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Abstract

An important part of computer science is focused on the links that can be established between group
theory and graph theory and graphs. CAYLEY graphs, that establish such a link, are useful in a lot of
areas of sciences. This paper introduces a new type of graph associated with a group, the G-graphs, and
presents many of their properties. We show that various characteristics of a group can be seen on its
associated G-graph. We also present an implementation of the algorithm constructing these new graphs,
an implementation that will lead to some experimental results. Finally we show that many classical graphs
are G-graphs. The relations between G-graphs and CAYLEY graphs are also studied.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Group theory can be considered as the study of symmetry. A group is basically the collection
of symmetries of some object preserving some of its structure; therefore many sciences have
to deal with groups. It has been proved that graphs can be interesting tools for the study of
groups. Groups linked with graphs have been arguably the most famous and productive area
of algebraic graph theory (Biggs, 1974; Jones, 2002; Lauri and Scapellato, 2003; Lauri, 1997,
2003). A popular representation of groups by graphs is the CAYLEY graphs. These graphs were
first used by A. Cayley in 1878 (Cayley, 1878, 1889) to construct pictorial representations of
finite groups. With a group G and a set S ⊆ G of generators a digraph called the CAYLEY
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graph is associated. The set of vertices of this graph is the set of elements of G and two vertices
x, y are adjacent if and only if there exists s ∈ S such that y = sx . If S = S−1 the graph is
undirected and if we choose for S a multi-set (repeating some generators) we get a CAYLEY
multi-graph. Now a lot of work has been done on these graphs (Cooperman et al., 1991). The
regularity and the underlying algebraic structure of CAYLEY graphs make them good candidates
for applications such as optimizations on parallel architectures, or for the study of interconnection
networks (Heydemann and Ducourthial, 1998), but can also be a limitation:

• Many interesting graphs are not CAYLEY graphs.
• CAYLEY graphs are always regular.
• CAYLEY graphs do not give much information about the group. For example take the cyclic

group with an order equal to n. Assume that this group is generated by two generators; the
CAYLEY graph associated with this group is a cycle with a length equal to n. No more
information is given on this graph.

• It has been shown that two isomorphic groups give rise to two isomorphic CAYLEY graphs;
the converse is not true (Morris, 1999), even for a subcategory of groups like abelian groups.

The purpose of this paper is to present some properties of a new type of graph – called a
G-graph (Bretto and Laget, 2004; Bretto and Gillibert, 2004) – constructed from a group and to
present an algorithm to construct it. A graph that can be used as a powerful tool, surmounting
CAYLEY graphs’ limitations.

G-graphs, like CAYLEY graphs, have both nice and highly regular properties. Consequently,
these graphs can be used in any areas of science where CAYLEY graphs occur. Besides these
graphs have the isomorphic property for abelian groups (two isomorphic abelian groups give rise
to two isomorphic graphs and conversely). We also prove that much information about a given
group can be deduced from its associated G-graph. The problem of the G-graph recognition
is also studied. It occurs that many usual regular graphs, such as the cube, the hypercube, are
some G-graphs. A list of the most common graphs that are G-graphs is established and some
tools for detecting whether a graph is a G-graph are proposed. Most of the G-graphs in the
final list are symmetric, but some semisymmetric graphs, such as the Ljubljana graph, are also
G-graphs.

2. Basic definitions

2.1. Graph definitions

We define a graph Γ = (V ; E; ε) as follows:

• V is the set of vertices and E is the set of edges.
• ε is a map from E to P2(V ), where P2(V ) is the set of subsets of V having one or two

elements.

In this paper graphs are finite, i.e., sets V and E have finite cardinalities. For each edge a,
we define ε(a) = [x; y] if ε(a) = {x, y} with x 6= y or ε(a) = {x} = {y}. If x = y, a is
called a loop. The elements x, y are called extremities of a, and a is incident to x and y. The set
a ∈ E, ε(a) = [x; y]} is called a multiedge or p-edge, where p is the cardinality of the set. We
define the degree of x by d(x) = card({a ∈ E, x ∈ ε(a)}).

Given a graph Γ = (V ; E; ε), a chain is a non-empty graph P = (V, E, ε) with V =

{x0, x1, . . . , xk} and E = {a1, a2, . . . , ak−1ak}, where xi , xi+1 (imodk) are extremities of ai .
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The elements of E must be distinct. The cardinality of E is the length of this chain. A graph is
connected if, for all x, y ∈ V , there exists a chain from x to y.

Γ
′

= (V ′
; E ′

; ε
′

) is a subgraph of Γ if it is a graph satisfying V ′
⊆ V , E ′

⊆ E and ε
′

is the
restriction from ε to E ′. If V ′

= V then Γ
′

is a spanning subgraph.
An induced subgraph generated by A, Γ (A) = (A; U ; ε), with A ⊆ V and U ⊆ E is a

subgraph such as U = {a ∈ E, ε(a) = [x; y], x, y ∈ A}.
An induced subgraph such that any pair of vertices are adjacent is called a clique. Let

Γ = (V ; E; ε) be a graph; a component of Γ is a maximal connected induced subgraph.
Let Γ1 = (V1; E1; ε1) and Γ2 = (V2; E2; ε2) be two graphs, a morphism from Γ1 =

(V1; E1; ε1) to Γ2 = (V2; E2; ε2) is a couple ( f, f #) where f : V1 −→ V2 is a map and
f #

: E1 −→ E2 is a map such that:

if ε1(a) = [x; y] then ε2( f #(a)) = [ f (x); f (y)].

So (idV , idE ) is a morphism from G = (V ; E; ε) to G.
The product of two morphisms ( f, f #) and (g, g#) is defined by: ( f, f #) ◦ (g, g#) := ( f ◦

g, f #
◦ g#). ( f, f #) is an isomorphism if there exists a morphism (g, g#) from Γ2 = (V2; E2; ε2)

to Γ1 = (V1; E1; ε1) such that (g, g#) ◦ ( f, f #) = (idV1 , id#
E1

) and ( f, f #) ◦ (g, g#) =

(idV2 , id#
E2

). In this case we will define (g, g#) = ( f, f #)−1. So ( f, f #) is an isomorphism
if and only if f is a bijection and f # is a bijection. If there exists an isomorphism between Γ1
and Γ2 we will define Γ1 ' Γ2 and we will say that Γ1 is isomorphic to Γ2.

A graph Γ = (V ; E; ε) is k-partite if there is a partition of V in k-parts such that any part
does not contain any edge other than loops. We will write Γ = (ti∈I Vi ; E; ε), card(I ) = k. A
graph is minimum k-partite, k ≥ 2, if it is not (k − 1)-partite. It is easy to verify that for any
graph Γ there exists k such that Γ is minimum k-partite. If a graph Γ is k-partite we will say that
(Vi )i∈{1,2,...,k} is a k-representation of Γ and we will call (Γ , (Vi )i∈{1,2,...,k}) a k-graph.

A k-graph morphism ( f, f #) is morphism from a k1-graph (Γ1, (V1,i )i∈{1,2,...,k1}) to a k2-
graph (Γ2, (V2, j ) j∈{1,2,...,k2}) verifying the following property:

For all i ∈ {1, 2, . . . , k1}, there exists j ∈ {1, 2, . . . , k2} such that f (V1,i ) ⊆ V2, j .

2.2. Group definitions

In this paper, groups are also finite. We denote the unit element by e. Let G be a group,
and let S = {s1, s2, . . . , sk}, a non-empty set of elements of G. S is a set of generators
from G if any element θ ∈ G can be written in the following way: θ = si1 si2 si3 . . . sit with
i1, i2, . . . it ∈ {1, 2, . . . , k}. We say that G is generated by S = {s1, s2, . . . , sk} and we write
G = 〈s1, s2, . . . , sk〉. A group G is said to act in the left way on a space Ω when the following
operation (a, x) −→ a.x from G × Ω to Ω verifies:

• e.x = x .
• a.(b.x) = (a.b).x ., a, b ∈ G and x ∈ Ω .

Let H be a subgroup of G; we use H x instead of H{x}. The set H x is called right coset of H in
G. A subset TH of G is said to be a right transversal for H if {H x, x ∈ TH } is precisely the set
of all cosets of H in G.

An S-group is a couple (G, S) where G is a finite group and S is a subset of G. An S-group
morphism between (G1, S1) and (G2, S2) is a morphism f from G1 to G2 such that f (S1) ⊆ S2.
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3. Group to graph process

3.1. Mathematical definition

Let (G, S) be a group with a set of generators S = {s1, s2, s3 . . . sk}, k ≥ 1. For any
s ∈ S, we consider the left action of the subgroup H = 〈s〉 on G. So we have a partition
G =

⊔
x∈Ts

〈s〉x, where Ts is a right transversal of 〈s〉. The cardinality of 〈s〉 is o(s), the order
of the element s.

Let us consider the cycles

(s)x = (x, sx, s2x, . . . , so(s)−1x)

of the permutation gs : x 7−→ sx of ΣG . Hence 〈s〉x is the support of the cycle (s)x . Notice that
just one cycle of gs contains the unit element e, namely (s)e = (e, s, s2, . . . so(s)−1). We define
a graph denoted by Φ(G; S) = (V ; E; ε) in the following way:

• The vertices of Φ(G; S) are the cycles of gs , s ∈ S, i.e., V = ts∈S Vs with Vs = {(s)x, x ∈

Ts}.
• For each (s)x, (t)y ∈ V , if card(〈s〉x ∩ 〈t〉y) = p, p ≥ 1 then {〈s〉x, 〈t〉y} is a p-edge.

Thus, Φ(G; S) is a k-partite graph and any vertex has a o(s)-loop. We denote as Φ̃(G; S) the
graph Φ(G; S) without loops. By construction, one edge stands for one element of G. We can
remark that one element of G labels several edges. Both graphs Φ(G; S) and Φ̃(G; S) are called
graphs from groups or G-graphs and we can say that the graphs are generated by the groups
(G; S). If S = G, the G-graph is called the canonic graph.

3.2. Algorithmic procedure

The following procedure constructs a graph from a group G and a subset S of G. A list of
vertices and a list of edges represent the graph:

Procedure Group To Graph(G, S)
Data:

G a group
S = {s1, s2, s3, . . . , sk}, a subset of G

Cycles computing
L = ∅

for all a in S
l2 = ∅

gs = ∅

for all x in G
if x not in l2 then

l1 = ∅

for k = 0 to k = Order(a) − 1
Add (ak) × x to l1
Add (ak) × x to l2

end for
Add l1 to gs

end if
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end for
Add gs to L

end for
Graph computing

for all s in L
Add s to V
for all s′ in L

for all x in s
for all y in s’

if x = y then
Add (s, s′) to E

end if
end for

end for
end for

end for
Return (V, E)

3.3. Complexity and example

It is easy to see that the complexity of our implementation is O(n2
× k2) where n is the order

of the group G and k is the cardinal of the family S.
Let G be the KLEIN group, the product of two cyclic groups of order 2. So G = {e, a, b, ab}

with o(a) = 2, o(b) = 2 and ab = ba. The set S = {a, b, ab} is a family of generators of G. Let
us compute the graph Φ̃(G; S).

The cycles of the permutation ga are

(a)e = (e, ae) = (e, a)

(a)b = (b, ab).

The cycles of the permutation gb are

(b)e = (e, be) = (e, b)

(b)a = (a, ba) = (a, ab).

The cycles of the permutation gab are

(ab)e = (e, abe) = (e, ab)

(ab)a = (a, aba) = (a, b).

The graph Φ̃(G; S) is isomorphic to the octahedral graph (see Fig. 1). The octahedral graph is a
three-partite symmetric quartic graph.

4. Basic properties of G-graphs

Proposition 4.1. Let (G, S) be a group with card(S) = k; the graph Φ̃(G; S) is a k-graph.

Proof. It is sufficient to show that Φ̃(G; S) has a clique with a cardinality equal to k. Take a
cycle of gs1 , for example (s1)x . This cycle contains an element (at least) which is contained in
a cycle of gs2 ; this one is contained in a cycle of gs3 , . . . and this one is contained in a cycle of
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Fig. 1. The octahedral graph.

gsk . Hence this set of cycles forms a clique in Φ̃(G; S) and the chromatic number of this graph
is k. �

Proposition 4.2. Let Φ(G; S) = (ts∈S Vs; E; ε) be a G-graph with card(S) = k. We have the
following properties:

• For all v ∈ Vs , d(v) = o(s)(k + 1).
• For all s ∈ S we have Σv∈Vs d(v) = o(G)(k + 1).

Proof. For each v ∈ Vs we have v = (si )x ; the cardinality of this cycle is o(si ). Moreover any
element of (si )x is exactly in one of the cycles of the permutation gs j for each j ∈ {1, 2, . . . , k}.
Hence and from the definition of Φ(G; S) we have d(v) = o(s)(k + 1). So we have∑

v∈Vs

d(v) =
o(G)

o(s)
o(s)(k + 1) = o(G)(k + 1).

Consequently the edge number of Φ(G; S) is k(k+1)o(G)
2 . �

Proposition 4.3. Let Φ(G; S) = (V ; E; ε) be a G-graph. This graph is connected if and only if
S is a generator set of G.

Proof. If card(S) = 1, the graph is connected if it has just one vertex v = (e, s, s2, . . . , so(s)−1),
so that the graph is connected if and only if G = 〈s〉. Assume that card(S) ≥ 2. Let (s)x ∈ Vs and
(s′)y ∈ Vs′ . Because G = 〈S〉, there exists s1, s2, s3, . . . , sn ∈ S such that y = s1s2s3 . . . sn x .

x ∈ 〈s〉x ∩ 〈sn〉x,

sn x ∈ 〈sn〉x ∩ 〈sn−1〉sn x,

sn−1sn x ∈ 〈sn−1〉sn x ∩ 〈sn−2〉sn−1sn x,

. . .

s2 . . . sn x ∈ 〈s2〉s3 . . . sn x ∩ 〈s1〉s2 . . . sn x,

y ∈ 〈s1〉s2 . . . sn x ∩ 〈s′
〉y.

Consequently there exists a chain from (s)x ∈ Vs to (s′)y ∈ Vs′ . So Φ(G; S) is a connected
graph.
Conversely, let x ∈ G. There exists si1 ∈ S and xi1 ∈ Tsi1

such that x ∈ (si1)xi1 ; hence

x = s
ti1
i1

xi1 . We have e ∈ (si1). The graph is connected if there exists a chain from x ∈ (si1)xi1 to
e ∈ (si1); hence

x = s
ti1
i1

xi1 , xi1 = s
ti2
i2

xi2 , . . . , xik−2 = s
tik−1
ik−1

xik−1 , xik−1 = s
tik
ik

xik .

But xik = e, so x = s
ti1
i1

s
ti2
i2

. . . s
tik
ik

. �
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Corollary 4.4. If k is odd and S is a generator set of G, then Φ(G; S) is eulerian.

Proof. Indeed from proposition below the graph is connected; moreover for all vertices x of the
graph we have d(x) = ps(k + 1). If k is odd then k + 1 is even, and consequently d(x) is
even. �

Proposition 4.5. Let h be a morphism between (G1, S1) and (G2, S2); then there exists a
morphism, Φ(h), between Φ(G1; S1) and Φ(G2; S2).

Proof. We define Φ(h) = φ = ( f, f #) in the following way:

• f : ts∈S1 V1,s −→ ts∈S2 V2,s , with (s)x 7−→ (h(s))h(x).
• f #: E1 −→ E2, with ([(s)x, (t)y]; u) 7−→ ([(h(s))h(x), (h(t))h(y)]; h(u)).

It is easy to verify that φ is a morphism from Φ(G1; S1) to Φ(G2; S2). That leads to any group
morphism giving rise to a graph morphism. �

Moreover we have Φ(h ◦ h′) = Φ(h) ◦ Φ(h′), and Φ(id(G,S)) = idΦ(G,S); hence if (G1; S1) '

(G2; S2) then Φ(G1; S1) ' Φ(G2; S2).

Theorem 4.6. Let G1 and G2 be two abelian groups. These two groups are isomorphic if and
only if Φ(G1; G1) and Φ(G2; G2) are isomorphic.

Proof. From the preceding remark a group isomorphism gives rise to a graph isomorphism.
Suppose that Φ(G1; G1) is isomorphic to Φ(G2; G2). These two graphs have the same sequence
of degrees. Hence the two groups have the same number of elements of the same order. It is
well known that two abelian groups are isomorphic if and only if they have the same number of
elements of the same order. That leads to our assertion. �

Theorem 4.7. Let (G, S) be a group with o(G) = n. Assume that S = G. If for all d, d|n, there
exist n

d φ(d) d-loops (where φ is the Euler characteristic), in Γ = Φ(G; G), then G is a cyclic
group.

Proof. ∀ x ∈ G, o(x) = d , we have n
d vertices with a d-loop; hence, if od = card({x, o(x) =

d}) then ∀ d|n, card({v ∈ V, v has a d-loop}) =
n
d od . Consequently the d-loop number is

n
d od . By hypothesis one has n

d od ≤
n
d φ(d), so n =

∑
d|n od ≤

∑
d|n φ(d) = n. That leads to

od = φ(d), and if d = n then on = φ(n) and G is a cyclic group. �

5. Infinite class of G-graphs

Proposition 5.1. Let the dihedral group D2n be the group of presentation

〈r, s | rn
= e, s2

= e, sr = rn−1s〉

For S = {r, s}, the graph Φ̃(D2n; S) of the dihedral group is the complete bipartite graph K2,n .

See Fig. 2 for an example.

Proof. Let us compute the n-cycles of Vr = {(r)x; x ∈ G}. There are two of them:

(r)e = (e, r, r2, . . . , rn−1)

(r)s = (s, rs, r2s, . . . , rn−1s).
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Fig. 2. Φ̃(D10; {a, b}).

Fig. 3. Φ̃(Q3; {a, b}).

And let us compute the 2-cycles of Vs . There are n of them:

(s)e = (e, s)

(s)r = (r, sr) = (r, rn−1s)

(s)r2
= (r2, sr2) = (r2, rn−2s)

. . .

(s)rn−1
= (rn−1, srn−1) = (rn−1, rs).

The cardinality of S is equal to 2, so Φ̃(D2n; S) is a bipartite graph. We must show that it is a
complete graph, i.e. for all (x, y), x in Vr and y in Vs , there is exactly one edge between x and
y.

For all y in Vs there is i in {0, 1, . . . , n − 1} such that y = (s)r i . But we have

〈s〉r i
= {r i , rn−i s}.

If x = (r)s, because 〈r〉s = (s, rs, r2s, . . . , rn−1s), we have

〈r〉s ∩ 〈s〉r i
= {rn−i s}.

If x = (r)e, because 〈r〉e = (e, r, r2, . . . , rn−1), we have

〈r〉e ∩ 〈s〉r i
= {r i

}.

So, for all x in Vr and y in Vs , there is exactly one edge between x and y. �

Proposition 5.2. Let the generalized quaternion group Qn be the group of presentation

〈a, b | a2n
= e, b2

= an, ab = ba2n−1
〉.

For S = {a, b}, the graph Φ̃(Qn; S) of the generalized quaternion group is the complete double-
edged bipartite graph K 2

2,n .

See Fig. 3 for an example.

Proof. First notice that ba = a2n−1b, b2a = ana = an+1 and b3a = ban+1
= a2n−(n+1)b =

an−1b. More generally we can say

bai
= a2n−i b
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Fig. 4. Φ̃(C3 × C3; {a, b}).

b2ai
= an+i

b3ai
= an−i b.

Let us compute the 2n-cycles of Va . There are 2 of them:

(a)e = (e, a, a2, . . . , a2n−1)

(a)b = (b, ab, a2b, . . . , a2n−1b).

Let us compute the 4-cycles of Vb. There are n of them:

(b)e = (e, b, b2, b3) = (e, b, an, anb)

(b)a = (a, ba, b2a, b3a) = (a, a2n−1b, an+1, an−1b)

(b)a2
= (a2, ba2, b2a2, b3a2) = (a2, a2n−2b, an+2, an−2b)

· · ·

(b)an−1
= (an−1, ban−1, b2an−1, b3an−1) = (an−1, an+1b, a2n−1, ab).

The cardinality of S is equal to 2, so Φ̃(Qn; S) is a bipartite graph. We must show that for all
x ∈ Va , for all y ∈ Vb, there are exactly two edges between x and y.

For all y ∈ Vb there exists i ∈ {0, 1, . . . , n − 1} such that y = (b)ai . So we have

(b)ai
= (ai , bai , b2ai , b3ai ) = (ai , a2n−i b, an+i , an−i b)

ai and an+1 are in 〈a〉e. a2n−i b and an−i b are in 〈a〉b. So, for all y ∈ Vb, there are exactly two
edges between y and (a)e, and two edges between y and (a)b. �

Proposition 5.3. Let Cn × Ck be the product of two cyclic groups. Such a product is generated
by two elements, a and b, with an

= bk
= e. More precisely, Cn ×Ck is the group of presentation

〈a, b | an
= e, bk

= e, ab = ba〉.

For S = {a, b}, the graph Φ̃(Cn × Ck; S) of the product of two cyclic groups, is the complete
bipartite graph Kn,k ..

See Fig. 4 for an example.

6. The bipartite case

Recall that a graph is simple if it has neither loops nor multiedges. Let Γ = (V1, V2; E)

be a bipartite simple graph; ϕ = ( f, f #) ∈ Autp(Γ ) (where Autp(Γ ) stands for the set of
automorphisms such that f (Vi ) = V j , i, j ∈ {1, 2}) give rise to a bijection of E :

e = [x, y] ∈ E 7→ ϕ(e) = [ f (x), f (y)] ∈ E .
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So Autp(Γ ) acts on E , on V1, on V2.
A k-partite graph Γ = (

⊔
i∈I Vi ; E; ε) is semi-regular if for every i ∈ I : x, y ∈ Vi ⇒

d(x) = d(y).

Theorem 6.1. (1) Let: (G; S) with S = {s, t} and 〈s〉 ∩ 〈t〉 = {id}, Φ̃(G; S) = (Vs t Vt ; E; ε).
For g ∈ G we define δ(g) = (δg, δ

#
g) by:

• δg((s)x) = (s)xg−1, s ∈ S, x ∈ G;
• if e = ([(s)x, (t)y], u) ∈ E : δ#

g(e) = ([(s)xg−1, (t)yg−1
], ug−1).

Hence we have the following properties:

(a) Φ̃(G; S) is a simple, bipartite, semi-regular connected graph.
(b) 4 = {δ(g), g ∈ G} is a subgroup of AutpΦ̃(G; S).
(c) 4 acts transitively on Vs , on Vt and on E.
(d) For every v ∈ Vs t Vt , Stab4(v) is a cyclic group.

Conversely suppose Γ = (V1 t V2; E; ε) is a simple, bipartite, semi-regular connected graph
with a subgroup 4 of AutpΓ such that:

(i) 4 is acting transitively on V1 and on V2.
(ii) For every v ∈ V1 t V2, Stab4(v) is a non-trivial cyclic group.

(iii) 4 is acting transitively on E.
(iv) There is an edge {x1, x2} in Γ such that Stab4(x1) and Stab4(x2) are different and

o(G)

|Stab4x1|
= |V1|,

o(G)

|Stab4x2|
= |V2|.

Then there exists (G; S) such that Γ 'p Φ̃(G; S).

Proof. A 2-edge between (s)x and (t)y implies card(〈s〉 ∩ 〈t〉) ≥ 2. We have δg−1(Vs) ⊂ Vs ;
and g 7→ δ(g) is a morphism. If e = ([(s)x, (t)y], u), e′

= [(s)x ′, (t)y′, u′
] ∈ E , then

si x = t j y = u, si ′ x ′
= t j ′ y′

= u′ for i, j, i ′, j ′ ∈ N: we verify that for g = u
′
−1u, we

have δ#
g(e) = e′, so 4 acts transitively (and regularly) on E . Stab4((s)id) = 〈δ(s)〉 and the other

Stab4s are conjugate with this one.
Conversely, we choose G = 4 and for i = 1, 2 we fix xi ∈ Vi and σi a generator of Stab4(xi ).

Let S = {σ1, σ2}; with a vertex (σ1)ρ of Φ̃(G; S) we associate the vertex ρ−1(x1) of V1: this
gives a p-isomorphism between Φ̃(G; S) and Γ . �

Recall that the Cayley graph Cay(G; A) associated with a group G and A = A−1
⊂ G has

for vertices the elements of G, with an edge between x and y if and only if there exists a ∈ A
such that y = ax . The line graph L(Γ ) associated with a simple graph Γ has for vertices the
edges of Γ , two vertices being adjacent if and only if the corresponding edges in Γ are adjacent.

Proposition 6.2. Let S = {s, t} with 〈S〉 = G and 〈s〉 ∩ 〈t〉 = {e}. Then Γ = Φ̃(G; S) is a
simple graph and L(Γ ) ' Cay(G; A) where A = (〈s〉 ∪ 〈t〉)\{e}.

Proof. Every element of the set V of vertices of L(Γ ) is an edge a = ([(s)x, (t)y], u) of Γ with
〈s〉x ∩ 〈t〉y = {u} so θ : G → V, θ(u) = a is a bijection; if a′

= ([(s)x, (t)y′
], u′) ∈ V we

have u = si x, u′
= si ′ x (with i, i ′ ∈ N) and hence u′

= si ′−i u with a = si ′−i
∈ A, and u and u′

are adjacent in Cay(G; A); the converse is easy. �
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Fig. 5. Φ̃(A4; S).

Fig. 6. Φ̃(SmallGroup(32, 6); S).

7. Experimental results

7.1. How to recognize a G-graph

Given a G-graph Γ , an interesting problem is how to find a group G and a family S such that
Φ̃(G; S) is isomorphic to Γ . If both G and S exist, we say that Γ is a G-graph. Here, we use
the SmallGroups library from GAP (Groups, Algorithms, and Programming (The GAP Team,
2002)). This library gives us access to all groups of certain small orders. The groups are sorted
by their orders and they are listed up to isomorphism. Currently, the library contains the groups
of order at most 2000 except 1024 (423 164 062 groups). In this section, we prove that many
usual graphs are G-graphs and we exhibit their corresponding groups.

The cube — Let us consider the skeleton of a cube. It is a graph with 8 vertices and 12 edges.
All vertices are of degree 3 and the graph is bipartite. Suppose the cube is a G-graph Φ̃(G; S).
Then the corresponding group G is of order 12 and is generated by a family S of cardinality 2,
because the graph is bipartite. The alternate group with 12 elements, A4, a subgroup of S4, is
generated by the two cycles (1, 2, 3) and (1, 3, 4). Let S be the family {(1, 2, 3), (1, 3, 4)}. If we
compute the graph Φ̃(A4; S) with our algorithm we find the graph depicted in Fig. 5.

It is easy to check that this graph is isomorphic to the cube. Thus, the cube is a G-graph as
expected.

The hypercube — Let us consider the skeleton of a hypercube of dimension 4. It is a graph
with 16 vertices and 32 edges. All vertices are of degree 4 and the graph is bipartite. Suppose the
hypercube is a G-graph Φ̃(G; S). Then the corresponding group G is of order 32 generated by
a family S of cardinal 2, because the graph is bipartite. The order of the elements of the family
S must be 4 because the vertex degree is 4. If we look at the library SmallGroups we find 51
groups of order 32. Only seven groups of order 32 can be generated by two elements of order 4:
the groups number 2, 6, 10, 11, 13, 14 and 20. If we compute the corresponding graphs with our
algorithm we find that SmallGroup(32,6) matches (see Fig. 6).

7.2. A short list of G-graphs

Many common graphs are G-graphs. Here is a short list of well-known graphs that are
G-graphs. The corresponding groups are indicated, most of the time by a reference to the
SmallGroups library.
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• Bipartite complete graphs (G = Cn × Ck , S = {(1, 0), (0, 1)})
• Cycles of even length (G = Dn , S is constituted with two symmetries)
• The octahedral graph (G = C2 × C2, S = {(1, 0), (0, 1), (1, 1)})
• The cuboctahedral graph

(G = C2 × C2 × C2, S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)})
• The square (G is the Klein’s group, G = {e, a, b, ab}, and S = {a, b})
• The cube (G = A4, S = {(1, 2, 3), (1, 3, 4)})
• The hypercube (G = SmallGroup(32,6), S = { f 1, f 1 ∗ f 2})
• The 2 × 2 grid on a torus (G = Q2, S = {a, b})
• The 3 × 3 grid on a torus (G = D6, S = {s ∈ G; Ordre(S) = 2})
• The 4 × 4 grid on a torus (G = SmallGroup(32,6), S = { f 1, f 1 ∗ f 2})
• The Heawood graph (〈a, b | a7

= b3
= e, ab = baa〉, S = {b, ba})

• The Pappus graph
(G = 〈a, b, c | a3

= b3
= c3

= e, ab = ba, ac = ca, bc = cba〉, S = {b, c})
• The Mobius–Kantor graph (G = SmallGroup(24,3), S = { f 1, f 1 ∗ f 2})
• The Gray graph (G = SmallGroup(81,7), S = { f 1, f 2})
• The Ljubljana graph (G = SmallGroup(168,43), S = { f 1, f 1 ∗ f 2 ∗ f 4})
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