
e

at the
e when

matrix-
andard
Faddeev–
ce of the
lation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 570 (2003) 73–81

www.elsevier.com/locate/np

Global unitary fixing and matrix-valued correlations in matrix
models

Stephen L. Adler, Lawrence P. Horwitz1

Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Received 16 June 2003; accepted 3 July 2003

Editor: H. Georgi

Abstract

We consider the partition function for a matrix model with a global unitary invariant energy function. We show th
averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the sam
calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define
valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the st
Faddeev–Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete
Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invarian
unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued corre
functions.
 2003 Elsevier B.V. Open access under CC BY license.
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Over the years there has been considerable in
est in matrix models from various points of view. M
trix models are used to approximate quantum m
body systems and quantum field theories [1], and h
deep connections with string theories [2]. They a
have been studied as classical statistical mecha
systems, from which quantum behavior emerges
der certain conditions [3]. A common issue that ari
in all of these applications is dealing with an over
global unitary invariance transformation of the p
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tition function. Typically, in matrix model calcula
tions this overall invariance is partially integrated o
as a first step, thus eliminating aU(N)/U(1)N sub-
group of the global unitary group. Our aim in th
Letter is to proceed in an alternative fashion, by
ing the Faddeev–Popov framework to impose a se
unitary invariance fixing conditions, that complete
break theSU(N) subgroup of the global unitary in
variance groupU(N). One can think of our construc
tion as a type of polar decomposition, based on m
ding out the action of theSU(N) subgroup. This al-
lows one to define matrix-valued correlation functio
which give additional structural information about t
system, but which (like gauge potentials in gauge fi
theory) depend on the choice of unitary fixing. A co
plete global unitary fixing is needed for the applic
tion of matrix models to emergent quantum theory
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veloped in Ref. [3], so as to be able to construct m
trix ensembles that do not integrate over the space
translation group of the emergent theory. The form
ism that we develop here may well find other mat
model applications as well.

Let M1, . . . ,MD be a set ofN ×N complex self-
adjoint matrices, and let us take as the energy func

(1)H[{M}] = TrH(M1, . . . ,MD),

with H a self-adjoint polynomial in its argumen
constructed using onlyc-number coefficients (i.e., n
fixed, non-dynamical matrices appear as coefficie
in constructingH ). Then the corresponding partitio
functionZ is defined by

(2)Z =
∫
dM exp(−H),

with

(3a)dM =
D∏
d=1

d[Md ],

and with the integration measured[M] for the self-
adjoint matrixM defined in terms of the real an
imaginary parts of the matrix elementsMij of M by

(3b)d[M] =
∏
i

dMii

∏
i<j

d ReMij d ImMij .

As is well known, the measured[M] is unitary
invariant, in other words, ifU is a fixedN×N unitary
matrix, then

(4a)d[U†MU ] = d[M].
If we make the same unitary transformationU on all
of the matricesMd , d = 1, . . . ,D, then by our assump
tion thatH involves no fixed matrix coefficients,H is
invariant by virtue of the cyclic property of the trace

(4b)H[{U†MU}] = H[{M}].
Thus, Eqs. (4a) and (4b) together imply that
partition functionZ has a global unitary invariance.

The global unitary invariance ofZ must be taken
into account in calculating correlations of the vario
matricesMd averaged over the partition function. L
Q[{M}] be an arbitrary polynomial in the matrice
M1, . . . ,MD constructed using onlyc-number coef-
ficients, so that under global unitary transformatio
Q transforms as

(5a)Q[{U†MU}] =U†Q[{M}]U.
Correspondingly, let

(5b)Q = TrQ,

so thatQ is a global unitary invariant. One can no
consider the calculation of averages ofQ and ofQ,
respectively, over the ensemble defined by Eq. (2)
the case of the trace polynomialQ one has

(6a)〈Q〉AV =Z−1
∫
dM exp(−H)Q,

which because of the global unitary invariance
volves an overall structure-independent unitary in
gration that is typically done as the first step, by us
Mehta’s change of variables [4] for one of the mat
arguments on whichQ depends. Let us now consid
the corresponding average of the polynomialQ over
the ensemble,

(6b)〈Q〉AV =Z−1
∫
dM exp(−H)Q.

Making a global unitary transformation on all of th
matrix integration variables, and using the invarian
of dM and of H given in Eqs. (4a), (4b), and th
covariance ofQ given in Eq. (5a), we then find that

(7a)〈Q〉AV =U†〈Q〉AVU,

for all unitary matricesU . Thus by Schur’s lemma
(which applies sinceU(N) acts irreducibly on the
complexN -dimensional vector space)〈Q〉AV must be
a c-number multiple of the unit matrix, so that b
taking the trace, we learn that

(7b)〈Q〉AV =N−1〈Q〉AV ,

and all nontrivial matrix information (e.g., the unita
orientation and nontrivial operator properties) co
tained inQ has been lost.

In order to retain access to the matrix inform
tion contained inQ, let us then proceed in an alte
native fashion. Let us define a measured̂M in which
the SU(N) subgroup of the global unitary invarianc
group has been fixed. (The full global unitary inva
ance group is the product of thisSU(N) with a global
U(1) that is an overall phase times the unit matr
since thisU(1) commutes withQ, averaging over it
causes no loss of the matrix information contained
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Q, and so fixing the overallU(1) is not necessary.
We then define the average ofQ over the unitary-fixed
ensemble as

(8a)〈Q〉ÂV = Ẑ−1
∫
d̂M exp(−H)Q,

with

(8b)Ẑ =
∫
d̂M exp(−H)

the partition function in which the global unitar
invariance has been broken, and an orientation on
N -dimensional vector space has been fixed. Clea
the procedure just described is a global unitary ana
of the gauge fixing customarily employed in the ca
of local gauge invariances. If we change the recipe
fixing the global unitary invariance, then the avera
defined by Eq. (8a) will change in a manner that
in general complicated. However, we will show th
the average ofQ in the unitary-fixed ensemble
independent of the fixing and is equal to that defin
in Eq. (6a) by averaging over the original ensemble
that

(9)〈Q〉ÂV = 〈Q〉AV .

In other words, the average of the trace ofQ takes the
same value for any choice of unitary fixing. To ma
an analogy with local gauge fixing in gauge theori
the trace polynomialsQ are analogs of gauge invar
ant functions, while polynomialsQ without a trace are
analogs of gauge-variant quantities. Just as the ga
variant potentials contain useful information in gau
theories, the unitary fixing-variant averages of po
nomialsQ contain useful structural information abo
matrix models.

To prove Eq. (9), we proceed by analogy w
the standard Faddeev–Popov procedure used fo
cal gauge fixing. Let us write an infinitesimalSU(N)
transformation in generator form asU = exp(G),
with G anti-self-adjoint and traceless. We take as
N2 − 1 infinitesimal parameters of theSU(N) trans-
formation the real numbersgj , j = 1, . . . ,N2 − 1,
with those for j = 1, . . . ,N(N − 1) given by the
real and imaginary parts of the off-diagonal mat
elements ofG, that is, by ReGij and ImGij for
i < j . The remaining ones forj = N(N − 1)+ 1,
. . . ,N2 − 1 are given by the differences of the ima
inary parts of the diagonal matrix elements ofG,
-

that is, by Im(G11 −G22), . . . , Im(G11 −GNN). Let
fj ({M}), j = 1, . . . ,N2 − 1 be a set of functions o
the matricesM1, . . . ,MD with the property that the
equationsfj ({M})= 0,j = 1, . . . ,N2 −1 completely
break theSU(N) invariance group, so that the only s
lution of fj ({M + [G,M]})= 0, j = 1, . . . ,N2 − 1 is
gj = 0, j = 1, . . . ,N2 − 1. We consider now the inte
gral

J =
∫
dM G[{M}]K[{fj }]

(10a)× det

(
∂fi({M + [G,M]})

∂gj

∣∣∣∣
G=0

)
,

with the functionK[{fj }] taken as

(10b)K[{fj }] =
N2−1∏
j=1

δ(fj ).

Here G is a global unitary invariant function of th
matricesM1, . . . ,MD , such as a trace polynomialQ
or any function of trace polynomials (for examp
the partition function weight exp(−H)). Eq. (10a) has
the standard form of the Faddeev–Popov analysis
formulated, for example, in the text of Weinberg [
(except that when one is dealing with a non-comp
local gauge invariance, where the limits of integrat
lie at infinity, one can take the functionK to be a
general function of gauge variant functionsfj ; in the
compact case considered here, the delta function
Eq. (10b) must be used in order to make the integra
limits irrelevant.) The standard FP argument th
shows that the integral in Eq. (10a) is independ
of the constraintsfj . Briefly, the argument proceed
by replacing the dummy variable of integrationdM
by dMV , whereMV = V †MV , and integrating ove
the SU(N) matrix V . The group property of unitar
transformations together with the chain rule th
converts the determinant in Eq. (10a) into a Jacob
transforming theV integration into an integratio
over the constraintsfj , permitting the delta function
in Eq. (10b) to be integrated to give unity. Th
shows that the result is independent of the constra
and that it is the same as the result obtained
integrating over the original unfixed ensemble, th
establishing Eq. (9). Clearly, this argument works o
when the functionG is a unitary invariant, so tha
it has no dependence onV . For example, ifG is
replaced by a polynomial in the matriceswithout an
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overall trace, then the unitary fixing constraints can
be eliminated by integrating overV , and the resul
depends on the unitary fixing in a complicated way

A specific realization of the general unitary fixin
can be given whenD � 2, so that the set of matrice
M1, . . . ,MD contains at least two independent se
adjoint matricesA = M1 andB = M2. We take the
functionsfj , j = 1, . . . ,N2 − 1 to be linear functions
of A andB, constructed as follows. As thefj for j =
1, . . . ,N(N − 1) we take the real and imaginary pa
of the off-diagonal matrix elements ofA, that is, the
functions ReAij and ImAij for i < j . Equating these
functions to zero forces the matrixA to be diagonal
The N remaining diagonal unitary transformatio
then commute withA, so that no further conditions ca
be furnished by use ofA alone. However, the diagon
SU(N) transformations can always be used to m
the off-diagonal matrix elements in the first row
the second matrixB have vanishing imaginary part
leaving a residualZN−1

2 symmetry that is broken
by requiring these matrix elements to have posit
semidefinite real parts. So for the remaining conditi
fj for j = N(N − 1) + 1, . . . ,N2 − 1, we take the
N − 1 functions ImB1j , j > 1, and we restrict the
integrations over ReB1j , j > 1 to run from 0 to∞.
Since the functionK chosen in Eq. (10b) enforce
the conditionsfj = 0 in a sharp manner, they ca
be used to simplify the expression for the Fadde
Popov determinant. A simple calculation now sho
that when thefj all vanish, the matrix elements of th
commutator[G,M] needed in Eq. (10a) are given by

Re[G,A]ij = ReGij (Ajj −Aii),

Im[G,A]ij = ImGij (Ajj −Aii),

(11a)Im[G,B]1j = ReB1j Im(G11 −Gjj )+R,

with R a remainder containing only off-diagon
elementsGi =j of the matrixG. Since Eq. (11a) show
that the matrix

(11b)

(
∂fi({M + [G,M]})

∂gj

∣∣∣∣
G=0

)
is triangular (its upper off-diagonal matrix elemen
are all zero becauseR has no dependence on t
diagonal matrix elements ofG), its determinant is
given by the product of its diagonal matrix elemen
Thus we have

∆≡ det

(
∂fi({M + [G,M]})

∂gj

∣∣∣∣
G=0

)

(12a)=
∏
i<j

(Aii −Ajj)
2

N∏
j=2

ReB1j ,

the first factor of which is the familiar squared Vand
monde determinant. Substituting Eqs. (10b) and (1
into Eq. (10a), we thus arrive at the formula for t
unitary-fixed integral

J =
∫ D∏

d=3

d[Md ]
(

N∏
i=1

dAiidBii

)(
N∏
j=2

dReB1j

)

(12b)×
( ∏

2�i<j

d ReBij d ImBij

)
∆G[{M}],

with the integrals over ReB1j , j = 2, . . . ,N in
Eq. (12b) running over positive values only. The p
of this analysis involving only a single matrixA is well
known in the literature [6]; what has been added h
is the completeSU(N) fixing obtained by imposing
a condition on a second matrixB as well. The part
of Eqs. (12a), (12b) involving eachB1j is just a pla-
nar radial integral

∫∞
0 ρ dρ, with ρ = |B1j | = ReB1j ,

where the associated angular integral
∫ 2π

0 dφ has been
omitted because it corresponds to aU(1) factor that
has been fixed by the conditionφ = 0.

With this choice of unitary fixing, the unitar

fixed average�̂Q ≡ 〈Q〉ÂV defined in Eq. (8a) has
characteristic form that is dictated by the symmetr
of the unitary-fixed ensemble. Since the unitary fixi
conditions are symmetric under permutation of
basis states with labels 2,3, . . . ,N , and since this
permutation is also a symmetry of the unfixed meas
dM, the matrix �̂Q must be symmetric under th
permutation of basis states. Thus, there are only
independent matrix elements,

�̂Q11 = α,

�̂Qjj = β, j = 2, . . . ,N,

�̂Q1j = γ, j = 2, . . . ,N,

�̂Qi1 = δ, i = 2, . . . ,N,

(12c)�̂Qij = ε, 2 � i = j �N.
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In this notation, the original unfixed average�Q ≡
〈Q〉AV defined by Eq. (7b) is given by

(12d)�Q=N−1 Tr �̂Q=N−1[α+ (N − 1)β],
showing explicitly that there is a loss of structural
formation in using the unfixed average. But even
unitary-fixed average has a structure that is greatly
stricted as compared with a generalN × N matrix.
(Similar reasoning applies to the partial unitary fi
ing in which one only imposes the condition thatA

should be diagonal. Since this condition is symm
ric under permutation of the basis states with lab
1, . . . ,N , the partially unitary fixed average of a pol
nomial Q defined by integrating with the measu
(
∏N

i=1 dAii)(
∏

i<j (Aii − Ajj )
2)
∏D

d=2d[Md ] must
also have this permutation symmetry, and thus m
be ac-number times the unit matrix.)

We now introduce ghost integrals to repres
the determinant∆. Let ωij and ω̃ij be the matrix
elements of independentN × N complex anti-self-
adjoint Grassmann matricesω and ω̃. We takeω to
be traceless, Trω = 0, while we takeω̃ to have a
vanishing 11 matrix element,̃ω11 = 0. The integration
measure forω is defined by

(13a)

dω=
∏
i<j

dReωij d Imωij

N∏
j=2

d Im(ωjj −ω11),

while the integration measure forω̃ is taken as

(13b)dω̃=
∏
i<j

dReω̃ij d Im ω̃ij

N∏
j=2

d Im ω̃jj .

We can now use these Grassmann matrices to
a ghost representation of the factors in Eq. (1
involving the matricesA andB. Since the matrixA
is diagonal, we have

(14a)Tr ω̃[ω,A] =
∑
i =j

ω̃ji (Aii −Ajj)ωij .

Hence up to an overall sign, the square of the Van
monde determinant

∏
i<j (Aii −Ajj )

2 is given by the
ghost integral

(14b)
∫
d ′ωd ′ω̃exp(Tr ω̃[ω,A]),

with the diagonal factorsd Im(ωjj − ω11), d Im ω̃jj ,
j = 2, . . . ,N omitted from the primed integratio
measuresd ′ω andd ′ω̃. To represent the second fact
in Eq. (12a) as a ghost integral, we use the diago
matrix elements ofω andω̃ in an analogous fashion
Thus, up to a phase, the factor

∏N
j=2 ReB1j is given

by the ghost integral∫ N∏
j=2

d Im(ωjj −ω11) d Im ω̃jj

(14c)× exp

(
N∑
j=2

ω̃jj (ReB1j )i(ωjj −ω11)

)
.

By defining a matrixX by

X11 = 0, Xij = 0, 2 � i, j �N,

X1j =Xj1 = i

2
ω̃jj (ωjj −ω11), j = 2, . . . ,N,

the exponent in Eq. (14c) can be written as TrXB, so
that Eq. (14c) becomes

(14d)
∫ N∏

j=2

d Im(ωjj −ω11) d Im ω̃jj exp(TrXB).

Combining Eqs. (13a), (13b) and (14b), (14c) a
(14d), we see that up to an overall phase the de
minant∆ introduced in Eq. (12a) has the equivale
ghost representations

∆∝
∫
dωdω̃exp

(
Tr ω̃[ω,A]

+
N∑
j=2

ω̃jj (ReB1j )i(ωjj −ω11)

)

(15)∝
∫
dωdω̃exp(Tr ω̃[ω,A] + TrXB).

Yet another equivalent form is obtained by noti
that

(16a)[B,ω]1j = B1j (ωjj −ω11)+ S,

with the remainderS denoting terms that only involv
matrix elementsωij with i = j . The remainderS
makes a vanishing contribution to the Grassm
integrals when Eq. (16a) is substituted forB1j i(ωjj −
ω11) in Eq. (15), since one factor of(ωjj − ω11) for
eachj = 2, . . . ,N is needed to give a nonvanishin
integral, and each such term in the exponent is alre
accompanied by a factor̃ωjj , so that terms with
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additional such factors vanish inside the Grassm
integrals. (We are just using here the fact that withζ, ζ̃

Grassmann variables,
∫
dζ dζ̃ exp(ζ̃Wζ +Uζ) =W ,

with no dependence onU .) Since the diagonal matri
elements ofω are pure imaginary, Eq. (16a) implie
that

(16b)(ReB1j )i(ωjj −ω11)= − Im[B,ω]1j + ImS,

which when substituted into Eq. (15) gives the alter
tive formula

∆∝
∫
dωdω̃exp

(
Tr ω̃[ω,A]

(17)−
N∑
j=2

ω̃jj Im[B,ω]1j
)
.

This formula will be used to establish a BRST [
symmetry, the topic to which we now turn.

To formulate a BRST invariance transformati
corresponding to Eq. (17), we rewrite the product
δ functions in Eq. (10b) and the half-line restriction
the integrals over ReB1j in terms of their Fourier rep
resentations, by introducing three sets of Nakanis
Lautrup [8] variables. One set are the elementshij of
a self-adjointN × N matrix h with vanishing diago-
nal matrix elements, so thathii = 0, i = 1, . . . ,N . The
integration measure for this set is defined as

(18a)dh=
∏
i<j

dRehij d Imhij .

The second set areN − 1 real numbersHj , j =
2, . . . ,N , with integration measure

(18b)dH =
N∏
j=2

dHj .

In terms of these variables, the product ofδ functions
of Eq. (10b) can be represented (up to an ove
constant factor) as

N2−1∏
j=1

δ(fj )∝
∫
dhdH exp

(
i TrhA

(19a)+ i

N∑
j=2

Hj ImB1j

)
.

The third set areN − 1 complex numberskj , j =
2, . . . ,N , integrated along a contour on the real a
with integration measure

(19b)dk =
N∏
j=2

dkj

kj − iε
,

with infinitesimal positiveε. These can be used
insert a product of step functions

∏N
j=2 θ(ReB1j ) into

Eq. (12b),

(19c)
N∏
j=2

θ(ReB1j )∝
∫
dk exp

(
i

N∑
j=2

kj ReB1j

)
,

allowing the integrals over the ReB1j in Eq. (12b) to
be taken from−∞ to ∞.

Defining a matrixY by Y11 = 0; Yij = 0, 2 �
i, j � N ; Y1j = −Yj1 = −1

2Hj , the second term
in the exponent in Eq. (19a) can be rewritten
i
∑N

j=2Hj ImB1j = TrYB, and so an alternative form
of Eq. (19a) is

(19d)
N2−1∏
j=1

δ(fj )∝
∫
dhdH exp(i TrhA+ TrYB).

Similarly, defining a matrixZ by Z11 = 0; Zij =
0, 2 � i, j � N ; Z1j = Zj1 = 1

2ikj , the exponen

in Eq. (19c) can be rewritten as
∑N

j=2 ikj ReB1j =
TrZB, and so an alternative form of Eq. (19c) is

(19e)
N∏
j=2

θ(ReB1j )∝
∫
dk exp(TrZB).

These equations allow us to write Eq. (12b) in ter
of the unrestricted measuredM, and the ghost repre
sentation of∆, as

J = C

∫
dM dhdH dk dωdω̃

× exp

(
i TrhA+ Tr ω̃[ω,A]

+
N∑
j=2

(
iHj ImB1j + ikj ReB1j

− ω̃jj Im[B,ω]1j
))

G[{M}]

= C

∫
dM dhdH dk dωdω̃
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× exp
(
i TrhA+ Tr ω̃[ω,A]

(20)+ Tr(X + Y +Z)B
)
G[{M}],

with C an overall constant factor. The first represen
tion of J in Eq. (20) will be used to establish a BRS
invariance, while the second will be used to disc
Ward identities obeyed by the matrix-valued corre
tions.

We now show that the first integral in Eq. (20)
invariant under the nilpotent BRST transformation

δA= [A,ω]θ,
δB = [B,ω]θ,
δMd = [Md,ω]θ, d = 3, . . . ,D,

δω = ω2θ,

δω̃ij = −ihij θ, i = j,

δω̃jj = −iHjθ, j = 2, . . . ,N,

δh= 0,

δHj = 0,

(21)δkj = 0,

with θ a c-number Grassmann parameter. (The p
of this transformation involvingω is patterned afte
the BRST transformation for the local operator gau
invariant case studied by Adler [9].) We first rema
that since Eq. (21) has the form of an infinitesim
unitary transformation with generatorωθ acting on
the matrix variablesMd , the global unitary invarian
function G[{M}] and the matrix integration measu
dM are both invariant. We consider next the terms
the exponent in Eq. (20). From Eq. (21) we have

δ[A,ω] = [δA,ω] + [A,δω]
= [[A,ω]θ,ω]+ [

A,ω2θ
]

= −(ω[A,ω] + [A,ω]ω)θ + [
A,ω2]θ

(22a)= −[A,ω2]θ + [
A,ω2]θ = 0.

Hence for the terms in the exponent of Eq. (2
involvingA, we get (using the fact thatA is diagonal)

δ(i TrhA+ Tr ω̃[ω,A])
= i TrhδA+ Tr(δω̃)[ω,A]

(22b)= i Trh[A,ω]θ + Tr(−ihθ)[ω,A] = 0.

For the terms in the exponent of Eq. (20) involvi
B but not involving the parameterskj , inside the
summation overj we have

δ(iHj ImB1j − ω̃jj Im[B,ω]1j )
= iHj Im δB1j − (δω̃jj ) Im[B,ω]1j
= iHj Im[B,ω]1j θ + iHjθ Im[B,ω]1j

(22c)= 0,

since δ[B,ω] = 0 by the same argument as
Eq. (22a). So the entire exponent of the first repres
tation in Eq. (20) is BRST invariant, apart from th
kj ReB1j terms. But the shifts in the ReB1j are linear
in ω while not involvingω̃. Thus (since we shall se
shortly that the integration measures are invariant),
shifts in the terms in the exponent involving the pro
ucts kj ReB1j make a vanishing contribution to th
Grassmann integrals, by an argument similar to
used to justify the neglect ofS in Eq. (16a).

An alternative method of including the step fun
tions, that leads to a manifestly BRST invariant in
grand, is to include in the exponent in the first rep
sentation of Eq. (20) an additional term

−
N∑
j=2

κj Re[B,ω]1j ,

with κj auxiliary Grassmann parameters that arenot
integrated over. This term is linear inω but does not
involve ω̃, and so again makes a vanishing contri
tion to the Grassmann integrals in Eq. (20). The BR
transformation of Eq. (21) is then augmented by
ruleδκj = −ikjθ , with the result that the combinatio
ikj ReB1j −κj Re[B,ω]1j is manifestly BRST invari-
ant.

Continuing the BRST analysis, since Trστ =
−Trτσ for any two Grassmann odd grade matriceτ
andσ , we have Trω2 = −Trω2 = 0, and so the condi
tion thatω should be traceless is preserved by Eq. (2
(On the other hand,ω2

11 is nonzero even whenω11 is
zero, which is why we must use a traceless condit
rather than a conditionω11 = 0, for ω.) Also, letting
∗ denote complex conjugation, since(
ω2)∗

ji
=
∑
2

ω∗
j2ω

∗
2i =

∑
2

ω2jωi2 = −
∑
2

ωi2ω2j

(22d)= −(ω2)
ij
,

the property thatω is anti-self-adjoint is preserved b
Eq. (21). The integration measuresdh and dH are
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trivially invariant, while the measuredω̃ is invariant
becauseδω̃ has no dependence onω̃. Since

δ(dωij )= d(δω)ij = d
(
ω2θ

)
ij

(23a)= (
ωdω+ (dω)ω

)
ij
θ,

we have

δ(dωij )= (ωii dωij + dωijωjj )θ + · · ·
(23b)= dωij (ωjj −ωii)θ + · · · ,

with · · · denoting terms that contain only matr
elementsdωi′j ′ with (i ′, j ′) = (i, j). Hence there
is no Jacobian contribution from the diagonal ter
in the measuredω, while the Jacobian arising from
transformation of the off-diagonal terms indω differs
from unity by a term proportional to

(23c)
∑
i =j

(ωjj −ωii)θ = 0,

and so the measuredω is also invariant. Finally
nilpotence of the BRST transformation follows fro
Eq. (22a), and its analogs withA replaced byB or by
a generalMd , together with

(23d)δω2 = {δω,ω} = {
ω2θ,ω

}= ω2{θ,ω} = 0.

This completes the demonstration of the BRST tra
formation for the first representation in Eq. (20).

The second representation in Eq. (20) can
used to derive Ward identities from unitary-fixe
expectations of trace polynomialsQ; these Ward
identities play a central role in the arguments for
emergent quantum theory given in Ref. [3]. Employi
the specific unitary fixing of Eq. (20) in the definitio
of Eqs. (8a), (8b), as applied toQ = TrQ, and using
the cyclic property of the trace to rewrite Trω̃[ω,A]
as Tr{ω̃,ω}A, we have

Ẑ〈Q〉ÂV =
∫
dM dhdk dH dωdω̃

× exp
(
Tr[(ih+ {ω̃,ω})A]

(24)+ Tr(X + Y +Z)B
)
exp(−H)Q,

with Ẑ given by the expression on the right-hand s
of Eq. (24) withQ replaced by unity. Ward identitie
follow from the fact that the unrestricted measu
dM is invariant under a shift of any matrixMd by
a constantδMd , which under the assumption th
surface terms related to the shift vanish, implies

0 =
∫
dM dhdH dk dωdω̃ δMd

×
(
exp

(
Tr[(ih+ {ω̃,ω})A] + Tr(X+ Y +Z)B

)
(25a)× exp(−H)Q

)
.

When H and Q are varied with respect toMd , the
factor δMd can be cyclically permuted to the right
each term of the varied trace polynomials, giving
formulas

δMdH = Tr
δH
δMd

δMd,

(25b)δMdQ = Tr
δQ
δMd

δMd,

which [3] definethe variational derivatives of the trac
polynomials with respect to the operatorMd . Carrying
through the variations of all terms of Eq. (25a), a
dividing by Ẑ, we are left with an expression of th
form

(26a)0 = Tr〈Wd 〉ÂV δMd.

However, sinceδMd is an arbitrary self-adjoint matrix
the vanishing of the real and imaginary parts
Eq. (26a) implies the matrix identity

(26b)0 = 〈Wd 〉ÂV .

For d = 3, . . . ,D, the variationδMd in Eq. (25a) acts
only on the product exp(−H)Q, and we have

(27a)Wd = δQ
δMd

− Q
δH
δMd

.

However, ford = 1 and d= 2, corresponding toM1 =
A andM2 = B, there are additional contributions
the Ward identities arising from variations of the trac
involvingA andB in the first exponential on the righ
hand side of Eq. (25a), which arose from the unit
fixing procedure. Explicitly, we have

W1 = (ih+ {ω̃,ω})Q + δQ
δA

− Q
δH
δA

,

(27b)W2 = (X + Y +Z)Q + δQ
δB

− Q
δH
δB

.

Hence from Eq. (20) we are able to get explicit for
of all of the Ward identities, including those obtain
by varying the matrices singled out in the unita
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invariance fixing. Note that were we to employ t
original ensemble average of Eq. (6a), which has
unitary fixing, in deriving the Ward identities, the
Eq. (7b) implies that we would only obtain the tra
of the matrix relation of Eq. (26b). In other word
unitary fixing is essential for extracting the full conte
of the Ward identities; without it, all nontrivial matri
structure is averaged out.
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