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Abstract

In this paper, starting from �lters which are a natural generalization of intersection �lters
(Barendregt et al., J. Symbolic Logic 48 (1983) 931–940), the existence of �lter models and
�lter semimodels for the �-calculus is investigated. The construction of �lters is based on a
Z-semilattice of types in which the subsets having in�mum are given by a collection Z, called
subset system. The set of representable functions is characterized in the obtained domain. In
the case where the properties of the subset system Z guarantee the existence of a �lter model,
the proof of soundness and completeness of the associated natural Z-type assignment system is
routine. c© 2000 Elsevier Science B.V. All rights reserved.
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0. Introduction

Curry’s system [9] for type inference of untyped �-terms is one of the simplest sys-
tems to describe functional behaviour of �-terms. Curry’s original theory uses, besides
type variables, the type constructor → to form types like �→ �. They are intended to
describe the behaviour of �-terms which map elements of � to elements of �. Curry’s
system however, is not completely satisfying from a semantical point of view: it is not
complete with respect to any immediately obvious semantics. In fact, the set of types
of a �-term is not closed under �-conversion, unless the (Eq�)-rule is added to the
system. Moreover, some �-terms which are meaningful as functional programs are not
typable.
For these reasons some extensions to Curry’s system have been introduced. Among

these extensions, one widely studied is the intersection type system [2, 4, 6, 13],
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introduced to describe the functional behaviour of solvable �-terms. In this system the
Curry types have been enhanced by introducing a constant (denoted by T in the present
paper) as a universal type, the new type constructor ∧, called intersection, and a type
inclusion relation 6. A type of the form � ∧ � is the type of �-terms having both
the type � and the type �. This system enjoys some nice properties: the (Eq�)-rule is
admissible, and the two classes of solvable and normalizing �-terms are characterized.
More interesting, from the point of view of the present work, is the fact that the set of
types that can be assigned to a �-term is closed under ∧ and 6, so it turns out to be a
�lter. This fact allows the ∧-�lter model to be built, a �-model in which the interpreta-
tion of a �-term is given by the set of types that can be assigned to it. The construction
of this model is explicitly done in [2]. In [5] the approach is more semantical, in the
sense that two functions F and G (for application and abstraction [1]) are de�ned and
used to interpret �-terms. Also in this latter approach the interpretation of a �-term is
the �lter of the types derivable for it. The minimal type inclusion relation 6 can be
parameterized by an arbitrary relation �⊆T× T (T is the set of types) to obtain the
type theory T�= 〈T;6�〉, where 6� is the minimal inclusion relation containing �.
In [7] it is proved that the type theory T� yields a �lter model if and only if the
(Eq�)-rule is admissible. This parameterization is also used in [5] to study the class of
the functions representable over the �lter domains and to characterize the properties of
6� giving �lter domains in which all continuous functions are representable.
Other extensions of Curry’s types have been proposed in the literature: �rstly poly-

morphic types (∀-types) [12, 22] in which the universal quanti�er ∀ allows types such
as ∀’:� to be constructed. The type ∀’:� describes �-terms having the types �[’ := �]
for all types �. More recently, polymorphic-intersection types (∀∧-types) [15], con-
structed by using both ∧ and ∀ type constructors, and in�nite-intersection types (!-
types) [17], where countable intersection is allowed, have been proposed. An interesting
open problem is if it is possible to generalize �lter models for these type systems. A
partial answer to this question is given in [15], in which a �lter model for ∀∧-types is
de�ned; unfortunately this model cannot be made the basis of a completeness proof.
The aim of the present paper is to introduce a unifying setting in which a generic

type theory can be embedded and the conditions leading to �lter �-models can be
found.
As the order relation of type inclusion is essential for the de�nition of �lter, the

sets of types considered here are not given in a constructive way. Instead of exhibiting
a formal language describing types, in this paper the set of types is any partial order
having a largest element and closed for arrow type construction; the sets of types
having an in�mum are explicitly given by a collection Z of subsets of types, called
subset system.
In Section 1, the Z-type theory and the related Z-�lters are de�ned; for each choice

of the subset system Z, a particular type theory is obtained. The conditions under
which the subset system makes the construction of a �lter �-model possible are given.
Soundness and completeness of the Z-type assignment, induced by the Z-type theory,
are proved in Section 2.
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Section 3 is devoted to characterizing, with respect to continuity, the set of functions
representable in the Z-�lter domain.
Section 4, �nally, analyzes some well-known type theories, in terms of Z-type the-

ories.

1. Z-Filter models

The de�nitions of �-model and �-semi-model used in the present paper are essentially
the ones of [15, 20] and [8]. The starting point is a monotonic applicative structure
〈D; •〉, where D is a poset (a set partially ordered by a binary relation 6) having at
least two elements and • is a binary monotonic operation of application. The set of
functions from D to D is ordered pointwise (i.e. f v g if for all d∈D f(d)6g(d)).

De�nition 1.1. (i) (D→D)M denotes the set of monotonic functions from D to D,
i.e.: (D→D)M = {f : D → D | ∀d∈D ∀e∈D [d6e ⇒ f(d)6f(e)]}.
(ii) (D→D)R denotes the set of functions representable over 〈D; •〉, i.e.: (D→D)R =

{f :D→D | ∃d∈D [∀e∈D [d • e=f(e)]]}.

Notice that, owing to the monotonicity of application, one has: (D→D)R ⊆
(D→D)M.
Let � be the set of �-terms. An environment � is a valuation of �-term variables in

D; the set of all environments is denoted by Env. Also environments are considered
pointwise ordered, so � v �′ means that for all variables x : �(x)6�′(x).
The choice of two monotonic functions F :D→ (D→D) and G : (D→D)→D,

where (D→D) is some collection of monotonic functions from D to D, allows a map-
ping < − =(−) :�→ (Env→D) to be de�ned. When the choice of the subset (D→D)
assures that the function < − =(−) is a total function, an interpretation for every �-term
is obtained.
In the sequel e∈D. P[e] denotes the function that associates with an element a of

D, the value P[e := a].

De�nition 1.2. Let M= 〈D; F; G〉 be a tuple where D is a poset, F and G two mono-
tonic functions F :D→ (D→D), G : (D→D)→D.
(i) The function < − =M(−) : � → (Env→D) is de�ned as follows:

1. <x=M� = �(x),
2. <M1M2=M� =F(<M1=M� )(<M2=M� ),
3. <�x :M =M� =G( e∈D: <M =M�[x := e]).

(ii) M= 〈D; F; G〉 is an ordered interpretation of � if <− =M(−) is a total function, i.e.
for all environments � and all �-terms M , e∈D: <M =M�[x := e] ∈ (D→D).

(iii) An ordered interpretation is a �-semi-model if F ◦G v id(D→D); it is a �-model if
F ◦ G= id(D→D).
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The following Lemma states some useful properties of the function < − =M(−).

Lemma 1.3. In any ordered interpretation the following hold:
(i) if �(x)= �′(x) for all x∈FV (M); then <M =M� = <M =M�′
(ii) if y =∈ FV (M); then <�x :M =M� = <�y :M [x :=y]=M�
(iii) <M [x :=N ]=M� = <M =M�[x := <N =M� ]
(iv) <M =M� is monotonic in �.

Proof. By structural induction on M (see [20]).

Lemma 1.3 allows it to be pointed out that �-semimodels model �-reduction, in
the sense that if M →� N , then <M =M� 6<N =M� , for all �, and that �-models model
�-conversion.
An interesting class of models is that of �lter models, introduced in [2, 5]. Filter

models are based on a type theory which is essentially a lower semilattice 〈X;6〉
with a largest element, and elements �→ � when � and � are in X ; the in�mum for
a �nite subset {�1; �2; : : : ; �n} of X is denoted by �1 ∧ �2 ∧ · · · ∧ �n. With this type
theory it is possible to associate an algebraic complete lattice consisting of all �lters
over X , partially ordered by set inclusion. In [5, 21] �lter domains which are models
of �-calculus are characterized. The goal of this paper is to generalize this construction
to obtain �-models, starting from a new type theory, that is again a poset 〈X;6〉 with
largest element T and elements �→ � for every � and � in X , but the subsets of
X having in�mum are given, in a parametrized way, as a collection Z. In this way a
general framework is obtained, in which di�erent type theories can be embedded. In the
sequel the concept of subset system, inspired by that one de�ned in [3, 24], is used to
de�ne a generalized notion of type theory and of �lter. The �-calculus notations of [1]
are used. The set theory framework supposed is the classical ZFC (Zermelo–Fraenkel
set theory with the axiom of choice).

De�nition 1.4. A subset system on a set S is any collection Z of its subsets such that
for every s∈ S, the singleton {s}∈Z; the elements of Z are called Z-sets of S.

Given a set S, the set of non-empty subsets, the set of �nite, non-empty subsets,
and the set of countable, non-empty subsets are examples of subset systems on S,
extensively used in the literature.
If S is clear from the context, the expression “R is a Z-set” instead of “R is a Z-set

of S” is used.

De�nition 1.5. Let 〈P;6〉 be a poset and Z a subset system on P; 〈P;6;Z〉 is a
Z-semilattice if:
(a) R∈Z implies that R has an in�mum p in P :p=lR.
(b) if R∈Z and every r ∈R is the in�mum of some Z-set V (r), i.e. r=lV (r), then⋃{V (r) | r ∈R}∈Z .



I. Margaria, M. Zacchi / Theoretical Computer Science 238 (2000) 363–387 367

Owing to condition (b) of De�nition 1.5 and to the properties of in�mum, for the
operator l a kind of associativity holds; in fact, if R is a Z-set of P such that every
r ∈R is the in�mum of some Z-set V (r), then lR=l

⋃{V (r) | r ∈R}.
Structures we are interested in are exactly those sets of types that are Z-semilattices

with respect to a partial order relation and a subset system Z.
In this study the attention is focussed to the order relation between types, instead of

to the way in which types are formed. → is the only constructor explicitly requested.

De�nition 1.6. A Z-type theory TZ is a structure 〈T;6;Z;T; →〉, where 〈T;6;Z〉 is
a Z-semilattice having T as largest element and → is a binary function on T, satisfying
the following condition:
(1) l{�→ � | � → �∈R}6� 6= T implies �=l{�→ � | �→ �∈K} and for every �

→ � of K there is a nonempty set S ⊂R such that:
−{� | � → �∈ S} and {� | � → �∈ S} are Z-sets and
−�6l{� | � → �∈ S}; l{� | � → �∈ S}6�.

Condition (1) of De�nition 1.6, that generalizes Condition C3 of [5] and Condition
B of [21], plays an essential role in the construction of the �-semimodel, as it will be
clear in the proof of Lemma 1.12. It imposes quite strong constraints on relationships
between the partial order on T and functional types. By functional types one means
those elements of T that are either arrow-types (i.e. types obtained by the application
of the binary function →) or types equal to the in�mum of a Z-set of arrow-types.
Firstly, Condition (1) says that every type � greater than or equal to a funtional
type l{� → � | � → �∈R} must be a functional type too, i.e. �=l{�→ � | �→ �∈K}.
Moreover, it requires that the left and right sides of any element of K are related in
the partial order relation to the left and right sides of elements of R. One can note
that this relation in the simple case of arrow-types, looks as a kind of converse of the
usual contravariant rule on → (if �6� and �6�, then � → �6�→ �).
In the sequel �¿� is sometimes used for �6�.

De�nition 1.7. (i) A Z-�lter on the Z-type theory TZ is any subset d⊆T such that
−T∈d;
−if �∈d and �6�, then �∈d;
− for every S ∈Z if S ⊆d, then �=lS ∈d.
(ii) If A⊆T; ↑ A is the minimal Z-�lter on TZ that includes A.
(iii) FZ is the set of Z-�lters on TZ.

In the sequel the abbreviation ↑� for ↑{�} is used.

Lemma 1.8. (i) �∈↑� if and only if �6�.
(ii) A⊆d implies ↑ A⊆d.

Proof. Obvious by the de�nition of Z-�lters.
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According to the de�nition of �lters it immediately follows that if A= ∅, then
↑A= ↑ T and if �6�, then ↑�⊆ ↑�.
Lemma 1.8 gives two properties of �lters. In particular (ii) provides a useful proof

tool; in fact to prove ↑A= ↑B it is su�cient to show A⊆ ↑B and B⊆ ↑A.
The following lemma gives some insights on the structure of the set of �lters.

Lemma 1.9. In 〈FZ; ⊆〉 the following hold:
(i) ↑ T and T are the minimal and maximal elements; respectively.
(ii) For X ⊆FZ;

⊔
X = ↑ ∪ X and lX = ∩ X; hence 〈FZ; ⊆〉 is a complete lat-

tice.

Proof. Obvious.

The set of �lters FZ is turned into an applicative structure by de�ning an application
• between Z-�lters.

De�nition 1.10. For d1; d2 ∈FZ we de�ne the application • as:
d1 • d2= ↑ {{�∈T | ∃�∈d2 and � → �∈d1}.

It is easy to prove that the application is monotonic in both the arguments.

De�nition 1.11. (i) Let F :FZ→ (FZ→FZ)M and G : (FZ→FZ)M→FZ be two func-
tions de�ned as usual [5]:

F(d)= �e :d • e; G(f)= ↑ {� → � | �∈f(↑ �)}:
(ii) Let N= 〈FZ;F;G〉.

F and G are monotonic functions. The following Lemma shows that F ◦ G v
id(FZ →FZ)M proving in this way that, whatever the choice of the subset system Z
may be, the collection of monotonic functions on FZ gives rise to a �-semimodel.
Note that the proof of this lemma is founded on Condition 1 of De�nition 1.6, indeed
it assures that if �→ �∈G(f), then �∈f(↑ �), for every monotonic function f.
To obtain a �-model one needs some more conditions on the subset system Z. The

conditions of De�nition 1.14 are proved to be su�cient to this goal.

Lemma 1.12. (i) e<M =N�[x := e] ∈ (FZ → FZ)M.
(ii) Let f∈ (FZ → FZ)M. If � 6= T∈G(f); then there exists a Z-set H ⊆{� → � | �

∈f(↑ �)} such that � =lH .
(iii) F ◦G v id(FZ→FZ)M .

Proof. (i) By Lemma 1.3(iv).
(ii) By induction on the de�nition of �lters. The case �∈{� → � | �∈f(↑ �)} is

trivial. For the case � = lR use Condition (b) of De�nition 1.5. The case �¿� is
still to be considered. By induction �= lK , K ⊆{� → � | �∈f(↑ �)}, hence lK6�.
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By Condition (1) of De�nition 1.6, �=l{�→ � | �→ �∈R} and for every �→ �∈R
there is a non-empty set S ⊆K such that:
– {� | �→ �∈ S} and {� | �→ �∈ S} are Z-sets,
– �6l{� | �→ �∈ S}; l{� | �→ �∈ S}6�.
For every �→ � of S, the fact that �∈f( ↑ �) implies �∈f(↑ l{� | �→ �∈ S}), since
↑ �⊆ ↑l{� | �→ �∈ S} and f is monotonic. So l{� | �→ �∈ S}∈f{↑ l{� | �→ �
∈ S}) and for every �→ �∈R : �∈f(↑ l{� | �→ �∈ S})⊆f(↑ �), hence

R⊆{�→ � | �∈f(↑�)}:
(iii) One must prove that (F ◦ G)(f)(e)⊂f(e), i.e. that ↑{�→ � | �∈f(↑�)}

• e⊆f(e). By Lemma 1.8(ii) it is su�cient to prove that for any element � such
that there is an element �∈ e with �→ �∈ ↑ {�→ � | �∈f(↑ �)}, one has �∈f(e).
�→ �∈↑{�→ � | �∈f(↑�)} implies that there is a Z-set K such that �→ �=l{�→
� | �→ �∈K} and �∈f(↑�)} by (ii). By Condition (1) of De�nition 1.6, there ex-
ists a Z-set H ⊆K such that �6l{� | �→ �∈H} and l{� | �→ �∈H}6�. For all
�→ �∈H : �∈f(↑ �). By monotonicity of f :f(↑ �)⊆f(↑ l{� | �→ �∈H})⊆f(e),
so l{� | �→ �∈H}∈f(e) and �∈f(e).

By restricting the functions F and G of De�nition 1.11 to the subset of representable
functions: FR and GR, the expected well behaviour is obtained, in the sense that (FR ◦
GR)(f) = f.

Lemma 1.13. Let FR :FZ→ (FZ→FZ)R and GR : (FZ→FZ)R→FZ be the re-
strictions of F and G; respectively; to the set of functions representable in FZ. Then
FR ◦GR = id(FZ →FZ)R .

Proof. Because of Lemma 1.12(iii) and the fact that (FZ→FZ)R ⊆(FZ→FZ)M, it is
su�cient to prove: �∈f(e) implies �∈ (FR ◦GR)(f)(e), for any representable function
f. Let d∈FZ be the �lter representing f. By Lemma 1.8(ii), it is su�cient to show
that �∈ (FR ◦GR)(f)(e) for any � such that there is a �∈ e with �→ �∈d.

�→ �∈d⇒ �∈d • ↑ �

⇒ �→ �∈ ↑ {�→ � | �∈d • ↑ �}
⇒ �∈ ↑ {�→ � | �∈f(↑�)} • e (since �∈ e)

⇒ �∈ (FR •GR)(f)(e):

Unfortunately, however, the de�nition of Z-type theory does not guarantee to repre-
sent as many functions as necessary to obtain an ordered interpretation of � (De�nition
1.2(ii)). In the sequel conditions are given, under which the Z-type theory assures that
all the functions e:<M =N�[x := e] are representable.

De�nition 1.14. Let Z be a subset system on a set P.
(i) Z is U -closed if R1; R2 ∈Z implies R1 ∪ R2 ∈Z, i.e. Z is a model of pairing.
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(ii) Z is Z-preserving if for any function f : P → P, S ∈Z implies {f(s) | s∈ S}∈Z,
i.e. Z is a model of replacement.

Notice that the set of �nite, non-empty subsets of a set is both U-closed and Z-
preserving.
In the sequel f(S) is used as short for {f(s) | s∈ S} and UZ-preserving is used for

U-closed and Z-preserving. Moreover, by stretching the de�nition, a Z-type theory is
said UZ-preserving (U-closed, Z-preserving) if its subset system Z is UZ-preserving
(U-closed, Z-preserving).

Lemma 1.15. Let e= ↑{�→ � | �∈ <M =N�[x := ↑�]}.
(i) �→ �∈ e implies �∈ <M =N�[x := ↑�].
(ii) If the subset system Z is Z-preserving; then � 6=T∈ e•d implies that there exists

an element � of d such that �→ �∈ e.
(iii) If the subset system Z is UZ-preserving; then a<M =N�[x := a] ∈ (FZ→FZ)R.

Proof. (i) By Lemma 1.12(i) and (ii).
(ii) By induction on the de�nition of �lters, using (i). The fact that the subset system

Z is Z-preserving is needed in the case �=lR.
(iii) It is su�cient to prove that the function a:<M =N�[x := a] is represented by the �lter

↑ {�→ � | �∈ <M =N�[x := ↑�]}, i.e. that for every d∈FZ : ↑{�→ � | �∈ <M =N�[x := ↑ �]}
• d=( a:<M =N�[x := a])(d).

(⊆) Obvious, by (i), (ii) and Lemma 1.3(iv).
(⊇) The proof is by induction on M .
– M = x or M =y. Obvious.
– M =M1M2. By Lemma 1.8(ii), it is su�cient to prove that for any � such that there
is a �∈ <M2=N�[x := d] and �→ �∈ <M1=N�[x := d], one has �∈↑{�→ � | �∈ <M1M2=N�[x := ↑ �]}
• d.

�∈ <M2=N�[x := d]

⇒ �∈ ↑{�→ � | �∈ <M2=N�[x := ↑ �]} • d (by induction)

⇒ ∃�∈d[�→ �∈↑{�→ � | �∈ <M2=N�[x := ↑ �]}] (by (ii))

⇒ �∈ <M2=N�[x := ↑�] (by (i)):

Analogously one can show that there is an element ∈d such that �→ �∈ <M1=N�[x := ↑].
By the U-closure of the subset system Z, there is a type �=l{; �}, hence, by the
monotonicity property (Lemma 1.3(iv)), one has �∈ <M2=N�[x := ↑�] and �→ �∈
<M1=N�[x := ↑�], so �∈ <M1M2=N�[x := ↑�].

�∈ <M1M2=N�[x := ↑�]

⇒ �→ �∈ ↑{�→ � | �∈ <M1M2=N�[x := ↑ �]}
⇒ �∈ ↑{�→ � | �∈ <M1M2=N�[x := ↑ �]} •d (since �∈d):
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−M = �y :M1 <�y :M1=N�[x := d] = ↑ {� → � | �∈ <M1=N�[x := d;y := ↑�]} by De�nition 1.10. So,
by Lemma 1.8(ii), it is su�cient to prove that {� → � | �∈ <M1=N�[x := d;y := ↑�]}⊆↑{�
→ � | �∈ <�y :M1=N�[x := ↑�]} • d.

�∈ <M1=N�[x := d;y := ↑�]

⇒ �∈↑{ → � | �∈ <M1=N�[x := ↑;y := ↑�]} • d (by induction)

⇒ ∃�∈d[� → �∈↑{ → � | �∈ <M1=N�[x := ↑;y := ↑�]}] (by (ii))

⇒ � ∈ <M1=N�[x := ↑�y := ↑�] (by (i))

⇒ � → �∈ <�y :M1=N�[x := ↑�]

⇒ � → (� → �) ∈↑{� → � | �∈ <�y:M1=N�[x := ↑�]}
⇒ � → � ∈↑{� → � | � ∈ <�y :M1=N�[x := ↑�} • d:

By Lemmas 1.12, 1.13 and 1.15 immediately we have

Theorem 1.16. (i) N= 〈FZ;F;G〉 is a �-semimodel.
(ii) If the Z-type theory is UZ-preserving, then R= 〈FZ;FR ;GR〉 is a �-model.

2. Z-type assignment

Each type theory TZ induces a type assignment for the set �, which can be de�ned
by means of a natural deduction system. As for the ∧-type assignment, the set of
types that can be assigned to each �-term turns out to be a Z-�lter. As a consequence
of this result, one has, on one hand, that the Z-�lter model can be used to prove
completeness of the Z-type assignment, and, on the other hand, that the Z-�lter model
can be syntactically de�ned by means of the Z-type assignment instead of via functions
F and G.
As usual, a statement is an expression of the form M : �, where M (the subject) is

a �-term and � (the predicate) is an element of T. A basis is a set of statements with
only variables as subjects. The subjects in a basis do not need to be distinct. B\x is
used to indicate the basis obtained from B by deleting the statements whose subject
is x.

De�nition 2.1. (i) The Z-type assignment `Z induced by the Z-type theory TZ is
de�ned by the following natural deduction system:

Axioms
(T) `Z M : T (one for any M ∈ ∧)
(Var) B `Z X : � if x : �∈B
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Rules

(→ 1)
B\x ∪ {x : �} `Z M : �
B `Z �x :M : � → �

(→ E)
B1 `Z M : � → �; B2 `Z N : �

B1 ∪ B2 `Z MN : �

(6)
B1 `Z M : �; �6�

B `Z M : �

(Z1)
B� `Z M : � for all � of a Z-set S⋃{B�|�∈ S} `Z M : l S

(ZE)
B `Z M : l S

B `Z M : � for all �∈ S

(ii) A deduction D is a set of statements arranged as a tree according to the de-
ductions rules, whose root is called the end-statement of D and whose leaves are the
premises of D.
(iii) B `Z M : � denotes that M : � is derivable from the basis B; D :B `Z M : �

indicates that D is a deduction showing B `ZM : � : B �M indicates the basis obtained
from B by considering only the statements whose subjects are the variables occurring
free in the term M : B �M = {x : � | x : �∈B and x∈FV (M)}.
The rule (ZE) is redundant, since it is directly derivable from rule (6).
If the Z-sets are in�nite, the (ZI)-rule is an in�nitary rule. To use trans�nite induction

on the structure of deductions with every statement of a deduction D an ordinal number
O(D) is associated as follows:
– 0 is associated with each premise of D;
– the ordinal associated with the conclusion of a rule is greater than all ordinals asso-
ciated with its premises.
The ordinal O(D) is the ordinal associated with the end statement of D.
The usual properties of type assignments can be proved also for the Z-type assign-

ment system.

Lemma 2.2. Let TZ be a Z-type theory.
(i) B\x ∪ {x : �} `Z x : � i� �6�.
(ii) If for all �; � :B\x ∪ {x : �} `Z M : � implies B\x ∪ {x : �} `Z N : �; then for

all � :B `Z �x :M : � imples B `Z �x :N : �.
(iii) B `Z M : � i� B �M `Z M : �.
(iv) If B\x ∪ {x : �} `Z M : � and y 6∈ FV (M); then B\y ∪ {y : �} `Z M [x :=y] : �.
(v) B `Z MN : � 6= T i� �¿lS and for all �∈ S there is a type �(�) such that B `Z

M : �(�) → � and B `Z N : �(�).

Proof. By (possibly trans�nite) induction on the structure of deductions.

Lemma 2.3. B `Z �x :M : � 6= T i� �¿l{� → � | � → �∈ S} and; for all � →
�∈ S :B\x ∪ {x : �} `Z M : �.



I. Margaria, M. Zacchi / Theoretical Computer Science 238 (2000) 363–387 373

Proof. (If) Trivial.
(Only if) By induction on the structure of deduction. The last rule cannot be (→

E ). The cases (→ I) and (6) are trivial; for (ZI) use Condition (b) of De�nition 1.5.

As a consequence of Lemmas 2.2 and 2.3, it is possible to prove the Subject Reduc-
tion Theorem for the Z-type assignment. The proof of this Theorem, however simple,
is here omitted because the completeness result of Theorem 2.12 provides an indirect
proof of the following:

Theorem 2.4 (Subject Reduction Theorem). If M →� N and B `Z M : �; then B `Z
N : �.

In order to obtain the completeness result of the Z-type assignment, the notions of
type interpretation in a model (semimodel) and of semantics satisfability are needed.

De�nition 2.5. (i) Let 〈D; F; G〉 be a �-semimodel or a �-model. A function V : T→
P(D) is a type interpretation in D for 〈T;6〉 i� it satis�es the following conditions:
(1) V(�) is an upper closed non-empty set,
(2) V(T)=D,
(3) V(� → �)⊆{d∈D | ∀e∈V(�)[F(d)(e)∈V(�)]},
(4) V(� → �)⊇{G(f) |f∈ (D → D) and ∀e∈V(�)[f(e)∈V(�)]},
(5) V(lS)=

⋂{V(�) | �∈ S}.

(ii) Let M= 〈D; F; G〉 be a �-semimodel (�-model), � an environment and V a type
interpretation in D.

M; �;V |=M : � i� <M =M� ∈V(�);

M; �;V |= B i� M; �;V |= x : � for all x : �∈B;

M;V; B |=M : � i� for all � :M; �;V |= B implies M; �;V |= M : �:

(iii) A type interpretation V respects 6 i� �6� implies V(�)⊆V(�).

M; B |=6 M : � i� for all V respecting 6 :M;V; B |= M : �

B |=6sm M : � i� for all �-semimodels M :M; B `6 M : �

B |=6 M : � i� for �-models M :M; B |=6 M : �:

De�nition 2.6. (i) `Z is semi-sound i� B `Z M : � implies B |=6sm M : �; `Z is sound
i� B `Z M : � implies B |=6 M : �.
(ii) `Z is semi-complete i� B |=6sm M : � implies B `Z M : �; `Z is complete i�

B |=6 M : � implies B |=Z M : �.
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The upper closed condition on type interpretation interprets the essence of the �-
semimodel de�nition; however, it is a redundant requirement for the soundness proof
of those type assignment systems for which the �-reduction rule

B `Z M : � M →� N
B `Z N : �

is admissible. That is the case in the Z-type assignment system. In fact, in this case
the provability of the Subject Reduction Theorem assures that <M =M� ∈ V(�) implies
<N =M� ∈V(�) if M→� N ; on the other hand in the soundness proofs of type assignment
systems for which �-reduction rule is not an admissible rule, the upper closed condition
is necessary. Finally, the result of Lemma 2.13 on simple type interpretations does make
use of this assumption.

Lemma 2.7. (i) If `Z is semisound; then `Z is sound.
(ii) If `Z is complete; then `Z is semicomplete.

Proof. Obvious; notice that B |=6sm M : � implies B |=6 M : �.

Lemma 2.8 (Soundness). (i) if B `Z M : �; then B |=6sm M : �.
(ii) if B `Z M : �; then B |=6 M : �.

Proof. (i) By (possibly trans�nite) induction on the structure of deductions. For the
axioms the proof is trivial. For (→ I):

B\x ∪ {x : �} `Z M : �
B `Z �x :M : � → �

if M; �;V |= B, for every e ∈ V(�), also M; �[x := e];V |= B \ x∪{x : �}, hence, by
induction, <M =M�[x := e] ∈V(�); Condition (4) of De�nition 2.5(i) assures that G( e.
<M=M�[x := e]) = <�x :M =M� ∈ V(� → �). For (→ E) and (ZI), Conditions (3) and (5) of
De�nition 2.5(i) are used, respectively. The (6)-rule is trivially satis�ed by the
hypothesis that V respects 6.
(ii) By (i) and Lemma 2.7(i).

In order to prove the semicompleteness for `Z , the �-semimodel N, introduced in
Theorem 1.16(i), can be used, by showing that {� |B `Z M : �} is a Z-�lter and that,
for nay M , <M =N� is given by the set of types derivable for M from a suitable basis.

De�nition 2.9. (i) Let B�= {x : � | �∈ �(x)} for any environment �.
(ii) Let �B(x)= ↑ {� | x : �∈B} for any basis B.

Lemma 2.10. (i) {� |B `Z M : �} is a Z-�lter.
(ii) <M =N� = {�|B� `Z M : �}

Proof. (i) Obvious by the de�nition of Z-�lters.
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(ii) By induction on the structure of �-terms. Use Lemma 2.3 in the case M = �x :M1.

Lemma 2.11. (i) VZ(�)= {d∈FZ |�∈d} is a type interpretation.
(ii) VZ respects 6.
(iii) B `Z M : � i� B�B `Z M : �.
(iv) N; �B;VZ |= B:

Proof. (i) and (ii) Routine.
(iii) By induction on derivation; notice that B `Z x : � i� �∈ ↑{� | x : �∈B}.
(iv) Immediate by (i) and De�nition 2.5(ii).

Lemmas 2.10 and 2.11 can be re-phrased for R= 〈FZ ;FR ;GR〉, in case R is a
�-model. From that follows:

Theorem 2.12 (Completeness). (i) B `Z M : � i� B |=6sm M : �.
(ii) If the Z-type theory is UZ-preserving; then B `Z M : � i� B |=6 M : �.

Proof. (i) (If) By Lemmas 2.10, 2.11(iii) and (iv).
(Only if) By Lemma 2.8(i).
(ii) (If) As in (i), using the �-model R= 〈FZ ;FR ;GR〉.
(Only if) By Lemma 2.8(ii).

Another, often used, notion of type interpretation is that one of simple type interpre-
tation (see, for example, [19]). A type interpretation is simple i�

V(� → �)= {d∈D | ∀e∈V(�)[F(d)(e)∈V(�)]}:
Simple type interpretations lead naturally to the de�nition of simple semantics satisfa-
bility s|=6: B s|=6 M : � i� for all models M, all environments � and all simple type
interpretations V respecting 6 : ifM; �;V |= B, then M; �;V |= M : �. The simple
semantics satisfability for semimodels (s|=6sm) can be de�ned analogously.

Lemma 2.13. Let 〈D; F; G〉 be a �-model or a �-semimodel for which G ◦ F v idD;
then any type interpretation in D is a simple type interpretation.

Proof (By de�nition of type interpretation): V(� → �)⊆{d∈D | ∀e∈V(�)[F(d)(e)
∈V(�)]}; so it is su�cient to prove {d∈D | ∀e∈V(�)[F(d)(e)∈V(�)]}⊆V(� → �).
Condition (4) of De�nition 2.5(i) assures that if for every e∈V(�) F(d)(e)∈V(�),
then G(F(d))∈V(� → �); by the hypothesis G(F(d))6d and by the upper closed
condition of type interpretation d∈V(� → �).

The soundness and the semisoundness of the Z-type assignment, with respect to
simple semantics, can easily be proved by induction on the structure of the deduction.
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Lemma 2.14 (Soundness for simple semantics). (i) if B `Z M : �; then B s|=6sm M : �.
(ii) if B `Z M : �; then Bs |=6 M : �.

Mitchell [19] proved that simple type interpretations validate the following rule (sim-
ple rule):

B `Z �x :Mx : �→ �
B `Z M : �→ �

x =∈ FV (M):

In the Z-type-assignment the simple rule is not admissible, as the two following coun-
terexamples prove.
(1) Let �6�′ and �′6� :{y : �′ → �′}`Z�x :yx : �→ �, but one cannot deduce {y :

�′ → �′} `Zy : �→ � unless �′ → �′6�→ � can be proved.
(2) Let R be a Z-set. {y : �→ � | �∈R} `Z�x :yx : �→lR, but one cannot deduce

{y : �→ � | �∈R} `Zy : �→lR unless {�→ � | �∈R} is a Z-set and l {�→ � | �∈R}
6�→lR.
For this reason, in order to obtain the completeness, it is mandatory to require

two more conditions linking the partial order relation 6 between types and the type
constructor → .
Condition (2) (contravariance)

if �6�′ and �′6�; then �′ → �′6�→ �:

Condition (3)

if R is a Z-set; then also {�→ � | �∈R} is a Z-set and
l {�→ � | �∈R}6�→lR:

Lemma 2.15. Let the partial order relation 6 of a Z-type theory satisfy Condi-
tions (2) and (3).
(i) The simple rule is admissible for the Z-type assignment.
(ii) For the �-semimodel N= 〈FZ;F;G〉 : G ◦ F v idFZ .

Proof. (i) By Lemmas 2.3, 2.2(i) and (v).
(ii) One must prove that for every d∈FZ : G(F(d))⊆d.
G(F(d))= ↑{�→ � | �∈d•↑�}, so by Lemma 1.8(ii) it is su�cient to prove {�→ �

| �∈d • ↑�}⊆d. This fact is immediate by noticing that, if the partial order relation
6 satis�es Conditions (2) and (3), d• ↑ �= {� | ∃�∈ ↑ � and �→ �∈d}. By the fact
that �∈ ↑ � implies �6� and by Condition (2) the proof is done.

Theorem 2.16 (Completeness for simple semantics). Let the partial order relation 6
of a Z-type theory satisfy Conditions (2) and (3).
(i) B `Z M : � i� B s|=6sm M : �.
(ii) If the Z-type theory is UZ-preserving; then B `Z M : � i� B s|=6 M : �.

Proof. (i) (If) By Lemmas 2.12(i), 2.13 and 2.15(ii).
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(Only if) By Lemma 2.14(i).
(ii) (If) By Lemmas 2.12(ii), 2.13 and 2.15(ii), since if G ◦F v idFZ , then GR ◦

FR v idFZ .
(Only if) By Lemma 2.14(ii).

The de�nition of a �-model can be given in syntactic terms, in the style of Hindley-
Longo (see, for example, [14]). For �-semimodels a syntactical de�nition can be found
in [20]. Lemma 2.10(ii) characterizes the interpretation of �-terms by means of the
Z-type assignment system, and gives a way to obtain, directly, a syntactical de�nition
of the �-(semi)model 〈FZ;F;G〉.
The results of Section 1 can be obviously stated starting from the syntactical de�ni-

tion of �-(semi)model. In particular, one can point out that Theorem 1.16 can be proved
in a simpler way, since, if the Z-type theory is UZ-preserving, the set of assumptions
for a term variable used in any deduction is a Z-set.

De�nition 2.17. An ordered syntactic interpretation of the �-calculus is a triple:
M = 〈D; •; <− =(−)〉, where 〈D; •〉 is a monotonic applicative structure, and <− =(−) :�
→ (Env→ D) satis�es the following conditions:
(1) <x=�= �(x)
(2) <MN =�= <M =� • <N =�,
(3) if for all d∈D<M =�[x := d]6<N =�[x := d], then <�x :M =�6<�x :N =�,
(4) if y =∈FV (M), then <�x :M =�= <�y :M [x :=y]=�,
(5) if �(x)= �′(x) for all x∈FV (M), then <M =�= <M =�′ .
(ii) A syntactical �-semimodel is an ordered syntactic interpretation in which:

(6) <�x :M =� • d6<M =�[x := d].
(iii) A syntactical �-model is an ordered syntactic interpretation in which:

(6′) <�x :M =� • d= <M =�[x := d].

To re-write in syntactic terms the result of Theorem 1.16, the following de�nition
is introduced:

De�nition 2.18. B �D x indicates the set of those statements in B having x as subject
that are actually used in the deduction D : B `Z M : �;B �D x is de�ned by (possibly
trans�nite) induction on D.

B �D x= ∅: if
– O(D)= 0 and the applied axiom is (T), or an axiom for a variable di�erent from

x, or
– the last applied rule in D is (→ I) and the cancelled assumption is for the variable

x;
B �D x= {x : �}: if

– O(D)= 0 and the used axiom is B `Z x : �;
B �D x=B �D1 x: if

– the last applied rule in D is (6) and D1 is the deduction of the premise, or
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– the last applied rule is (→ I) and the cancelled assumption is for a term variable
di�erent from x;
B �D x=B �D1 x ∪ B �D2 x: if

– the last applied rule in D is (→ E) and D1 and D2 are the deductions of the
premises;
B �D x=

⋃
i(B �Di x): if

– the last applied rule in D is (ZI) and Di are the deductions of the premises.

Lemma 2.19. Let TZ be a UZ-preserving Z-type theory. For all deductions D; for all
term variables x; {� | {x : �}∈B �D x} 6= ∅ implies that the set {� | {x : �}∈B �D x}
is a Z-set.

Proof (By (possibly trans�nite) induction on the structure of deduction): If the last
applied rule is (ZI) the Z-preserving hypothesis and Condition (b) of De�nition 1.5
are needed, whereas the U-closed hypothesis is needed when the last applied rule is
(→ E). .

Theorem 2.20. Let FZ be a Z-type theory and <M =�= {� |B� `Z M : �}.
(i) 〈FZ; •; < − =(−)〉 is a �-semimodel.
(ii) If the Z-type theory is UZ-preserving then 〈FZ; •; < − =(−)〉 is a �-model.

Proof. (i) Clauses (1)–(6) of De�nition 2.17 are proved easily.
(ii) To prove (6′) use Lemma 2.19.

3. Z-continuous functions and representable functions

Continuity plays a central role in the study of �-calculus models and, more generally,
in the domain theory. Foundational in this framework has been the work of Scott
[23] on continuous lattices, that has yielded the notion of Scott-continuous function as
function preserving the suprema of directed sets.
The set of the (Scott-)continuous functions on a poset is a canonical subset usually

considered to obtain a �-model, as required in De�nition 1.2; so, in the sequel, the no-
tion of continuity is generalized to Z-semilattices; moreover, the relationships between
the set of the functions continuous with respect to this notion and that one of functions
representable on a Z-semilattice, are investigated.
In order to consider representable functions, one has to carry out, in a uniform way,

the notion of subset system from the set of types to the set of �lters and to the set of
functions. To this aim the de�nition of subset function is introduced.

De�nition 3.1. (i) A subset function z is a function-class, de�ned on the class of sets
S, which associates with each set S a set z(S) of its subsets, such that:
(a) for every s∈ S, the singleton {s}∈ z(S)
(b) if R∈ z(z(S)), then ⋃

R∈ z(S)
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The elements of z(S) are called z-sets of S.
(ii) A subset function z is strong if for every function f : S → S ′ (S; S ′ ∈S), if

R∈ z(S), then f(R)∈ z(S ′).

The de�nition of subset function allows one to insert Condition (b) of De�nition 1.5,
there given on Z-semilattices, in the more general environment of sets. Obviously, if
z is a strong subset function, also the subset system z(S) is z(S)-preserving, for every
set S. The fact that the subset function z is strong allows one to prove some interesting
properties of the �lter models.

De�nition 3.2. Let P and P′ be posets and z a strong subset function.
(i) A non-empty set X ⊆P is z-directed if for every S ∈ z(P), such that S ⊆X , there

is an upper bound in X , i.e. an element x∈X such that for all s∈ S; s6x.
(ii) An element p∈P is z-compact in P if for every z-directed set X ⊆P :p6⊔

X
implies that there exists an element x in X such that p6x.

(iii) A poset P is z-algebraic if for every p∈P, the set {p′ |p′6p and p′ z–compact}
is z-directed and p=

⊔{p′ |p′6p and p′ z–compact}.
(iv) A function f :P→P′ is z-continuous i�, for every z-directed set X ⊆P :f(⊔X )

=
⊔{f(x) | x∈X }.

Let z be a strong subset function and 〈T;6〉 a poset such that 〈T;6;Z(T);T; →〉
is a z(T)-type theory. In the following Lemma the lattice 〈Fz(T)′ ⊆〉 is proved to be
z-algebraic.

Lemma 3.3. In 〈Fz(T)′ ⊆〉 the following hold:
(i) for every z-directed set X ⊆Fz(T) :

⊔
X =

⋃
X .

(ii) for every d∈Fz(T) the set {↑ � | ↑ �⊆d} is a z-directed set and d=
⋃{↑ � | ↑

�⊆d}.
(iii) 〈Fz(T)′ ⊆〉 is z-algebraic:

Proof. (i) By De�nition 1.7(ii) and Lemma 1.9(ii), it is su�cient to prove that
⋃

X
is a z(T)-�lter. The only interesting case is when S ⊆ ⋃

X is a z-set of T; in this case
lS ∈ ⋃

X has to be proved.
Let fS :T→Fz(T) be a function de�ned by fS(�)≡ if �∈ S then x(�) else T, where

x(�) ∈X is a �lter containing �; notice that fS is not unique. By the fact that the subset
function z is strong follows that fS(S)⊆X is a z-set of Fz(T); since X is z-directed,
in X there is a �lter d′ such that for all �∈ S, fS(�)⊆d′; obviously S ⊆d′ and, by
the de�nition of �lters, l S ∈d′.
(ii) First we prove that, for every d∈Fz(T), the set {↑� | ↑�⊆d} is z-directed.

Let X ⊆{↑ � | ↑ �⊆d} be a z-set of Fz(T) and let f :Fz(T)→T be a function de-
�ned by f(e) ≡ if e= ↑� then � else T, again, since the subset function z is strong,
{f(x) | x∈X } is a z-set of T, so there exists a �=l {f(x) | x∈X } which implies
↑�⊆d and for every ↑�∈X , ↑�⊆ ↑�. Now we prove d=

⋃ {↑� | ↑�⊆d}: �∈d
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implies ↑�⊆d, so �∈ ⋃{↑� | ↑ �⊆d}; for the converse: �∈ ⋃{↑� | ↑�⊆d} implies
�∈↑ � for some ↑ �⊆d, that is �∈d.
(iii) It is su�cient to prove that the z-compact elements of Fz(T) are exactly those of

the form ↑�, for �∈T. ↑�⊆ ⋃
X for some z-directed X implies ∃d∈X such that �∈d,

hence ↑�⊆d. Now let d be a z-compact element of Fz(T). From (ii) one knows that
d=

⋃{↑� | ↑�⊆d}, which implies d⊆↑ � for some �∈d (because of z-compactness),
but �∈d implies ↑�⊆d, so one has ↑�=d.

The following Lemmas 3.4 and 3.5 state that, if the subset function z is strong, the
z-continuous functions are monotonic and representable, i.e. (Fz(T)→Fz(T))Cz⊆ (Fz(T)
→Fz(T))R ⊆ ((Fz(T)→Fz(T))M where (Fz(T)→Fz(T))Cz denotes the set of z-continuous
functions on Fz(T). Finally, Theorem 3.6 shows that a function is representable if and
only if it is z-continuous: (Fz(T)→Fz(T))Cz = (Fz(T)→Fz(T))R. In such a way one
proves that the set of z-continuous functions is a good choice for the collection by
means of which a �lter �-model can be de�ned (De�nition 1.2).

Lemma 3.4. (i) Let X be a z-directed set of �lters. For every monotonic function f
from Fz(T) to Fz(T); the set {f(x) | x∈X } is z-directed.
(ii) Every z-continuous function f from Fz(T) to Fz(T) is a monotonic function.

Proof. (i) Let B⊆{f(x) | x∈X } be a z-set of Fz(T). Since the subset function z is
strong, one can construct (possibly by using the axiom of choice) a z-set A⊆X such
that x∈A if and only if f(x)∈B. Because of X is z-directed, in X there exists an
element x∗ that is an upper bound of A. So, by monotonicity of f, f(x∗) is an upper
bound of B.
(ii) Let d and e be �lters, such that d⊆ e. Obviously {↑� | ↑�⊆d}⊆{↑� | ↑�⊆ e}.

Then the proof is done by Lemma 3.3(i) and (ii) and de�nition of
⊔
.

Lemma 3.5. (i) A monotonic function f fromFz(T) toFz(T) is a z-continuous function
if and only if for every �∈f(d) there exists a type �∈d such that �∈f(↑�).
(ii) A z-continuous function f from Fz(T) to Fz(T) is represented by the �lter

G(f)= ↑{�→ � | �∈f(↑�)}.

Proof. (i) (If) One has to prove that for every z-directed set of �lters X :f(
⊔

X )=⊔{f(x) | x∈X }.
By monotonicity of the function f and by de�nition of

⊔
, follows immediately that⊔{f(x) | x∈X }⊆f(

⊔
X ).

To prove that f(
⊔

X )⊆ ⊔{f(x) | x∈X } notice that be Lemma 3.3(i) it is su�cient
to show that f(

⋃
X )⊆ ⋃{f(x) | x∈X }.

�∈f(
⋃

X )⇒∃ �∈⋃
X [�∈f(↑�)] (by hypothesis)

⇒∃ x∈X [�∈ x and �∈f(↑�)]
⇒ �∈⋃{f(x) | x∈X } (since f(↑�)⊆f(x))
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(Only if) Let f be a z-continuous function from Fz(T) to Fz(T).
f(d)=f(

⊔{↑� | ↑�⊆d}) implies f(d)=
⋃{f(↑�) | ↑�⊆d} by z-continuity of f

and Lemma 3.3(i). So �∈f(d) implies that there exists a �∈d such that �∈f(↑�).
(ii) One must prove that f(e)=G(f) • e=(F ◦G)(f)(e), for every �lter e.

(⊆) �∈f(e)⇒∃�∈ e [�∈f(↑�)] (by (i))

⇒ �→ �∈G(f)
⇒ �∈G(f) • e

(⊇) Immediate by Lemma 1:12(iii):

Theorem 3.6. (i) Application in Fz(T) is z-continuous.
(ii) (Fz(T)→Fz(T))R = (Fz(T)→Fz(T))Cz.

Proof. (i) z-continuity is proved in the second argument only; the proof for the �rst
argument is similar. Let X ⊆Fz(T) be a z-directed set. By Lemmas 3.3(i) and 3.4(i).⊔

X =
⋃

X and
⊔{d • x | x∈X }= ⋃ {d • x | x∈X }. By Lemma 1.8(ii) it is su�cient

to prove � ∈ ⋃ {d • x | x∈X }, for all �∈⋃
X such that �→ �∈d.

�∈⋃
X and ∃� [�→ �∈d]⇒∃ x ∈ X [�∈ x] &∃� [�→ �∈d]

⇒∃x∈X [�∈d • x]
⇒ �∈⋃ {d • x | x∈X }

The converse is proved in a similar way.
(ii) (If) By (i).
(Only if) By Lemma 3.5(ii).

An alternative way to prove the result of Theorem 3.6(ii) is that of investigating the
structure of the poset 〈(Fz(T)→Fz(T))Cz;v〉.
It has been proved (see, for example, [1]) that the set of Scott-continuous functions

from D to D: (D→D)c is an algebraic c.p.o. if D is an algebraic c.p.o. Moreover,
the compact elements of (D→D)c are exactly the functions

⊔ {fde |fde ∈ S}, where S
is a �nite set, and fde are step functions de�ned by means of the compact elements
of D. By using an approach analogous to that of [5], it is quite easy to prove that
〈(Fz(T)→Fz(T))Cz;v〉 is a z-algebraic complete lattice.
By de�ning the step functions:

f↑�↑�(d)=
{ ↑� if ↑�⊆d;
↑T otherwise:

One can prove [18] that the z-compact elements of 〈(Fz(T)→Fz(T))Cz;v〉 are exactly
the functions

⊔ {f↑�↑� |f↑�↑� ∈ S}, where the set S is a z-set in (Fz(T)→Fz(T))Cz. By
the fact that every z-compact element

⊔ {f↑�↑� |f↑�↑� ∈ S} is represented by the �lter
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↑l{�→ � |f↑�↑� ∈ S} and by the completeness of the lattice follows that Fz(T)→
(Fz(T))R = (Fz(T)→Fz(T))Cz.

4. Some particular Z-type theories

It is possible to de�ne some type theories, well known in the literature, in terms of
Z-type theories. Usually a type theory is de�ned by a pair 〈T;6〉, where the set T of
types is introduced as a formal language, de�ned by a grammar. This grammar describes
the constructors by means of which types are formed, starting from a countable set
of type variables. The partial order relation 6 is obtained by de�ning �= � i� �6�
and �6� on a preorder relation 6, given by means of a set of clauses. In all type
theories here considered, a particular type constructor can be interpreted as the in�mum
operator for a suitable subset of types. For these type theories one can easily give an
answer to the question of the existence of �lter models. Moreover, owing to Theorem
2.12, this model, if any, can be made the basis of a completeness proof.

4.1. Intersection type theory

The intersection type theory has been studied in [2]. The set of types T∧ is de�ned
by the following grammar:

� :=’ |T | �→ � | � ∧ �

where ’ ranges over a countable set of type variables. In the seminal paper of ∧-types,
the type constant ! is used instead of T.
The preorder relation 6∧ is the minimal reexive and transitive relation such that:
– �6∧T;
– T6∧T→T;
– �6∧� ∧ �;
– � ∧ �6∧� � ∧ �6∧�;
– (�→ �) ∧ (�→ �′)6∧�→ (� ∧ �′);
– if �6∧�′ and �6∧�′, then � ∧ �6∧�′ ∧ �′;
– if �6∧�′ and �′6∧�, then �′ → �′6∧�→ �.
If the subset system Z∧ is de�ned as the set of �nite, non-empty subsets of T∧, it
is immediate to verify that 〈T∧;6∧;Z∧〉 is a Z∧-semilattice, where every Z∧-set S =
{�1; �2; : : : ; �n} has as in�mum the type �1 ∧ �2 ∧ · · · ∧ �n. Condition (1) of De�nition
1.6 can be easily proved (Lemma 2.4(ii) in [2]).
The Z∧-type theory is ∪Z∧-preserving, hence the set of Z∧-�lters: F∧ gives rise

to a �-model. Moreover, the function z∧ that associates with any set S the set of its
�nite, non-empty subsets is strong, so the application between �lters is z∧-continuous
and the functions representable over 〈F∧; •〉 are the z∧-continuous functions, that is
the Scott-continuous ones [2, 5, 6]. As Conditions (2) and (3) are satis�ed, one also
has that any type interpretation is a simple interpretation.
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The conditions on the partial order relation under which a Z∧-�lter model is obtained,
are studied in [21]. In the present paper it is shown that the existence of the �lter model
can be related to properties of the subset system Z∧.

4.2. Polymorphic type theory

Polymorphic types for untyped �-terms have been introduced [16, 19] by adding to
the Curry type system the universal quanti�cation, and to the type assignment system
two new rules:

(∀I)S B ` M : �
B ` M : ∀’:�

’ does not occur free in B � M

(∀E)S B ` M : ∀’:�
B ` M : �

In order to de�ne a subset system for the polymorphic type theory, note that the
universal quanti�cation of a type � : ∀’:� can be seen as the in�mum of the set of
all substitution instances of the type itself, and that the standard (∀I)s rule can be
substituted by the in�nitary rule:

(∀I) B ` M : �[’ := �] for all �∈T∀
B ` M : ∀’:�

More formally, let the set T∀ be de�ned by the following grammar:

� :=’ |T | �→ � | ∀’:�;

where ’ ranges over a countable set of type variables. Note that T is added to the
standard set of polymorphic types. Let the preorder relation 6∀ be de�ned as the
minimal, reexive and transitive realtion such that:
– �6∀T;
– if �6∧�′ and �′6∀�; then �′ → �′6∀ �→ �;
– If �6∀�; then ∀’:�6∀ ∀’:�;
– ∀’:�6∀∀ :�[’ := �];  not free in ∀’:�;
– ∀’:(�→ �)6∀(∀’:�)→ (∀’:�).
(’ and � are used for the tuples ’1; ’2; : : : ; ’n and �1; �2; : : : ; �m, for some n and m,
respectively).
The subset system Z∀ on T∀ can be de�ned as follows. S is a Z∀-set if there is a

type �∈T∀ such that:
(a) �∈ S implies � is a substitution instance of �, i.e. �= �[’ := �] for some tuple �

of types.
(b) every substitution instance of � belongs to S, i.e. for all tuple of types, �, there is

a type �∈ S such that �= �[’ := �].
It is easy to prove that 〈T∀;6∀;Z∀〉 is a Z∀-semilattice in which l S =∀’:�, if S is
the set of all substitution instances of �.
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Condition (1) of De�nition 1.6 can be proved by means of the following facts,
provable by induction on the de�nition of 6∀:
– ∀’ : (�→ �)6∀� 6=∀ T implies �=∀ : (�→ �)
– ∀’ : (�→ �)6∀∀ : (�→ �) implies that for every tuple of types � there are a tuple
of type variables � and a tuple of types � such that �[ := �]6∀∀� : �[’ := �] and
∀� : �[’ := �]6∀ �[ := �].

In this case, however, it is not clear how a suitable subset function could be de�ned.
If F∀ denotes the set of Z∀-�lters, 〈F∀; F; G〉 is a �-semimodel, actually the one

de�ned in [20], except that the constant T is added, but, since the Z∀-type theory is
not ∪-closed the existence of the �lter �-model 〈F∀; FR ; GR〉 cannot be inferred.
Indeed, it is easy to show that 〈F∀; • ; < − =(−)〉 does not satisfy Condition (6′) of
De�nition 2.17(iii).
In fact, if ’ and  are type variables,  ∈ <xx=p[x := ↑{’→  ; ’}], while  =∈ <�x :xx= • ↑

{’→  ; ’}.
One can notice that the in�nitary rule (∀I) plays an essential role only if in�nite

basis are allowed; in fact, if `∀s indicates the standard type assignment introduced
for polymorphic types (possibly enriched by the constant T [15]), it is worth noting
that, for �nite basis: B `∀ M : � i� B `∀s M : �, whereas for in�nite basis: B `∀s M : �
implies B `∀ M : �, but the converse it is not true. In fact: {x : �→ (�→ �) | for all
�∈T∀} ∪ {y : �} `∀ xy :∀’:’→’, but {x : �→ (�→ �) | for all �∈T∀} ∪ {y : �} 6`∀s

xy :∀’:’→’:

4.3. Polymorphic intersection type theory

By de�ning the subset system Z∀∧ as the collection of all �nite, non-empty subsets
of Z∀-sets of types, the Z∀∧-type theory, is obtained [15]. The set T∀∧ is de�ned by
the following grammar:

� :=’ |T | �→ � | � ∧ � | ∀’:�:

The preorder relation 6∀∧ is de�ned as the minimal reexive and transitive relation
such that:
– �6∀∧ T;
– if �6∀∧ �′ and �′6∀∧ �, then �′ → �′6∀∧ �→ �;
– if �6∀∧ �; then ∀’:�6∀∧ ∀’:�;
– ∀’ :�6∀∧ ∀ :�[’ := �],  not free in ∀’ :�;
– ∀’ :(�→ �)6∀∧ (∀’:�)→ (∀’:�);
– � ∧ �6∀∧� � ∧ �6∀∧ �;
– �6∀∧� ∧ �;
– if �6∀∧ �′ and �6∀∧ �′, then � ∧ �6∀∧ �′ ∧ �′;
– (�→ �) ∧ (� − �′)6∀∧ �→ (� ∧ �′).
It is easy to prove that 〈T∀∧; 6∀∧; Z∀∧〉 is a Z∀∧-semilattice in which lS =∀’1:�1∧

∀’2:�2 ∧ · · · ∧ ∀’n:�n and that Condition (1) of De�nition 1.6 holds.
The Z∀∧-type theory is U-closed but not Z∀∧-preserving.
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So 〈F∀∧;FR ;GR〉 (where F∀∧ denotes, as usual, the set of Z∀∧-�lters) cannot be
proved to be a �-model. On the other hand it is again easy to show that Condition (6′)
of De�nition 2.17(iii) does not hold. For example, consider a function which associates
with every type �∈T∀∧ a variable ’�. Then

 ∈ <z(xy)=�[z := ↑(∀’ :’→’)→  ; x := ↑{’� → (�→ �)}; y := ↑{’�}];

whereas

 =∈ <�x:z(xy)=�[z := ↑(∀’ :’→’)→  ; y := ↑{’�}] • {’� → (�→ �)}:

As for Z∀-type theory one can compare the type assignment `∀∧ with the type as-
signment `∀∧s; in which the in�nitary rule (∀I) is substituted by the standard rule
(∀I)s: Again one has: B `∀∧ M : � i� B `∀∧s M : � for �nite basis B `∀∧s M : � implies
B `∀∧ M : � for in�nite basis. In [15] a �lter �-model for ∀∧-types has been introduced,
using a de�nition of �lter di�erent from the present one. This model is not useful to
prove completeness of `∀∧s, that, on the contrary, can be easily proved using a standard
term model technique. The authors conjecture that, for the ∀∧-type assignment, there
is no �lter �-model which can be made the basis of a completeness proof, although
the conjecture is not precise.

4.4. In�nite interesection type theory

The in�nite countable extension of intersection types has been proposed in [17].
Among the open problems there is that one of the existence of new �lter models,
related to in�nite intersection. The subset system Z! of countable, non-empty subsets
of the set of types, allows one to give a positive answer to this question, provided
that the type constant T is added. One way to de�ne the set of types T! is that
of generalizing the type constructor ∧ to a constructor

∧
, that provides the in�mum

of the countable sets.
So T! can be de�ned by the following grammar:

� :=’ |T | �→ � |∧{� | �∈ S};

where S is a countable set of types.
The subset system Z! is U-closed and Z!-preserving, so any preorder relation 6!

satisfying Condition (1) of De�nition 1.6 provides a �-model. However, it is quite
natural to investigate the preorder relation 6! obtained as a natural extension of 6∧
relation. Hence, consider 6! as the minimal reexive and transitive relation such that:
– �6!T;
– �6!

∧{�};
–
∧{� | �∈ S}6! �; for all �∈ S;

–
∧{�→ � | �→ �∈ S}6!

∧{� | �→ �∈ S}→ ∧{� | �→ �∈ S};
– if for every �∈R, there is �∈ S, such that �6!�, then

∧{� | �∈ S}6!
∧{� | �∈R};

– if �6! �′ and �′6!�, then �′ → �′6! �→ �:
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Condition (1) of De�nition 1.6 can be easily proved by induction on the de�nition of
6!.
In this case one can de�ne the subset function Z! as the function that associates

with any set S the set of its non-empty, countable subsets. The function Z! is strong,
so the application between Z!-�lters is Z!-continuous and the representable functions
over 〈F!; • 〉 are exactly the Z!-continuous functions. Obviously the set of continuous
functions is a proper subset of the set of Z!-continuous functions, so one could ask
for a characterization of �lters representing the continuous functions.
Although M!= 〈F!;FR ; GR〉 is not a continuous �-model in the sense of [1], it

seems to be close to this class of models because the Z!-continuity of the application
can be seen as a weaker notion of the continuity [11]. The continuous �-models enjoy
some nice properties such as the approximation property (i.e. <M =�=sup{<A=� |A@∼ M})
and the fact that all �xed-point operators in � are interpreted in the least �xed-point
operator of the model. It is an open question whether similar results hold for M!. In
particular, the authors conjecture that, since Tarsky’s theorem holds in all complete
lattices, M! has the �xed-point property. On the other hand, an approximation theo-
rem seems di�cult to prove; in fact, <Y=M! can be seen as the countable sup of the
interpretations of its approximants, but it is not clear how to obtain <�x :xY=M! from
the interpretations of its approximants.

5. Conclusions

This paper characterizes the conditions under which a type system allows the con-
struction of a �lter �-model, in a natural way. The de�nition of �lter here considered
is the one reecting the structure of the semilattice of the considered types. So the
�lter �-model, if any, can be used to prove completeness of the type assignment.
In this particular setting, Condition (1) of De�nition 1.6 is su�cient to take account

of �-reduction, in the sense that, for all environment �, if M →∗
� N , then <M =� ⊆ <N =�,

while to reect the behaviour of �-conversion a stronger condition is needed: the way
to collect a set of types (Z-set) in a type that subsumes the set (in other words, the
de�nition of the Z-semilattice) cannot be whatever. The ∪Z-preserving property of the
subset system Z is su�cient to guarantee the existence of a �-model.
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