4).
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Fig. 4. How does the trapezoid vary?

Fig. 5. Regular trapezoid.

Thus, there exists s0 ∈ (0, s̄) so that

l1(s0) + l3(s0) = l2(s0) + l4(s0).

So, given a fixed point x0 ∈ ∂D and a geodesic arc A := γ (p1,p2) joining two (distinct and oriented) points in ∂D,
we have the existence of two distinct points p− = α(s̄ − s0) and p+ = α(s̄ + s0) ordered counter-clockwise so that

l1 + l3 = l2 + l4,

where

l1 = Length
(
γ (p1,p

−)
)
,

l2 = Length
(
γ (p−,p+)

)
,

l3 = Length
(
γ (p+,p2)

)
,

l4 = Length
(
γ (p2,p1)

)
.

Moreover, the domain bounded by γ (p1,p
−) ∪ γ (p−,p+) ∪ γ (p+,p2) ∪ γ (p1,p2) is a topological disc.

Again, in analogy with the Euclidean case,

Definition 3.2. E = γ (p1,p
−) ∪ γ (p−,p+) ∪ γ (p+,p2) ∪ γ (p1,p2) is called the regular trapezoid associated to

the side A, here A = γ (p1,p2) (and, of course, once we have fixed a point x0 ∈ ∂D), and p± are given by the above
construction (cf. Fig. 5).

Now, we can begin the example. We only highlight the main steps in the construction since, in essence, it is as
in [2, Section III].
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Fig. 6. First Scherk domain. Fig. 7. Attaching trapezoids.

Fix x0 ∈ ∂D and let D1 be the inscribed quadrilateral associated to x0 and Γ1 = ∂D1 (see Definition 3.1). We label
A1,B1,A2,B2 the sides of Γ1 ordered counter-clockwise, with B1 the right side. By construction, D1 is a Scherk
domain. One can check this fact using the Triangle Inequality. From Theorem 3.1, there is a minimal graph u1 in D1
which is +∞ on the Ai ’s sides and equals −∞ on the Bi ’s sides (cf. Fig. 6).

Henceforth, we will attach regular trapezoids (see Definition 3.2) to the sides of the quadrilateral Γ1 in the following
way. Let E1 be the regular trapezoid associated to the side A1, and E′

1 be the regular trapezoid associated to the side B1.
Consider the domain D2 = D1 ∪ E1 ∪ E′

1, Γ2 = ∂D2. This new domain does not satisfy the second condition of
Theorem 3.1, we only have to consider the inscribed polygon E1 (cf. Fig. 7).

So, the next step is to perturb D2 in such a way that it becomes an admissible domain. Let p be the common vertex
of E1 and E′

1. Let a1 be the closest vertex of E1 to p, and b1 the closest vertex of E′
1 to p (cf. Fig. 8).

One moves the vertex a1 towards b1 to a nearby point a1(τ ) on ∂D (using the parametrization α : R/[0,L) → ∂D
as we have been done throughout this section). And then one moves b1 towards a1 to a nearby point b1(τ ) on ∂D.

Let Γ2(τ ) be the inscribed polygon obtained by this perturbation, E1(τ ) and E′
1(τ ) the perturbed regular trapezoids

(cf. Fig. 9). Thus, for τ > 0 small, it is clear that

• Γ2(τ ) satisfies Condition 1 in Theorem 3.1.
• 2a(E1(τ )) < |E1(τ )| and 2b(E′

1(τ )) < |E′
1(τ )|.

Now, we state the following lemma that establishes how we extend the Scherk surface in general.

Lemma 3.1. Let u be a Scherk graph on a polygonal domain D1 = P(A1,B1, . . . ,Ak,Bk), where the Ai ’s and
Bi ’s are the (geodesic) sides of ∂D1 on which u takes values +∞ and −∞ respectively. Let K be a compact
set in the interior of D1. Let D2 = P(E1,E

′
1,A2,B2, . . . ,Ak,Bk) be the polygonal domain D1 to which we

attach two regular trapezoids: E1 to the side A1 and E′
1 to the side B1. Let E1(τ ) and E′

1(τ ) be the perturbed
polygons as above. Then for all ε > 0 there exists τ̄ > 0 so that, for all 0 < τ � τ̄ , there is a Scherk graph v on
P(E1(τ ),E′

1(τ ),A2,B2, . . . ,Ak,Bk) such that

‖u − v‖C2(K) � ε. (3.1)

Proof. The proof of this lemma relies on [2, Section IV] with the obvious differences that we need to use the results
for Scherk graphs over a domain in a Hadamard surface stated in [8] and [4]. �
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Fig. 8. Moving the vertex of the trapezoid.

Fig. 9. Perturbed Scherk domain.

Before we return to the construction, let us explain how we construct a compact domain associated to any Scherk
domain: Let D = P(A1,B1, . . . ,Ak,Bk) be a Scherk domain in D with vertices {v1, . . . , v2k} ∈ ∂D. Let βvi

: [0,1] →
D denote the radial geodesic starting at p0 ∈ D (the center of the disc D) and ending at vi ∈ ∂D. Note that βvi

cannot
touch neither a Ai side nor a Bi side except at the vertex.

Set r < 1 and pi = βvi
(r) ∈ D for i = 1, . . . ,2k. Consider the polygon:

P =
2k−1⋃

γ (pi,pi+i ) ∪ γ (p2k,p1) ⊂ D,
i=1
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Fig. 10. Compact domain associated to the inscribed quadrilateral. Fig. 11. Attaching perturbed regular trapezoids.

and let K ′ be the closure of the domain bounded by P , here γ (pi,pi+1) is the geodesic arc joining pi and pi+1 in D.
Let D(pi,1 − r) be the geodesic disc centered at pi of radius 1 − r for each i = 1, . . . ,2k. Then,

Definition 3.3. For r < 1 close to 1, the compact domain associated to the Scherk domain D is given by:

K = K ′∖ 2k⋃
i=1

D(pi,1 − r).

Now, we continue with the construction. Let D1 = P(A1,B1,A2,B2) be the inscribed square in D (given in
Definition 3.1), and the Scherk graph u1 on D1 which is +∞ on the Ai sides and −∞ on the Bi sides. Let K1 be
the compact domain associated to D1 (see Definition 3.3). We choose r1 < 1 close enough to one so that u1 > 1 on
the geodesic sides of ∂K1 closer to the Ai sides and u1 < −1 on the geodesic sides of ∂K1 closer to the Bi sides (cf.
Fig. 10).

Next, we attach perturbed regular trapezoids to the sides A1 and B1, so from Lemma 3.1, for any ε2 > 0 there
exists τ2 > 0 so that D2(τ ) = D1 ∪ E1(τ ) ∪ E′

1(τ ) is a Scherk domain and u2(τ ), the Scherk graph defined on D2(τ ),
satisfies: ∥∥u1 − u2(τ )

∥∥
C2(K1)

� ε2,

for all 0 < τ � τ2. Moreover, we can choose u2(τ ) so that u1(p0) = u2(τ )(p0) (here p0 is the center of D).
Then, choose ε2 > 0 so that u2(τ ) > 1 on the geodesic sides of ∂K1 closer to the Ai sides and u2(τ ) < −1 on
the geodesic sides of ∂K1 closer to the Bi sides (cf. Fig. 11).

Let K2(τ ) be the compact domain associated to the Scherk domain D2(τ ). Choose r2 < 1 close enough to one (in
the definition of K2(τ ) given by Definition 3.3) so that, for 0 < τ � τ2, u2(τ ) > 2 on those geodesic sides of ∂K2(τ )

parallel to the sides of D2(τ ) where u2(τ ) = +∞, and u2(τ ) < −2 on the sides of ∂K2(τ ) parallel to sides of D2(τ )

where u2(τ ) = −∞ (cf. Fig. 12).
Continue by constructing the Scherk domain D3(τ ) by attaching perturbed regular trapezoids (as above) to the

sides A2 and B2 of D1. We know, for ε3 > 0, that there exist τ3 > 0 so that if 0 < τ � τ3 then the Scherk graph u3(τ )

exists, u3(τ )(p0) = u1(p0), and ∥∥u3(τ ) − u2(τ )
∥∥

2 � ε3.
C (K2(τ ))
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Fig. 12. Compact domain associated to D2(τ ). Fig. 13. Choosing u3(τ ).

Moreover, choose ε3 > 0 so that u3(τ ) > 3 on the geodesic sides of ∂K2(τ ) closer to the Ai sides and u3(τ ) < −3
on the geodesic sides of ∂K2(τ ) closer to the Bi sides (cf. Fig. 13).

Now choose εn → 0, τn → 0, Kn(τn) so that Kn(τn) ⊂ Kn+1(τn+1),
⋃

n Kn(τn) = D. Then the un(τn) converge to
a graph u on D.

To see u has the desired properties, we refer the reader to [2, pp. 13 and 14] with the only difference that we need
to use now Theorem 2.1.

Remark 3.1. The above construction can be carried out in a more general situation. Actually, if we ask that

• The geodesic disc D has strictly convex boundary.
• There is a unique minimizing geodesic joining any two points of the disc.

Then, we can extend the above example.
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