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Introduction

Let k be a field and let G be an absolutely simple algebraic group defined over k. Let S(G) be the
set of homological torsion primes of G defined by Serre [22].

Definition 0.1. We say that a number d is coprime to S(G) if none of its prime factors is contained
in S(G).

The following question of Serre [22, p. 233] is open in general.
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Q: Let k be a field and let G be an absolutely simple k-group. Let {Li}1�i�m be a set of finite field
extensions of k and let the greatest common divisor of the degrees of the extensions [Li : k] be d.
If d is coprime to S(G), does the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

have trivial kernel?

The above question has great implications. For instance, a positive answer for exceptional groups
would lead to the solution of Serre’s Conjecture II [23, Chapter III, §3.1] for these groups, which is
still open. Zinovy Reichstein [19, Section 5] has distinguished between Type 1 and Type 2 problems
in Galois Cohomology. The former type can be conveniently handled with current methods while the
latter poses greater difficulties. A positive answer to Q would reduce the Type 2 problem of finding
points on principal homogeneous spaces over a general field to the Type 1 problem of finding points
over fields with absolute Galois group a pro-p group.

The first major result in this direction for a general field k is due to Bayer-Fluckiger and Lenstra [3,
Section 2] for groups of isometries of algebras with involution. Our approach in this paper is to build
on the theorem of Bayer–Lenstra to prove the following:

Theorem 0.2. Let k be a field of characteristic different from 2. Let {Li}1�i�m be a set of finite field extensions
of k and let gcd([Li : k]) = d. Let G be an absolutely simple algebraic k-group which is not of type E8 and
which is either a simply connected or adjoint classical group or a quasisplit exceptional group. If d is coprime
to S(G), then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

Remark 0.3. Grothendieck [24, Theorem 1.1] proved that X admits a zero cycle whose degree has all
its prime factors in S(G). Thus if X admits a zero cycle whose degree is coprime to the homological
torsion primes, then X admits a zero cycle of degree one. It suffices then to consider Q in the case
where X admits a zero cycle of degree one. However, with the same effort as it would take to consider
the degree one case and without appealing to the theorem of Grothendieck we give a proof of 0.2.

Notable consequences of this result include the following:

Theorem 0.4. Let k be a field of characteristic different from 2 and let G be an absolutely simple algebraic k-
group which is not of type E8 and which is either a simply connected or adjoint classical group or a quasisplit
exceptional group. Let X be a principal homogeneous space under G over k. If X admits a zero cycle of degree
one then X has a rational point.

This is just the case d = 1 of 0.2 and gives a positive answer to a question posed by Serre [23,
p. 192] for these groups. We remark that 0.4 does not hold if X is instead a quasi-projective homo-
geneous variety [7] or a projective homogeneous variety [18].

Theorem 0.2 implies that the Rost invariant RG : H1(k, G) → H3(k,Z/3Z) is injective for G an
absolutely simple, simply connected group of type A2. In turn, one recovers a classification of unitary
involutions on algebras of degree 3 [15, Theorem 19.6] which had appeared in [13].
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Besides the Bayer–Lenstra theorem [3], the Gille–Merkurjev norm principle theorems [11, Théo-
rème II.3.2], [17, Theorem 3.9] are critical for our proof for simply connected classical groups. In
the case of adjoint classical groups, we make regular use of Bayer–Lenstra’s [3] extension of Schar-
lau’s transfer homomorphism to hermitian forms. Some cases of adjoint groups have been proven
by Barquero-Salavert [2]. Triviality of the kernel of the Rost invariant on torsors under a quasis-
plit, simply connected group of exceptional type not E8 [9,6] leads to the proof of 0.2 in these
cases.

As we wish to exploit Weil’s classification of classical semisimple algebraic groups as groups asso-
ciated to algebras with involution, we begin by recalling relevant notions from the theory of algebras
with involution. In Section 2 we recall the classification of simply connected and adjoint absolutely
simple groups and list values of S(G) for each group G . In Section 3 we consider the question Q for
G a simply connected, absolutely simple, classical group and in Section 4 for G an adjoint, absolutely
simple, classical group. Section 5 is a discussion of the question Q for G quasisplit, simple exceptional
of type other than E8. Finally in Section 6 we show that our main result 0.2 is an easy consequence
of our results in the preceding three sections.

1. Algebras with involution

Let A be a central simple algebra over a field K of characteristic different from 2. An involution σ
on A is an anti-automorphism of period 2. We will often write (A, σ ) for a central simple K -algebra
A with involution σ . Let k denote the set of elements in K fixed by σ . If k = K we call σ an involution
of the first kind. An involution of the first kind is called orthogonal if it is a form for the transpose over
k̄ and symplectic otherwise. If k �= K we call σ an involution of the second kind. In this case, [K : k] = 2.
An involution of the second kind will also be referred to as an involution of unitary type.

A similitude of a central simple algebra with involution (A, σ ) is an element a ∈ A such that σ(a)a
is in k∗ . This element σ(a)a is called the multiplier of a written μ(a). Following [15] we denote the
group of similitudes of (A, σ ) by GO(A, σ ) if σ is of orthogonal type, GSp(A, σ ) if σ is of symplectic
type and GU(A, σ ) if σ is of unitary type. Let the quotients of these groups by their centers be
denoted by PGO(A, σ ), PGSp(A, σ ) and PGU(A, σ ) respectively, and let them be referred to as the
group of projective similitudes of (A, σ ) in each case. The group of similitudes with multiplier 1 is
called the group of isometries of (A, σ ) and is denoted O (A, σ ), Sp(A, σ ) and U (A, σ ) in the cases σ
orthogonal, symplectic and unitary respectively.

Let SU(A, σ ) be the elements in U (A, σ ) with trivial reduced norm. For σ an orthogonal invo-
lution on a central simple K -algebra A of even degree, let GO+(A, σ ) denote the set of elements
a in GO(A, σ ) such that Nrd(a) = μ(a)deg(A)/2 and PGO+(A, σ ) be the quotient of GO+(A, σ ) by its
center. Let GO−(A, σ ) be the coset of GO+(A, σ ) in GO(A, σ ) consisting of elements a such that
Nrd(a) = −μ(a)deg(A)/2. We will call elements of GO+(A, σ ) proper similitudes and those of GO−(A, σ )

improper similitudes. For (A, σ ) an algebra of even degree with orthogonal involution, let Spin(A, σ )

be the subgroup of the Clifford group consisting of elements g with gσ̃ (g) = 1 where σ̃ is the map
on the Clifford group induced by σ . We also recall that for a K -algebra A, SL1(A) is the kernel of the
reduced norm map on GL1(A) and PGL1(A) is the quotient of GL1(A) by its center.

Given a central simple K -algebra A with involution σ and K σ = k, a hermitian form h on a right A-
module V is a map h : V × V → A such that for all v, w ∈ V and a,b ∈ A, h(va, wb) = σ(a)h(v, w)b,
h(v, w) = σ(h(w, v)) and h is bi-additive. We will also assume that all hermitian forms satisfy a non-
degeneracy condition, that is to say, for all v ∈ V − {0} there is a w ∈ V − {0} such that h(v, w) �= 0.

We associate to any hermitian form h over an algebra with involution (A, σ ), the adjoint involution
τh on the space of endomorphisms of V over A. This association gives a bijective correspondence
between hermitian forms on V modulo factors in k∗ and involutions on EndA(V ) whose restriction to
K is σ . Since by Wedderburn’s theorem [12, Theorem 2.1.3] we may write A as EndD V for V a vector
space over a division algebra D , we may write any central simple algebra with involution (A, σ ) as
(EndD V , τh) where h is a hermitian form over (D, θ) and θ is an involution whose restriction to K
is σ .

If a is an algebraic element over k, consider the k-linear map s : k(a) → k given by s(1) = 1 and
s(a j) = 0 for all 1 � j < m where m = [k(a) : k]. The map s induces a transfer homomorphism s∗
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from the Witt group of hermitian forms over (Dk(a), θk(a)) to the Witt group of hermitian forms over
(D, θ). We will refer to this homomorphism as Scharlau’s transfer homomorphism. Bayer-Fluckiger
and Lenstra have shown [3] that if [k(a) : k] is odd, r∗ is the extension of scalars from k to k(a), and
h is a hermitian form over (D, θ) then s∗(r∗(h)) = h in W (D, θ). We may regard W (Dk(a), θk(a)) as
a W (k(a))-module. For example, we may write ar∗(h) ∈ W (Dk(a), θk(a)) as 〈a〉 ⊗ r∗(h) ∈ W (k(a)) ⊗
W (Dk(a), θk(a)). Bayer-Fluckiger and Lenstra have shown [3] that s∗(〈a〉 ⊗ r∗(h)) = s∗(〈a〉) ⊗ h.

2. Properties of algebraic groups

Let k be a field of characteristic different from 2. A simply connected (respectively adjoint),
semisimple algebraic k-group G is a product of groups of the form R E j/k(G j) where each E j is a
finite, separable extension of k and each G j is an absolutely simple, simply connected (respectively
adjoint) group [15, Theorem 26.8].

An absolutely simple, simply connected, classical k-group G has one of the following forms [15,
26.A], [4]:

Type 1 An−1: G = SL1(A) for a central simple algebra A of degree n over k.
The unitary case: G = SU(A, σ ) associated to a central simple algebra A over K of degree n at least 2,

with σ a unitary involution on A with K σ = k.
The symplectic case: G = Sp(A, σ ) associated to a central simple algebra A over k of even degree with

a symplectic involution σ .
The orthogonal case: G = Spin(A, σ ) associated to a central simple algebra A over k of degree at

least 3, with σ an orthogonal involution on A.

Let k be field of characteristic different from 2. An absolutely simple, adjoint, classical k-group G
has one of the following forms: [15, 26.A]:

Type 1 An−1: G = PGL1(A) for a central simple algebra A of degree n over k.
The unitary case: G = PGU(A, σ ) associated to A is a central simple algebra over a field K of degree n

at least 2 and σ is a unitary involution on A with K σ = k.
The symplectic case: G = PGSp(A, σ ) associated to a central simple algebra A over k of even degree

and σ a symplectic involution on A.
The orthogonal case: We distinguish between groups of type B and D in this case.

Type Bn: G = O +(A, σ ) associated to a central simple algebra A over k of odd degree at least 3
and σ an orthogonal involution on A.

Type Dn: G = PGO+(A, σ ) associated to a central simple algebra A over k of even degree at least 4
and σ an orthogonal involution on A.

In the classification of semisimple algebraic groups, exceptional groups are precisely those of types
3,6 D4, E6, E7, E8, F4 and G2 and a group of type E8, F4 or G2 is both simply connected and adjoint.

In [22] Serre defines a set of primes S(G) associated to an absolutely simple k-group G which we
will refer to as the homological torsion primes of G . S(G) is the set of prime numbers p each of which
satisfies one of the following conditions:

(1) p divides the order of the automorphism group of the Dynkin graph of G;
(2) p divides the order of the center of the universal cover of G;
(3) p is a torsion prime of the root system of G .

The values of the homological torsion primes for each of the absolutely simple semisimple groups
is shown in Table 1.

We mention that for each absolutely simple group G , the prime factors of the Dynkin index of G
are contained in S(G) [10].
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Table 1

Group S(G)

type 1 An−1 prime divisors of n
unitary case 2, prime divisors of n
symplectic case 2
orthogonal case 2
G2 2
F4 2, 3
3,6 D4, E6, E7 2, 3
E8 2, 3, 5

3. Absolutely simple simply connected groups of classical type

The main result of this section is the following:

Theorem 3.1. Let k be a field of characteristic different from 2. Let G be an absolutely simple, simply connected,
classical algebraic group over k. Let {Li}1�i�m be a set of finite field extensions of k and let the greatest common
divisor of the degrees of the extensions [Li : k] be d. If d is coprime to S(G), then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

If G = Sp(A, σ ) for σ a symplectic involution on a central simple algebra over k, then
H1(k, Sp(A, σ )) classifies rank one hermitian forms over (A, σ ). Then for any finite extension of
odd degree L over k, triviality of the kernel of the map H1(k, Sp(A, σ )) → H1(L, Sp(A, σ )) is a con-
sequence of the Bayer–Lenstra theorem [3, Theorem 2.1]. We discuss the remaining cases in 3.3, 3.4,
3.7 below.

We will need the following lemma in the rest of this section.

Lemma 3.2. Let K be a field and let A be a central simple algebra over K of index s. Let Nrd be the reduced
norm. For every α ∈ K ∗ , there exists β ∈ A∗ such that Nrd(β) = αs .

Proof. By [12, Proposition 4.5.4], choose a splitting field E for A such that [E : K ] = s. Since AE is split,
Nrd : AE → E is onto. In particular α is in Nrd(AE ). Since NE/K (Nrd(AE)) ⊂ Nrd(A) [5, Corollary 2.3]
and NE/K (α) = αs , it follows that αs is in Nrd(A). �
Type 1 An−1

Theorem 3.3. Let k be a field, A a central simple algebra of degree n over k and G = SL1(A). Let {Li}1�i�m be
a set of finite extensions of k let gcd([Li : k]) = d. If d is coprime to n, then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

Proof. Consider the short exact sequence

1 SL1(A) GL1(A)
Nrd

Gm 1 (3.3.1)

which by Hilbert’s Theorem 90 induces the following commutative diagram with exact rows.
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A∗ Nrd
k∗ δ

g

H1(k, SL1(A))

h

1

∏
A∗

Li

Nrd ∏
L∗

i
δ ∏

H1(Li, SL1(A)) 1

(3.3.2)

Choose λ ∈ ker(h). By the exactness of the top row of the diagram, choose λ′ ∈ k∗ such that δ(λ′) = λ.
Fix an index i. Since δ(g(λ′)) = point, by exactness of the bottom row choose (λ′′

i ) ∈ A∗
Li

such that
Nrd(λ′′

i ) = g(λ′). By restriction–corestriction [12, Proposition 4.2.10], NLi/k(g(λ′)) = (λ′)mi where mi =
[Li : k]. By the norm principle for reduced norms [5, Corollary 2.3], NLi/k(Nrd(A∗

Li
)) ⊂ Nrd(A∗). In par-

ticular, (λ′)mi is in Nrd(A∗). Since d = ∑
mini for appropriate choice of integers ni , (λ′)d = ∏

((λ′)mi )ni

is in Nrd(A∗).
Let s be the index of A. Then by 3.2, (λ′)s is in Nrd(A∗). Since s divides n and by assumption d

and n are coprime, then d and s are coprime. So choose a and b such that sa + db = 1. Then λ′ =
(λ′)sa(λ′)db is in Nrd(A∗) and by exactness of the top row λ = δ(λ′) is the point in H1(k, SL1(A)). �
The unitary case

Theorem 3.4. Let A be a central simple algebra of degree n with center K and σ a unitary involution on A
with K σ = k. Suppose degK (A) � 2. Let G = SU(A, σ ). Let {L}1�i�m be a set of finite field extensions of k
with gcd([Li : k]) = d. If d is odd and coprime to n, then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

Proof. Consider the short exact sequence

1 SU(A,σ ) U (A,σ )
Nrd

R1
K/kGm 1 (3.4.1)

which induces the following commutative diagram in Galois Cohomology with exact rows.

U (A,σ )(k)
Nrd

R1
K/kGm(k)

δ

f

H1(k, SU(A,σ ))
j

g

H1(k, U (A,σ ))

h

∏
U (A,σ )(Li)

Nrd ∏
R1

K/kGm(Li)
δ ∏

H1(Li, SU(A,σ ))
j ∏

H1(Li, U (A,σ ))

(3.4.2)

Choose λ ∈ ker(g). By assumption, there is an index i such that [Li : k] is odd. Fix that index i
and let Li = L. By the Bayer–Lenstra theorem [3, Theorem 2.1], H1(k, U (A, σ )) → H1(L, U (A, σ ))

has trivial kernel. In particular, h has trivial kernel and λ is in ker( j). So choose λ′ ∈ R1
K/kGm(k)

such that δ(λ′) = λ. Since δ( f (λ′)) = point, exactness of the bottom row of the diagram gives
(λ′′

i ) ∈ ∏
U (A, σ )(Li) such that Nrd(λ′′

i ) = f (λ′). Applying NLi/k to both sides of this equality we
find NLi/k(Nrd(λ′′

i )) = NLi/k( f (λ′)). Since U (A, σ ) is a rational group, [17, Theorem 3.9] gives that for
each i, NLi/k(Nrd(λ′′

i )) is in the image of Nrd : U (A, σ )(k) → R1
K/kGm(k). By restriction–corestriction
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[12, Proposition 4.2.10], for each i, NLi/k( f (λ′)) = (λ′)mi for mi = [Li : k]. So for each i, (λ′)mi is in
the image of Nrd : U (A, σ )(k) → R1

K/kGm(k). Since (λ′)d = ∏
((λ′)mi )ni for appropriate choice of inte-

gers ni , then (λ′)d is in the image of Nrd : U (A, σ )(k) → R1
K/kGm(k).

By Classical Hilbert 90, which is a consequence of [15, Theorem 29.2], write λ′ = μ−1μ̄ for μ ∈ K ∗
and μ̄ the image of μ under the nontrivial automorphism of K over k. Let s be the index of A
and write (λ′)s = (μs)−1μ̄s . By 3.2, μs = Nrd(a) for some a ∈ A∗ . Thus (λ′)s = Nrd(a−1σ(a)) and by
Merkurjev’s theorem [17, Proposition 6.1] (λ′)s is in the image of Nrd : U (A, σ )(k) → R1

K/kGm(k).
Certainly, s divides n and since by assumption d is coprime to n, then d is coprime to s. In par-

ticular, there exist v, w ∈ Z such that dv + sw = 1. Therefore λ′ = (λ′)dv(λ′)sw is in the image of
Nrd : U (A, σ )(k) → R1

K/kGm(k) and by exactness of the top row of (3.4.2), λ = δ(λ′) = point. �
Remark 3.5. One can replace the norm principle [17, Theorem 3.9] used in 3.4 above with [1, Theo-
rem 1.1].

The orthogonal case

Our proof in this case makes use of the following result.

Proposition 3.6. Let k be a field of characteristic different from 2 and let A be a central simple algebra over
k of degree � 3 with orthogonal involution σ . Let G = O +(A, σ ) and let L be a finite extension of k of odd
degree. Then the canonical map

H1(k, G) → H1(L, G)

has trivial kernel.

Proof. We have the short exact sequence

1 O +(A,σ ) O (A,σ )
Nrd

μ2 1 (3.6.1)

In the case A is split, O (A, σ ) = O (q) the orthogonal group of a quadratic form q, O +(A, σ ) =
O +(q) and the reduced norm is the determinant. Springer’s theorem [16, Chapter VII Theorem 2.7]
gives H1(k, O (q)) → H1(L, O (q)) has trivial kernel. That H1(k, O +(q)) → H1(k, O (q)) has trivial ker-
nel follows from the observation that the determinant map O (q)(k) → μ2 is onto. Combining these
two results, 3.6 holds.

So assume A is not split. Then O +(A, σ )(k) = O (A, σ )(k) [14, 2.6, Lemma 1.b]. Since A admits an
involution of the first kind and L/k is odd, AL is not split and O +(A, σ )(L) = O (A, σ )(L).

Then (3.6.1) induces the following diagram with exact rows and commuting rectangles.

1 μ2
δ

h

H1(k, O +(A,σ ))
i

f

H1(k, O (A,σ ))

g

1 μ2
δ

H1(L, O +(A,σ ))
i

H1(L, O (A,σ ))

(3.6.2)

Let λ ∈ ker( f ). By the commutativity of the rightmost rectangle in (3.6.2), g(i(λ)) = point. Then [3,
Theorem 2.1] gives i(λ) = point. By the exactness of the top row, there exists λ′ ∈ μ2 such that
δ(λ′) = λ. Since the left rectangle in 3.6.2 commutes, δ(h(λ′)) = point. Since h is the identity map and
δ has trivial kernel, λ′ = 1 and thus λ = δ(λ′) = point. �
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Now we give the proof for absolutely simple, simply connected groups in the orthogonal case.

Theorem 3.7. Let k be a field of characteristic different from 2 and let A be a central simple algebra over k of
degree � 4 with orthogonal involution σ . Let G = Spin(A, σ ) and let L be a finite extension of k of odd degree.
Then the canonical map

H1(k, G) → H1(L, G)

has trivial kernel.

Proof. The short exact sequence

1 μ2
i

Spin(A,σ )
η

O +(A,σ ) 1 (3.7.1)

induces the following commutative diagram with exact rows.

O +(A,σ )(k)

f

δ
H1(k,μ2)

i

g

H1(k, Spin(A,σ ))
η

h

H1(k, O +(A,σ ))

j

O +(A,σ )(L)
δ

H1(L,μ2)
i

H1(L, Spin(A,σ ))
η

H1(L, O +(A,σ ))

(3.7.2)

Choose λ ∈ ker(h). By commutativity of the rightmost rectangle in (3.7.2) j(η(λ)) = point. In particu-
lar, η(λ) ∈ ker( j) and by 3.6, η(λ) = point. By exactness of the top row, we may choose λ′ ∈ H1(k,μ2)

such that i(λ′) = λ. By the commutativity of the central rectangle in (3.7.2), i(g(λ′)) = point. So from
exactness of the bottom row, we may choose λ′′ ∈ O +(A, σ )(L) such that δ(λ′′) = g(λ′). Applying
the norm map to both sides of this equality we find, NL/k(δ(λ

′′)) = NL/k(g(λ′)). By restriction–
corestriction the latter is (λ′)[L:k] . Let λ̃ be a representative of λ′ in k∗/(k∗)2. Since [L : k] is odd,
λ̃[L:k] = λ̃ in k∗/(k∗)2. In turn [(λ′)[L:k]] = [λ′] in H1(k,μ2). Thus NL/k(δ(λ

′′)) = λ′ . Since O +(A, σ ) is
rational, [11, Théorème II.3.2] gives

NL/k
(
im

(
O +(A,σ )(L)

δ
H1(L,μ2)

) ⊂ im
(

O +(A,σ )(k)
δ

H1(k,μ2)
))

In particular λ′ is in the image of O +(A, σ )(k) → H1(k,μ2). But then by exactness of the top row,
λ = i(λ′) = point. �
4. Absolutely simple adjoint groups of classical type

The main result of this section is the following.

Theorem 4.1. Let k be a field of characteristic different from 2 and G an absolutely simple, adjoint, classical
group over k. Let {Li}1�i�m be a set of finite field extensions of k and let the greatest common divisor of the
degrees of the extensions [Li : k] be d. If d is coprime to S(G) the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.
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The proofs in the unitary and symplectic cases are due to Barquero-Salavert [2]. So to prove 4.1
it is enough to consider the group of type 1 An−1 and the orthogonal case. We consider these cases
in 4.2 and 4.8 below.

Type 1 An−1

Theorem 4.2. Let k be a field of characteristic different from 2, A a central simple algebra of degree n over k
and G = PGL1(A). Let {Li}1�i�m be a set of finite field extensions of k and let gcd([Li : k]) = d. If d is coprime
to n then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

Proof. Consider the short exact sequence

1 Gm GL1(A) PGL1(A) 1 (4.2.1)

Since Hilbert’s Theorem 90 gives H1(k,GL1(A)) = 1, the induced long exact sequences in Galois Co-
homology produces the following commutative diagram with exact rows.

1 H1(k,PGL1(A))
δ

f

H2(k, Gm)

g

1
∏

H1(Li,PGL1(A))
δ ∏

H2(Li, Gm)

(4.2.2)

The pointed set H1(k,PGL1(A)) classifies isomorphism classes of central simple algebras of degree
n over k and for B ∈ H1(k,PGL1(A)), δ(B) = [B][A]−1. Choose B ∈ ker( f ). By commutativity of the
diagram, g(δ(B)) = point in

∏
H2(Li, Gm).

Let Ao denote the opposite algebra of A and choose B ⊗ Ao a representative for the class [B][A]−1

in H2(k, Gm). Let the exponent of B ⊗ Ao be s. Since by assumption B ⊗ Ao splits over each Li , s
divides each [Li : k]. It follows that s divides d. Since the degree of B ⊗ Ao is n2, s divides n2.

Since by assumption n and d are coprime, s = 1, B ⊗ Ao is split and B is Brauer equivalent
to A. Then since B and A are of the same degree, they are isomorphic and B is the point in
H1(k,PGL1(A)). �
The orthogonal case

The case in which G is of type Bn is a special case of 3.6. For the case in which G is of type Dn

we begin by proving a general form of Scharlau’s Norm Principle [16, Chapter 7, §4].

Lemma 4.3. Let A be a central simple K -algebra with k-linear involution σ . Let L be a finite extension of k of
odd degree and let g be a similitude of (A, σ )L with multiplier μ(g). Then NL/k(μ(g)) is the multiplier of a
similitude of (A, σ ).

Proof. Let g be a similitude of (A, σ )L . Let μ(g) = σ(g)g be the multiplier of g . By definition, the
hermitian form 〈μ(g)〉L is isomorphic to 〈1〉L . In particular left multiplication by g gives an explicit
isomorphism between the hermitian forms. We may identify 〈μ(g)〉L with 〈μ(g)〉L ⊗ 〈1〉L in W (L) ⊗
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W (AL, σL). Since [L : k(μ(g))] is odd and 〈μ(g)〉L ⊗ 〈1〉L
∼= 〈1〉L then 〈μ(g)〉k(μ(g)) ⊗ 〈1〉k(μ(g))

∼=
〈1〉k(μ(g)) [3, Corollary 1.4]. Let s be Scharlau’s transfer map from k(μ(g)) → k and let s∗ be the in-
duced transfer homorphism. Then s∗(〈μ(g)〉k(a) ⊗ 〈1〉k(a)) is Witt equivalent to 〈Nk(μ(g))/k(μ(g))〉 ⊗
〈1〉 [21, Chapter 2, Lemma 5.8], [3, p. 362]. Since on the other hand s∗(〈1〉k(μ(g))) = 〈1〉, then
〈Nk(μ(g))/k(μ(g))〉 ⊗ 〈1〉 is Witt equivalent to 1. Since both are rank 1 hermitian forms, it follows
from Witt’s cancellation that they are in fact isomorphic which gives precisely that Nk(μ(g))/k(μ(g))

is the multiplier of a similitude of (A, σ ). �
Remark 4.4. The result 4.3 above is [15, Proposition 12.21]. We give a proof here since only a partial
sketch of the proof is given in [15].

We will also need a result on existence of improper similitudes.

Lemma 4.5. Let k be a field of characteristic different from 2 and A a central simple algebra over k of even
degree at least 4 with an orthogonal involution σ . Let L be a finite field extension of k of odd degree. If A is not
split, then GO−(A, σ )(k) is nonempty if and only if GO−(A, σ )(L) is nonempty.

Proof. If g ∈ A is an improper similitude of A over k, then certainly gL is an improper similitude
of AL over L. Conversely, choose g ∈ AL an improper similitude of AL over L and let σ(g)g = μ(g).
Then AL Brauer equivalent to the quaternion algebra (δ,μ(g)) over L where δ is the discriminant
of σ [15, Theorem 13.38]. From this we find cor(AL) Brauer equivalent to cor((δ,μ(g))). Now res :
H2(k,μ2) → H2(L,μ2) certainly takes A to AL and cor(res(A)) = A since A is 2-torsion and [L : k] is
odd. On the other hand, cor((δ,μ(g))) = (δ, NL/k(μ(g))). By 4.3 write NL/k(μ(g)) as μ(g′) for g′ a
similitude of A over k. Thus A is Brauer equivalent to (δ,μ(g′)). If g′ is a proper similitude then by
[15, Proposition 13.38] (δ,μ(g′)) splits. But then A splits and we arrive at a contradiction. So g′ is an
improper similitude of A over k. �

We will also make use of the following two results:

Proposition 4.6. Let k be a field of characteristic different from 2 and A a central simple algebra over k of
degree at least 4 with an orthogonal involution σ . Let L be a finite extension of k of odd degree. Let G =
GO(A, σ ) be the group of similitudes of (A, σ ). Then the canonical map

H1(k, G) → H1(L, G)

has trivial kernel.

Proof. Let G0 = O (A, σ ). We have the exact sequence

1 → G0 → G → Gm → 1

where the map G → Gm takes each similitude a to its multiplier σ(a)a. In view of Hilbert’s Theo-
rem 90, the sequence yields the following commutative diagram with exact rows.

k∗ δ
H1(k, G0)

i

r∗

H1(k, G)

g

1

L∗ δ
H1(L, G0)

i
H1(L, G) 1

(4.6.1)
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Let ψ ∈ ker(g). By the exactness of the top row of (4.6.1), there exists 〈x〉 ∈ H1(k, G0) such that
i(〈x〉) = ψ . Here 〈x〉 is a rank one hermitian form over (A, σ ). Since commutativity of the right rect-
angle gives i(r∗(〈x〉)) = point, exactness of the second row gives an a ∈ L∗ such that r∗(〈x〉) = δ(a).
We note that δ(a) is the isomorphism class of the rank one hermitian form 〈a〉 over (A, σ )L .

Let k(a) be the subfield of L generated by a over k. Since L is an odd degree extension of k(a) and
〈a〉L

∼= r∗(〈x〉)L then 〈a〉k(a)
∼= r∗(〈x〉)k(a) [3, Corollary 1.4]. Let s : k(a) → k be the k-linear map given

by s(1) = 1 and s(a j) = 0 for all 1 � j < m where m = [k(a) : k] and let s∗ be the induced transfer
homomorphism. Write 〈a〉 as 〈a〉 ⊗ 〈1〉k(a) in W (k(a)) ⊗ W (Ak(a), σk(a)). Since [k(a) : k] is odd, results
of Bayer–Lenstra and Scharlau give that s∗(〈a〉 ⊗ 〈1〉k(a)) is Witt equivalent to 〈Nk(a)/k(a)〉 ⊗ 〈1〉 [21,
Chapter 2, Lemma 5.8], [3, p. 362]. On the other hand, s∗(r∗(〈x〉)) = s∗(〈1〉 ⊗ 〈x〉) and since [L : k]
is odd, s∗(〈1〉 ⊗ 〈x〉) ∼= 〈x〉 [21]. So 〈Nk(a)/k(a)〉 is Witt equivalent to 〈x〉 and since the two forms
have dimension one over (A, σ ), by Witt’s cancellation for hermitian forms, 〈Nk(a)/k(a)〉 ∼= 〈x〉. Then
〈x〉 = δ(Nk(a)/k(a)) and thus ψ = i(〈x〉) = point. �
Proposition 4.7. Let k be a field of characteristic different from 2 and A a central simple algebra over k of
degree at least 4 with an orthogonal involution σ . Let G = GO+(A, σ ) and let L be a finite field extension of k
of odd degree. Then the canonical map

H1(k, G) → H1(L, G)

has trivial kernel.

Proof. Consider the short exact sequence

1 GO+(A,σ )
i

GO(A,σ )
η

μ2 1 (4.7.1)

where the map η takes a ∈ GO(A, σ ) to 1 if Nrd(a) = μ(a)deg(A)/2 and η−1(−1) is precisely
GO−(A, σ ).

In the case A is split, each hyperplane reflection gives an improper similitude. Thus GO(A, σ )(k) →
μ2 is onto and (4.7.1) induces the following commutative diagram with exact rows.

1 H1(k,GO+(A,σ ))
i

g

H1(k,GO(A,σ ))

h

1 H1(L,GO+(A,σ ))
i

H1(L,GO(A,σ ))

(4.7.2)

Choose λ ∈ ker(g). Since the diagram (4.7.2) commutes and h has trivial kernel by 4.6, i(λ) = point.
Then exactness of the top row of (4.7.2) gives λ = point.

In the case A is not split, we need only consider two scenarios. Firstly, suppose A and AL both
admit improper similitudes. Then GO(A, σ )(k) → μ2 and GO(A, σ )(L) → μ2 are both onto and the
proof proceeds exactly as in the split case. Otherwise, by 4.5 neither admits an improper similitude.
That is GO+(A, σ )(k) = GO(A, σ )(k), GO+(A, σ )(L) = GO(A, σ )(L) and (4.7.1) induces the following
commutative diagram with exact rows.

1 μ2
δ

f

H1(k,GO+(A,σ ))
i

g

H1(k,GO(A,σ ))

h

1 μ2
δ

H1(L,GO+(A,σ ))
i

H1(L,GO(A,σ ))

(4.7.3)
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Choose λ ∈ ker(g). Commutativity of the rightmost rectangle in 4.7.3 gives i(λ) ∈ ker(h). But by 4.6,
this gives i(λ) = point. Then, by exactness of the top row of (4.7.3), ∃λ′ ∈ μ2 such that δ(λ′) = λ.
Commutativity of the left rectangle in (4.7.3) gives δ( f (λ′)) = point. From whence, since the bottom
row of (4.7.3) is exact we find f (λ′) = 1. But certainly f is the identity map. So in fact λ′ = 1 and in
turn, λ = δ(λ′) = point. �

We may now prove 4.1 for the absolutely simple group in the orthogonal case.

Theorem 4.8. Let k be a field of characteristic different from 2 and A a central simple algebra over k of degree
at least 4 with an orthogonal involution σ . Let G = PGO+(A, σ ) and let L be a finite field extensions of k of
odd degree. Then the canonical map

H1(k, G) → H1(L, G)

has trivial kernel.

Proof. Consider the short exact sequence

1 Gm GO+(A,σ )
η

PGO+(A,σ ) 1 (4.8.1)

by Hilbert’s Theorem 90, this induces the following commutative diagram with exact rows.

1 H1(k,GO+(A,σ ))
η

f

H1(k,PGO+(A,σ ))
δ

g

H2(k, Gm)

h

1 H1(L,GO+(A,σ ))
η

H1(L,PGO+(A,σ )) H2(L, Gm)

(4.8.2)

H1(k,PGO+(A, σ )) classifies k-isomorphism classes of triples (A′, σ ′, φ′) where A′ is a central simple
algebra over k of the same degree as A, σ ′ is an orthogonal involution on A′ and φ′ is an isomor-
phism from the center of the Clifford algebra of A′ to the center of the Clifford algebra of A. For any
such triple (A′, σ ′, φ′), δ(A′, σ ′, φ′) = [A′][A]−1 which is 2-torsion in the Brauer group since both A
and A′ admit involutions of the first kind. Then, since [L : k] is odd, h is injective on the image of δ

in H2(k, Gm).
So choose (A′, σ ′, φ′) ∈ ker(g). By commutativity of the rightmost rectangle in (4.8.2), h(δ(A′, σ ′,

φ′)) = point and thus δ(A′, σ ′, φ′) = point. Then by the exactness of the top row of the diagram,
there is a λ′ ∈ H1(k,GO+(A, σ )) such that η(λ′) = (A′, σ ′, φ′). By commutativity of the left rectangle
of (4.8.2), η( f (λ′)) = point which by exactness of the bottom row, gives f (λ′) = point. Then by 4.7,
λ′ = point and thus (A′, σ ′, φ′) = η(λ′) = point. �
5. Quasisplit exceptional groups

The Rost invariant will be an important tool for the results in this section. For G absolutely
simple, simply connected, the Rost invariant RG is an invariant of G with values in H3(k,Q/Z(2))

[10]. Notably, the Rost invariant generates the group of all normalized invariants of G with values in
H3(k,Q/Z(2)) [10, Theorem 9.11]. Let k be a field of characteristic different from 2 or 3. It is known
that RG : H1(k, G) → H3(k,Q/Z(2)) has trivial kernel when G is a quasisplit exceptional group which
is not of type E8:



244 J. Black / Journal of Algebra 334 (2011) 232–246
• The case where G is quasisplit of type 3,6 D4, E6 or E7 is due to Garibaldi [9,8] and Cherno-
usov [6].

• Serre discussed the case where G is of type G2 in [22, §8].
• The ingredients needed for the case of a split group of type F4 are discussed in [22, §9]. One

considers Rost’s mod 3 invariant g3 [20], and the Arason mod 2 invariants f3 and f5 [22, §9] on
H1(k, G). It is known that g3 vanishes on J ∈ H1(k, G) if and only if J is reduced [20] and further
that if g3( J ) = 0 then J is classified by f3 and f5. Given these results, that RG has trivial kernel
is a consequence of Springer’s theorem [16, Chapter VII, Theorem 2.7].

The main result of this section is the following:

Theorem 5.1. Let k be a field of characteristic different from 2. Let {Li}1�i�m be a set of finite field extensions of
k and let gcd([Li : k]) = d. Let G be a quasisplit, absolutely simple exceptional k-group which is not of type E8 .
If d is coprime to S(G), then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

We begin by considering the simply connected case.

Proposition 5.2. Let k be a field of characteristic different from 2 and 3. Let G be a quasisplit, absolutely
simple exceptional k-group which is simply connected and is not of type E8 . Let {Li}1�i�m be a set of finite
field extensions of k such that gcd([Li : k]) = d. If d is coprime to S(G), then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

Proof. For G absolutely simple, simply connected, the Rost invariant RG takes values in (Z/nGZ)(2)

where nG is the Dynkin index of G [10]. The following diagram commutes:

H1(k, G)
RG

f

H3(k, (Z/nGZ)(2))

g

∏
H1(Li, G)

RG ∏
H3(Li, (Z/nGZ)(2))

(5.2.1)

Choose λ ∈ ker( f ). Since S(G) contains the prime divisors of nG , and we have assumed that d is
coprime to S(G), a restriction–corestriction argument [12, Proposition 4.2.10] gives that g has trivial
kernel. So by commutativity of (5.2.1), λ is in ker(RG). Since RG is known to have trivial kernel, we
conclude that λ = point. �

We return to the main goal of the section:

Theorem 5.3. Let k be a field of characteristic different from 2 and 3. Let {Li}1�i�m be a set of finite field
extensions of k and let gcd([Li : k]) = d. Let G be a quasisplit, absolutely simple exceptional k-group which is
not of type E8 . If d is coprime to S(G), then the canonical map
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H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

Proof. Since a group of type F4 or G2 is necessarily simply connected, that the result holds for these
groups is a consequence of 5.2. In view of 5.2 we may assume that G is not simply connected. Then
we have a short exact sequence

1 μ Gsc
π

G 1 (5.3.1)

where Gsc is a simply connected cover of G and μ is its center. Since G is by assumption quasisplit,
then Gsc is quasisplit. So let T be the maximal, quasitrivial torus in Gsc .

As μ ⊂ T ⊂ Gsc , the map H1(k,μ) → H1(k, Gsc) induced by the inclusion of μ in Gsc factors
through the map H1(k,μ) → H1(k, T ) induced by the inclusion of μ in T . But since T is quasitrivial,
H1(k, T ) is trivial, and thus the image of the map H1(k,μ) → H1(k, Gsc) is trivial. Given this result,
(5.3.1) induces the following commutative diagram with exact rows.

1 H1(k, Gsc)
π

f

H1(k, G)

g

δ
H2(k,μ)

h

1
∏

H1(Li, Gsc)
π ∏

H1(Li, G)
δ ∏

H2(Li,μ)

(5.3.2)

Choose λ ∈ ker(g). The prime divisors of the order of μ are contained in S(G). Then since d
is coprime to S(G), d is coprime to the order of μ and a restriction–corestriction argument [12,
Proposition 4.2.10] gives that h has trivial kernel. So by commutativity of the rightmost rectangle
of (5.3.2), λ ∈ ker(δ). By exactness of the top row of (5.3.2) choose λ′ ∈ H1(k, Gsc) such that π(λ′) = λ.
Commutativity of the left rectangle of (5.3.2) gives f (λ′) ∈ ker(π) which is trivial by the exactness of
the bottom row of (5.3.2). So f (λ′) = point, from whence by 5.2, λ′ is the point in H1(k, Gsc). It is
then immediate that λ = π(λ′) is the point in H1(k, G). �
Remark 5.4. One can avoid the restrictions on the characteristic k above by giving a proof in the
flat cohomology sets H1

fppf(∗,∗) as defined in [25]. Since G is by assumption smooth, H1
fppf(k, G) =

H1(k, G).

6. Main result

Theorem 6.1. Let k be a field of characteristic different from 2. Let {Li}1�i�m be a set of finite field extensions
of k and let gcd([Li : k]) = d. Let G be an absolutely simple algebraic k-group which is not of type E8 and
which is either a simply connected or adjoint classical group or a quasisplit exceptional group. If d is coprime
to S(G), then the canonical map

H1(k, G) →
m∏

i=1

H1(Li, G)

has trivial kernel.

Proof. This follows from 3.1, 4.1 and 5.1 above. �
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Remark 6.2. By Shapiro’s lemma [15, Lemma 29.6] and 6.1, one finds that the answer to Q is yes
if k is a field of characteristic different from 2 and G is a simply connected or adjoint semisimple
algebraic k-group which does not contain a simple factor of type E8 and such that every exceptional
simple factor of type other than G2 is quasisplit.
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