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Abstract In the present article, the linear and the nonlinear deformation behaviour of functionally

graded (FG) spherical shell panel are examined under thermomechanical load. The temperature-

dependent effective material properties of FG shell panel are evaluated using Voigt’s

micro-mechanical rule in conjunction with power-law distribution. The nonlinear mathematical

model of the FG shell panel is developed based on higher-order shear deformation theory and

Green-Lagrange type geometrical nonlinearity. The desired nonlinear governing equation of the

FG shell panel is computed using the variational principle. The model is discretised through suitable

nonlinear finite element steps and solved using direct iterative method. The convergence and the val-

idation behaviour of the present numerical model are performed to show the efficacy of the model.

The effect of different parameters on the nonlinear deformation behaviour of FG spherical shell

panel is highlighted by solving numerous examples.
� 2016 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Functionally graded materials (FGMs) are the advanced class
of composite while the constituents are graded in one or more

direction with continuous variation to achieve the desired
properties. The smooth grading of constituents result in better
thermal properties, higher fracture toughness, improved resid-
ual stress distribution and the reduced stress intensity factors.1
The above-discussed characteristics allow FGM structures to

withstand large mechanical load under elevated thermal envi-
ronment. Hence, the analysis of FGM structures through the
mathematical model by taking one and all the complexities

into the consideration are the major concern of the researchers.
It is also true that experimental analysis of such complex prob-
lems is not only costly but also tough to achieve. Some of the

important contributions on the linear and nonlinear deflection
behaviour of FGM flat/curved panels under thermal and/or
mechanical load are discussed in the following lines.

Nonlinear bending and the post-buckling responses of
functionally graded (FG) plate are analysed by Yang and
Shen,2 using perturbation technique and 1-D differential
quadrature approximation based on the classical plate theory

(CPT) and von Karman nonlinear kinematics. In the
continuation towards improvement, the static and dynamic
behaviour of the FG flat/curved panel have been analysed
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using first-order shear deformation theory (FSDT).3–5 Navazi
and Haddadpour6 reported exact solution of nonlinear bend-
ing responses of FG plate using the FSDT mid-plane kinemat-

ics and von Karman nonlinearity. In order to achieve the
parabolic transverse shear through the thickness of the FG
plate,7 the mid-plane kinematics of the plate structure is eval-

uated using higher-order shear deformation theory (HSDT).
Abdelaziz et al.8 proposed new higher-order theory to obtain
the bending response of FG sandwich rectangular plate.

Upadhyay and Shukla9 examined the nonlinear static and
dynamic behaviour of FG skew plate using von Karman type
nonlinear kinematics in the framework of the HSDT. Oktem
et al.10 examined the bending behaviour of flat and doubly

curved FG panel in the framework of the HSDT mid-plane
kinematics. Thai and Choi11 developed a refined plate theory
to analyse the static, vibration and buckling behaviour of

FG plate resting on elastic foundation. Bourada et al.12 devel-
oped a refined trigonometric higher-order beam theory to
examine the vibration and the bending behaviour of FG

beams. Yahia et al.13 employed different higher-order shear
deformation plate theories for wave propagation in FG plates.
Meziane et al.14 presented an efficient refined shear deforma-

tion theory to investigate the vibration and the buckling beha-
viour of exponentially graded sandwich plate resting on elastic
foundation under different support conditions. Belabed et al.15

employed an efficient and simple higher-order shear and nor-

mal deformation theory to study the bending and the free
vibration behaviour of FGM plate. Draiche et al.16 examine
the free vibration behaviour of laminated plate with a localized

patch mass using trigonometric four variable plate theory.
Bousahla et al.17 proposed a new trigonometric higher-order
theory including the stretching effect to examine the static

responses of FG plates. Hebali et al.18 developed a new
quasi-three-dimensional hyperbolic shear deformation theory
to analyse the bending and the free vibration analysis of FG

plates. Larbi et al.19 developed an efficient shear deformation
beam theory based on neutral surface position to examine
the bending and the free vibration of FG beams. Few more
layered/graded/sandwich type structures are analysed using

higher-order shell theories for the computation of realistic
responses.20–23

It is well known that the FG structures are well suited to

elevated thermal environment and very few numerical and/or
analytical thermoelastic analysis of FG flat/curved panels are
reported in the open literature. Woo and Meguid24 studied

the nonlinear bending of flat and spherical FG panel under
combined thermo-mechanical loading based on the CPT kine-
matics and von Karman nonlinearity. The linear and nonlin-
ear static responses are computed for FG shell panel

subjected to thermomechanical loading in the framework of
Sander’s FSDT kinematics with the advent of mesh-free kp-
Ritz method.25,26 The analytical/numerical nonlinear solu-

tions for FG plate under combined thermomechanical load
have been investigated using HSDT kinematics with von Kar-
man nonlinearity.27–29 Wattanasakulpong et al.30 employed

an improved HSDT mid-plane kinematics to examine the free
and forced vibration behaviour of FG plate under thermal
environment. The nonlinear flexural and stability responses

of FG spherical shell panels under thermomechanical load
are solved analytically.31,32 Na and Kim33 investigated the
nonlinear bending responses of FG plate under different ther-
mal environment using 3D finite element method (FEM). Zidi
et al.34 employed a four variable refined plate theory to study
the bending of FGM plate resting on elastic foundation and

subjected to hygro-thermo-mechanical load. Tounsi et al.35

proposed a refined trigonometric shear deformation theory
with the transverse shear deformation effect for bending anal-

ysis of FG sandwich plates under thermomechanical load.
Bouderba et al.36 presented the thermomechanical bending
of FG plates resting on Winkler–Pasternak elastic founda-

tions using the refined trigonometric shear deformation the-
ory. Khalfi et al.37 examined thermal buckling of solar FG
plate resting on two-parameter Pasternak’s foundations using
a refined and simple shear deformation theory. Attia et al.38

employed different refined plate theories to examine the vibra-
tion behaviour of temperature-dependent FG plates. Hamidi
et al.39 studied the bending analysis of FG sandwich plates

subjected to thermomechanical loading using a sinusoidal
plate theory. Houari et al.40 developed a new higher-order
shear and normal deformation theory to examine the bending

behaviour of FGM sandwich plates under thermomechanical
load.

It is clear from the above review that the studies related to

the nonlinear bending analysis of the FG flat/curved panel are
very few in numbers. We note that most studies are presented
on the linear flexural analysis without considering the temper-
ature effect. Based on the authors’ knowledge, no study has

been reported yet in open literature on the nonlinear bending
analysis of power-law based FGM (P-FGM) spherical shell
panel by considering Green-Lagrange type geometrical nonlin-

earity and the HSDT mid-plane kinematics with/without
temperature-dependent material properties. In addition to
the above, all the nonlinear higher-order terms are included

in the present mathematical formulation to compute the exact
flexural responses. Hence, in this present work, authors’ aim to
develop a general nonlinear mathematical model of P-FGM

shallow shell panel with temperature-dependent properties of
each constituent (ceramic and metal) in the framework of the
HSDT mid-plane kinematics and Green-Lagrange type full
nonlinearity. In this study, the P-FGM shell panel properties

are computed using Voigt’s micromechanical model and the
desired nonlinear governing equation is developed through
variational approach. The domain has been discretised using

suitable finite element steps and a direct iterative method is
introduced to compute the desired nonlinear solution. Wide
varieties of numerical examples are exemplified to highlight

the effect of different geometrical and material parameters
on the linear and nonlinear thermomechanical responses of
the P-FGM shallow spherical shell panel.
2. Mathematical formulations

2.1. Kinematic model for shallow spherical shell panel

For the analysis purpose, a shallow spherical shell panel with a
rectangular base (a � b) is developed mathematically in Carte-

sian coordinates (x–y–z) as shown in Fig. 1. Here, h is the total
panel thickness and, Rx and Ry are the radii of curvature of
mid-plane along x- and y- axis, respectively. The displacement

field of the present P-FGM spherical shell panel is defined in
the HSDT mid-plane kinematics41 as



Fig. 1 Geometrical details of shallow spherical P-FGM shell

panel.
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uðx; y; zÞ ¼ u0ðx; yÞ þ zhxðx; yÞ
þz2u�0ðx; yÞ þ z3h�xðx; yÞ

vðx; y; zÞ ¼ v0ðx; yÞ þ zhyðx; yÞ
þz2v�0ðx; yÞ þ z3h�yðx; yÞ

wðx; y; zÞ ¼ w0ðx; yÞ

8>>>>>><
>>>>>>:

ð1Þ

where (u, v, w) is the global displacement field and (u0, v0, w0) is
the mid-plane displacement field along x, y and z directions,
respectively. hx and hy are the rotations of transverse normal

about y- and x- axes, respectively. u�0, v
�
0; h

�
x and h�y are the

mid-plane higher-order terms of Taylor’s series expansion.

2.2. Strain–displacement relationships

The small strain and large deformation behaviour of any mate-
rial continuum can be expressed as Green-Lagrange type non-
linear strain–displacement relation as42

e ¼

exx
eyy
cxy
cxz
cyz

2
6666664

3
7777775
¼ el þ enl ¼

u;x

v;y

u;y þ v;x

u;z þ w;x

v;z þ w;y

2
6666664

3
7777775

þ

1

2
½ðu;xÞ2 þ ðv;xÞ2 þ ðw;xÞ2�

1

2
½ðu;yÞ2 þ ðv;yÞ2 þ ðw;yÞ2�

ðu;xÞðu;yÞ þ ðv;xÞðv;yÞ þ ðw;xÞðw;yÞ
ðu;zÞðu;xÞ þ ðv;zÞðv;xÞ þ ðw;zÞðw;xÞ
ðu;zÞðu;yÞ þ ðv;zÞðv;yÞ þ ðw;zÞðw;yÞ

2
6666666664

3
7777777775

ð2Þ

where �u;x ¼ @u=@xþ w=Rx, �u;y ¼ @u=@y, �v;x ¼ @v=@x,

�v;y ¼ @v=@yþ w=Ry, �w;x ¼ @w=@x� u=Rx and �w;y ¼ @w=@y�
v=Ry. el and enl are the linear and the nonlinear strain tensors,

respectively and these strain tensors can also be presented at
mid-plane of FG shell panel as in Eq. (3).
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ð3Þ

where the individual terms and the details can be seen in
Ref.43. Similarly, Tl and Tnl represent the linear and the
nonlinear thickness coordinate matrices, respectively.
2.3. Material gradation and property evaluation

In general, the FGM is composed of the metal and ceramic
material and their properties are assumed to be varying contin-
uously across the thickness of assumed geometry (shell panel)

from the lower surface (metal-rich) to the upper (ceramic rich)
surface. In this analysis, the constituent material properties are
also considered to be the function of temperature (T) incre-
ment. Therefore, the effective material properties n of the pre-

sent FGM panel are the functions of both the position as well
as the temperature. In order to obtain the effective material
properties of FGM, various micromechanical models such as

the Voigt’s model44, the Mori–Tanaka model45, and the self-
consistent method46 have been proposed. Some of the studies
incorporated both the Voigt’s model and the Mori–Tanaka

scheme for FGM material property evaluation.47–49 It is
observed from the above studies that the differences between
the results obtained using the Voigt’s model and the Mori–

Tanaka scheme are almost negligible and the Voigt’s model
is found relatively simple than the other micromechanical
models. Therefore, in the present study, the Voigt’s microme-
chanical model is used and expressed as

nðT; zÞ ¼ ðncðTÞ � nmðTÞÞ#cðzÞ þ nmðTÞ ð4Þ
where subscript ‘c’ and ‘m’ denote the ceramic and metal con-
stituents, respectively. The #c is the ceramic volume fraction in
the FGM.

The temperature-dependent material properties for any
material continuum can be expressed in the polynomial form
as50

nc;mðTÞ ¼ n0 n�1 T�1 þ 1þ n1 Tþ n2 T 2 þ n3 T 3
� � ð5Þ

where n0, n�1, n1, n2 and n3 are the temperature coefficients in a
cubic fit.

Now, the volume fractions of each constituent are evalu-
ated through the established power-law distribution and
expressed as51

#cðzÞ ¼ z

h
þ 1

2

� �n

#mðzÞ ¼ 1� #cðzÞ

8<
: 0 6 n < 1 ð6Þ

where n is the power-law index and it decides the material dis-
tribution across the thickness of the present FGM shell panel.

Finally, using Eqs. (4) and (6), the effective material prop-
erties of P-FGM can be expressed as
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nðT; zÞ ¼ ðncðTÞ � nmðTÞÞ
z

h
þ 1

2

� �n

þ nmðTÞ ð7Þ

Now, different properties of P-FGM such as elastic modu-
lus (E), Poisson’s ratio (t) and coefficient of thermal expansion
(a), can be evaluated using the Eq. (7).

2.4. Thermoelastic constitutive relations

The thermoelastic constitutive relations of P-FGM shallow

spherical shell panel can be conceded as

r ¼ Qðe� ethÞ ð8Þ

where r ¼ ½ rxx ryy sxy sxz syz �T and eth ¼
½ 1 1 0 0 0 �TaDT are the stresses and thermal strain ten-
sors at any point within the shell panel, respectively. Here, DT
denotes the uniform temperature rise across the thickness of
the P-FGM panel and it denotes the difference between the
final temperature (T) and reference temperature (T0 =

300 K). Similarly, Q is the reduced stiffness matrix defined
for the isotropic and the plane stress conditions.51

2.5. Finite element formulations

The P-FGM panel is now discretised using a 9-noded isopara-
metric Lagrangian element using a suitable finite element

approach as discussed earlier. The relationship between the
displacement vector (k0) and the nodal displacement vector
(k0i ) at the mid-plane of the P-FGM shell panel can be

expressed as

k0 ¼
X9
i¼1

Nik
T
0i

½u0 v0 w0 hx hy u�0 v�0 h�x h�y�T

¼
X9
i¼1

Ni½u0i v0i w0i hxi hyi u�0i v�0i h�xi h�yi �
T

8>>>>>>><
>>>>>>>:

ð9Þ

where Ni is the shape functions of any ith node and the details

of the shape function can be seen in Ref.52.

2.6. Governing equations

The total strain energy of the P-FGM spherical shell panel can
be written as

U ¼ 1

2

ZZ þh=2

�h=2

eTQedz

 !
dxdy

¼ 1

2

ZZ
A

�eT1D1�el þ �eTl D2�enl þ �eTnlD3�el þ �eTnlD4�enl
� �

dxdy

¼ 1

2

ZZ
A

kT0B
TD1Bk0 þ kT0B

TD2AGk0
�

þkT0G
TATD3Bk0 þ kT0G

TATD4AGk0
�
dxdy

ð10Þ

where D1 ¼
Rþh=2

�h=2
TT

1
�QTldz, D2 ¼

Rþh=2

�h=2
TT

1
�QTnldz, D3 ¼Rþh=2

�h=2
TT

nl
�QTldz, and D4 ¼

Rþh=2

�h=2
TT

nl
�QTnldz: B and G are the

multiplied form of the differential operator matrix and the
shape function matrices for the linear and the nonlinear strain
vectors, respectively. However, A is the function of displace-
ments associated with the nonlinear strains and the details of

the matrix can be seen in Ref.43.
The total external work done on the P-FGM spherical shell

panel due to the transverse mechanical load (q) and tempera-

ture rise (DT) is expressed as

W ¼
ZZ

kT0 q dxdyþ
ZZ

eTQeth
� �

dxdy ¼ kT0 fme þ kT0 fth ð11Þ

where afme ¼
RR

q dxdy nd fth ¼
RR Rþh=2

�h=2
BTTTQethdz

� �
dxdy

are the mechanical and thermal load vectors, respectively.
The equilibrium equation for the nonlinear bending analy-

sis of the P-FGM spherical shell panel is obtained using the
variational principle and expressed as

dP ¼ dU� dW ¼ 0 ð12Þ
where P and d denote the total potential energy function and
the variational symbol, respectively.

The final form of the equilibrium equation is derived by

substituting Eqs. (10) and (11) in Eq. (12) as

ðKl þ KnlÞk ¼ Fme þ Fth ð13Þ
where k,Kl,Knl, Fme and Fth are the system displacement vector,
the linear stiffness matrix, the nonlinear stiffness matrix, the

mechanical and thermal load vectors, respectively. Here, the
system nonlinear stiffness matrix Knl ¼ Knl1 þ Knl2 þ Knl3ð Þ is
associated with linear and nonlinear coupled stiffness matrices,

say, Knl1; Knl2 and Knl3; respectively. The detailed steps of evalu-
ation of nonlinear stiffness matrix can also be seen in Ref.53.

Now the final governing equation, Eq. (13) is solved using
Picard’s iterative method54 through a homemade finite element

computer code developed in MATLAB environment to obtain
the desired nonlinear responses of the P-FGM spherical shell
panel. At first step, the linear static response of the P-FGM

shell panel is obtained by dropping the appropriate nonlinear
terms from the final governing equation. Now, the initial static
response will be used as the first input for computation of the

nonlinear response with respect to the load parameters. The
nonlinear responses will be updated till the two successive
response values achieve the desired convergence criteria

(�10�3).
3. Results and discussion

In this study, the linear and the nonlinear deformation beha-
viour of the P-FGM shallow spherical shell panel is examined
under combined action of thermomechanical load using the
temperature-dependent constituent properties. The desired

responses are computed using the homemade finite element
computer code developed in MATLAB environment in accor-
dance with the developed nonlinear mathematical formulation.

The P-FGM constituent materials are assumed to be
temperature-dependent and the variation temperature coeffi-
cients for the each property are presented in Table 1. If not sta-

ted otherwise, the solutions are computed using different sets
of support conditions in the combination of clamped (C),
simply-supported (S) and free (F) supports to avoid rigid body

motion and to reduce the number of unknowns. The restricted
fields of variables at the panel edges are given as

At x ¼ 0; a ðmovableÞ
Simply-supported ðSÞ : v0 ¼ w0 ¼ hy ¼ v�0 ¼ h�y ¼ 0:



Table 1 Temperature coefficients of FGM constituents.45

Material Property n0 n-1 n1 n2 n3

SUS304 E (Pa) 2.0104 � 1011 0 3.0790 � 10�4 �6.5340 � 10�7 0

t 0.3262 0 �2.00 � 10�4 3.80 � 10�7 0

a (K�1) 1.2330 � 10�5 0 8.0860 � 10�4 0 0

Si3N4 E (Pa) 3.4843 � 1011 0 �3.0700 � 10�4 2.1600 � 10�7 �8.9460 � 10�11

t 0.24 0 0 0 0

a (K�1) 5.8723 � 10�6 0 9.0950 � 10�4 0 0

Fig. 2 Convergence of a clamped P-FGM spherical shell panel

under thermomechanical loading.

Table 2 Comparison of non-dimensional central deflection of

FG flat panel.

Support

condition

Power-law

index (n)

Non-dimensional central deflection

Q= 20 Q = 40 Q= 60 Q= 80

CFCF 0.2 Present 0.4734 0.9476 1.4226 1.8991

Ref.29

*
0.4840 1.0090 1.5070 2.0720

2.0 Present 0.5769 1.1557 1.7363 2.3197

Ref.29 0.5250 1.1430 1.7490 2.3950

CCCC 0.2 Present 0.2358 0.4716 0.7065 0.9401

Ref.29 0.2470 0.4570 0.6450 0.7980

2.0 Present 0.2873 0.5748 0.8607 1.1444

Ref.29 0.2770 0.5190 0.7330 0.8850

CSCF 0.2 Present 0.4115 0.8186 1.2199 1.6137

Ref.29 0.4180 0.8350 1.2260 1.5620

2.0 Present 0.5025 0.9964 1.4801 1.9510

Ref.29 0.4580 0.9570 1.3880 1.7780

Note: �Data are taken from Fig. 4(a) in Ref.29.

Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel 177
Clamped ðCÞ : u0 ¼ v0 ¼ w0 ¼ hx ¼ hy ¼ u�0 ¼ v�0 ¼ h�x ¼ h�y ¼ 0:

At y ¼ 0; b ðmovableÞ
Simply-supported ðSÞ : u0 ¼ w0 ¼ hx ¼ u�0 ¼ h�x ¼ 0:

Clamped ðCÞ : u0 ¼ v0 ¼ w0 ¼ hx ¼ hy ¼ u�0 ¼ v�0 ¼ h�x ¼ h�y ¼ 0:

The non-dimensional forms of the central deflection

(�w ¼ w=h), the load parameter (Q ¼ qa4=E0h
4) and the axial

stress (�rxx ¼ rxxa
4=E0h

4) parameters are presented throughout
the analysis if not stated otherwise. In each formula, E0

denotes the elastic modulus of the metal at ambient tempera-

ture and rxx is the axial stress value at ða=2; b=2; 0Þ:
After the convergence and validation check, the developed

nonlinear model has been extended for the additional numeri-

cal experimentations to show the effect of different parameters
(the power-law indices, n, the curvature ratios R/a, the thick-
ness ratios a/h, and the aspect ratios a/b) on the linear and

nonlinear deformation behaviour of the P-FGM shallow
spherical shell panel.

3.1. Convergence and validation

As discussed earlier, the convergence behaviour of the pro-
posed nonlinear finite element model is examined for a
clamped P-FGM spherical shell panel (R/a = 50, a/h = 10)

under thremomechanical load (DT= 0, 300 K and
Q= 100). The linear and the nonlinear central deflection
parameters are computed for different mesh sizes and pre-

sented in Fig. 2. It is clearly understood from the figure that
the responses converge well with mesh refinement and a
5 � 5 mesh is sufficient to compute the desired responses

further.
The present nonlinear model has been extended now for the

comparison purpose by solving the example the same as that in
Ref.29. For the computational purpose, a square FG (SUS304/

Si3N4) flat panel (a/h= 10) under combined thermomechani-
cal load is analysed for three different support conditions
(CFCF, CSCF, CCCC) and two power-law indices (n = 0.2,

2.0) (see Table 2). In particular, the support conditions are
taken the same as that in Ref.29 where movable and immovable
in-plane support conditions are considered in the x- and y-

directions, respectively. The present results show good agree-
ment with those in Ref.29 for each case of the support condi-
tions. It is also interesting to note that the differences are

higher for the clamped support and higher load parameters.
The difference between the results indicates the importance
of the HSDT kinematics with Green-Lagrange nonlinearity
including all the nonlinear higher-order terms instead of von
Karman nonlinearity and HSDT kinematics as adopted in
the reference.

3.2. Numerical results

Now, the present nonlinear model is extended further to com-
pute the nonlinear responses of the P-FGM spherical shell
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panel for different geometrical and material parameters in this
section. The responses are computed for five uniformly dis-
tributed transverse load (Q= 0, 50, 100, 150, 200) parameter

and two different uniform temperature rises (DT = 0, 300 K)
throughout the analysis.

The effects of power-law indices on the linear (�wl) and the

nonlinear (�wnl) non-dimensional central deflection parameter
of simply-supported square P-FGM (SUS304/Si3N4) spherical
shell panel (R/a= 5, a/h= 10) under thermomechanical load

are computed and presented in Table 3. It is observed that the
bending responses increase as the power-law indices increase
and the results are within the expected line. It is due to the fact
that the FGM structure becomes metal-rich (n = 1) as the

grading index increases and the overall stiffness of the panel
reduces subsequently. It is also interesting to note that the
panel exhibits higher deformations for combined thermome-

chanical loading case.
Table 4 presents the linear and the nonlinear non-

dimensional bending responses of square simply-supported

P-FGM (SUS304/Si3N4) spherical shell panel (R/a= 100,
n= 2.0) for four thickness ratios (a/h = 10, 20, 50, 100) under
combined thermomechanical load. It is clearly observed from

Table 4 that the linear responses decrease as the thickness
ratios increase for both mechanical and/or combined load.
However, the nonlinear responses follow a non-monotonous
behaviour for higher mechanical load parameter i.e.,
Table 3 Linear and nonlinear non-dimensional central deflection (w

different power-law indices.

DT (K) Q n= 0.2

�wl �wnl

0 0 0 0

50 1.4665 1.3692

100 2.9330 2.4849

150 4.3995 3.3944

200 5.8660 4.1910

300 0 �0.0060 �0.0060

50 1.6897 1.6055

100 3.3855 2.9290

150 5.0812 4.0142

200 6.7769 4.9645

Table 4 Linear and nonlinear non-dimensional central deflection (

different thickness ratios.

DT (K) Q a/h= 10 a/h= 20

�wl �wnl �wl

0 0 0 0 0

50 1.967 1.833 1.883

100 3.281 3.934 3.767

150 5.901 4.434 5.651

200 7.868 5.436 7.534

300 0 �0.010 �0.010 �0.039

50 2.105 1.947 1.986

100 4.220 3.466 4.012

150 6.336 4.684 6.038

200 8.451 5.704 8.064
Q= 200 under the influence of temperature load
(DT = 300 K).

In Table 5, the deformation behaviour of simply-supported

square P-FGM (SUS304/Si3N4) spherical shell panel (n= 2.0,
a/h = 10) under thermomechanical load is examined at differ-
ent curvature ratios (R/a = 10, 20, 50, 1). The linear and the

nonlinear responses increase with the curvature ratios when
the P-FGM shell panel is under the influence of mechanical load
only i.e., DT = 0 K. However, just a reverse trend from the

thickness ratio is observed under the combined action of the
mechanical and the thermal loading (DT = 300 K). This study
indicates that the flat panels are affected considerably due to the
combined action of loading instead of curved panels.

The effect of the aspect ratios (a/b= 1.5, 2.0, 2.5) on the
linear and nonlinear static responses of simply-supported
P-FGM (SUS304/Si3N4) spherical shell (n = 2.0, a/h= 10,

R/a = 5) panel under combined thermomechanical load is
examined and presented in Table 6. It is observed that the lin-
ear and nonlinear responses are decreasing as the aspect ratios

increase. It is also interesting to note that the P-FGM spherical
shell panel exhibits softening type nonlinearity under the influ-
ence of the thermal load.

In any deformation study, the axial stress plays an impor-
tant role in design and analysis. The non-dimensional axial
stress at the centre of the P-FGM shell (R/a = 5, a/h = 10)
panel is computed from different load parameters and shown
�l and �wnl) of simply-supported P-FGM spherical shell panel for

n= 2.0 n= 5.0

�wl �wnl �wl �wnl

0 0 0 0

1.7656 1.6184 1.8586 1.6946

3.5311 2.8876 3.7173 3.0115

5.2967 3.9054 5.5759 4.0631

7.0623 4.7457 7.4345 4.9514

�0.0038 �0.0038 �0.0070 �0.0070

2.0579 1.9181 2.1642 2.0077

4.1196 3.4313 4.3358 3.5799

6.1813 4.6368 6.5074 4.8463

8.2430 5.6843 8.6790 5.9137

�wl and �wnl) of simply-supported P-FGM spherical shell panel at

a/h= 50 a/h = 100

�wnl �wl �wnl �wl �wnl

0 0 0 0 0

1.791 1.849 1.768 1.834 1.753

3.282 3.699 3.261 3.668 3.224

4.555 5.549 4.554 5.502 4.491

5.644 7.398 5.714 7.336 5.625

�0.039 �0.192 �0.192 �0.405 �0.401

1.881 1.796 1.726 1.566 1.536

3.457 3.785 3.341 3.539 3.207

4.797 5.775 4.724 5.511 4.612

5.931 7.764 5.959 7.484 5.855



Table 5 Linear and nonlinear non-dimensional central deflection (�wl and �wnl) of simply-supported P-FGM spherical shell panel at

different curvature ratios.

DT (K) Q R/a= 10 R/a= 20 R/a = 50 R/a=1
�wl �wnl �wl �wnl �wl �wnl �wl �wnl

0 0 0 0 0 0 0 0 0 0

50 1.913 1.785 1.953 1.821 1.965 1.831 1.967 1.833

100 3.826 3.195 3.907 3.259 3.930 3.276 3.934 3.280

150 5.739 4.319 5.860 4.403 5.895 4.426 5.901 4.434

200 7.652 5.291 7.814 5.394 7.860 5.423 7.868 5.435

300 0 �0.030 �0.047 �0.009 �0.012 0.002 0.002 0.011 0.011

50 2.027 2.425 2.091 2.227 2.116 2.074 2.126 1.964

100 4.084 3.979 4.192 3.792 4.229 3.621 4.242 3.479

150 6.142 5.155 6.293 5.013 6.342 4.833 6.357 4.694

200 8.199 6.165 8.394 6.064 8.456 5.874 8.473 5.712

Table 6 Effect of aspect ratio on linear and nonlinear non-dimensional central deflection (�wl and �wnl) of simply-supported P-FGM

spherical shell panel.

DT (K) Q a/b= 1.5 a/b= 2.0 a/b= 2.5

�wl �wnl �wl �wnl �wl �wnl

0 0 0 0 0 0 0 0

50 0.7287 0.7166 0.3223 0.3213 0.1589 0.1588

100 1.4575 1.3887 0.6446 0.6385 0.3178 0.3172

150 2.1862 2.0043 0.9669 0.9495 0.4768 0.4749

200 2.9149 2.5684 1.2893 1.2528 0.6357 0.6317

300 0 �0.0332 �0.0567 �0.0166 �0.0220 �0.0090 �0.0106

50 0.7506 1.0795 0.3300 0.4220 0.1619 0.1890

100 1.5343 1.9413 0.6767 0.8380 0.3329 0.3853

150 2.3181 2.6546 1.0234 1.2276 0.5038 0.5781

200 3.1019 3.2749 1.3701 1.5928 0.6747 0.7675
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in Fig. 3. It is clearly observed that the panel shows non-zero
positive axial stress values under thermal load (Q = 0,

DT = 300 K) only; however, the axial stress parameters
decrease with the increase in power-law indices as seen in the
Fig. 3(a). It is also understood that the axial stress parameter

is higher for the shell panel with smaller aspect ratio as shown
in Fig. 3(b). In addition, significant differences can also be
observed between the axial stress values for the panel under
Fig. 3 Non-dimensional axial stress of simply-supported P-FGM

power-law indices and aspect ratios.
only mechanical load and the combined thermomechanical
load as well.

The influence of various support conditions (CCCC, SSSS,
SFSF and CFCF) on the non-dimensional central deflections
of square P-FGM (SUS304/Si3N4) spherical shell panel

(n= 2.0, a/h = 20, R/a= 50) is analysed under combined
thermomechanical load in this example and presented in
Table 7. The deflection parameters show maximum and mini-
spherical shell panel under thermomechanical load for different
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mum for the SFSF and the CCCC support conditions, respec-
tively. The spherical shell panel is showing hardening type of
nonlinear behaviour under two support conditions i.e.,

clamped and simply-supported case, whereas the panel follows
softening type of nonlinearity for other support conditions
(SFSF and CFCF). In order to show the effect of support con-

ditions and the combined loading effect on the deformation
behaviour few deformed shapes are presented in Fig. 4. For
the computational purpose, the P-FGM (R/a= 5, a/h= 10,

n= 2.0) spherical shell panel is analysed under uniformly dis-
tributed transverse mechanical load parameter, Q = 100 by
setting the temperature increments, DT = 0, 300 K for two
support conditions (CCCC and SSSS). It is clearly observed
Table 7 Effect of different support conditions on linear and nonli

spherical shell panel.

DT (K) Q SSSS CCCC

�wl �wnl �wl

0 0 0 0 0

50 1.882 1.790 0.568

100 3.764 3.281 1.135

150 5.646 4.554 1.703

200 7.528 5.643 2.271

300 0 �0.033 �0.033 0.017

50 1.991 1.886 0.628

100 4.015 3.460 1.238

150 6.039 4.800 1.849

200 8.063 5.934 2.460

Fig. 4 Deformed shape of P-FGM spherical shell
that the simply-supported shell panel shows higher deforma-
tions under combined thermomechanical load.

Tables 8 and 9 show the linear and the nonlinear responses

of three different simply-supported P-FGM (SUS304/Si3N4)
shell panels (Ry/Rx = 0.50, 0.75, 1.50) for the different values
of power-law indices (n = 0.2, 2.0, 5.0) and the aspect ratios

(a/b = 1.5, 2.0, 2.5), respectively using the parameters as
R/a = 5 and a/h = 10. The FG shell panel bending responses
are computed for five mechanical loads (Q= 0, 50, 100, 150,

200) by setting the thermal load, DT = 300 K. It is clearly
observed that the linear and the nonlinear responses increase
with the power-law indices and decrease with the aspect ratios,
irrespective of the shell configurations. It is also noted that the
near non-dimensional central deflection ( �wl and �wnl) of P-FGM

SFSF CFCF

�wnl �wl �wnl �wl �wnl

0 0 0 0 0

0.567 6.379 6.400 1.162 1.162

1.132 12.759 12.862 2.325 2.327

1.694 19.139 19.346 3.488 3.495

2.249 25.519 25.811 4.651 4.670

0.017 0.0625 0.062 0.003 0.003

0.627 6.923 6.932 1.254 1.255

1.235 13.784 13.874 2.505 2.509

1.838 20.645 20.843 3.755 3.768

2.434 27.506 27.808 5.006 5.035

panel under thermomechanical load (Q = 100).



Table 8 Linear and nonlinear non-dimensional central deflection (�wl and �wnl) of simply-supported P-FGM shell panels for different

power-law indices.

Shell configuration Q n= 0.2 n= 2.0 n= 5.0

�wl �wnl �wl �wnl �wl �wnl

Ry/Rx = 0.50 0 0.0851 0.0461 0.1136 0.1136 0.1253 0.1253

50 1.4622 0.8288 1.7974 0.9005 1.9101 0.9261

100 2.8393 1.5638 3.4812 1.7254 3.6948 1.7796

150 4.2164 2.1832 5.165 2.4236 5.4796 2.5034

200 5.5936 2.7045 6.8488 3.0004 7.2644 3.1037

Ry/Rx = 0.75 0 0.0635 0.0392 0.0834 0.045 0.0927 0.0484

50 1.5642 1.0022 1.9143 1.1001 2.0284 1.136

100 3.0649 1.9296 3.7451 2.1451 3.9642 2.2152

150 4.5655 2.742 5.576 3.0591 5.8999 3.1743

200 6.0662 3.4583 7.4068 3.8558 7.8356 4.0010

Ry/Rx = 1.50 0 0.0369 0.0276 0.0464 0.0318 0.0531 0.0355

50 1.6474 1.2365 2.0074 1.3903 2.1218 1.4376

100 3.2578 2.3517 3.9684 2.6564 4.1906 2.7499

150 4.8682 3.3233 5.9293 3.7523 6.2594 3.8832

200 6.4787 4.201 7.8903 4.7268 8.3282 4.8946

Table 9 Linear and nonlinear non-dimensional central deflection (�wl and �wnl) of simply-supported P-FGM shell panels at different

aspect ratios.

Shell configuration Q a/b= 1.5 a/b = 2.0 a/b= 2.5

�wl �wnl �wl �wnl �wl �wnl

Ry/Rx = 0.50 0 0.0578 0.0321 0.0278 0.0187 0.0144 0.0111

50 0.8223 0.4877 0.3733 0.2578 0.1856 0.1438

100 1.5868 0.9704 0.7188 0.5082 0.3568 0.2795

150 2.3512 1.4621 1.0643 0.7655 0.5280 0.4175

200 3.1157 1.9367 1.4098 1.0191 0.6992 0.5574

Ry/Rx = 0.75 0 0.0415 0.0269 0.0203 0.0154 0.0108 0.0090

50 0.8191 0.5519 0.3665 0.2792 0.1818 0.1522

100 1.5967 1.0889 0.7128 0.5498 0.3527 0.2969

150 2.3742 1.6273 1.0590 0.8236 0.5237 0.4426

200 3.1518 2.1475 1.4052 1.0979 0.6947 0.5890

Ry/Rx = 1.50 0 0.0247 0.0192 0.0129 0.0111 0.0072 0.0065

50 0.8145 0.6435 0.3601 0.3106 0.1781 0.1621

100 1.6042 1.2537 0.7073 0.6104 0.3490 0.3179

150 2.3939 1.8416 1.0545 0.9083 0.5200 0.4694

200 3.1837 2.4145 1.4017 1.2025 0.6909 0.6292
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deflection parameters are higher for larger values of Ry/Rx

except few linear cases as in Table 9.
4. Conclusions

The linear and nonlinear bending responses of the P-FGM

spherical shell panel are investigated under thermomechanical
load. This is the first time a general nonlinear mathematical P-
FGM shell panel model is developed in the framework of the

HSDT and Green-Lagrange geometrical nonlinearity includ-
ing all the nonlinear higher-order term to achieve the general-
ity. Based on the comprehensive parametric study, the

following concluding points are drawn.
(1) The deflection parameters are higher and lower in metal-
rich and ceramic-rich P-FGM shallow spherical shell
panel, respectively.

(2) The deflection parameters reduce with the increase in

aspect ratios and number of support constraints.
(3) The P-FGM shallow spherical shell panel exhibits max-

imum deflection under combined loading conditions.

(4) It is observed that as the thickness ratio increases the lin-
ear deflection parameters decrease whereas a mixed type
of behaviour is found in nonlinear cases.

(5) With the increase in curvature ratio, the deflection
parameters increase under mechanical load, however
a reverse trend is found in case of thermomechanical

load.
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