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a b s t r a c t

A stochastic logistic model with impulsive perturbations is proposed and investigated.
First, we give a new definition of a solution of an impulsive stochastic differential equation
(ISDE), which is more convenient for use than the existing one. Using this definition, we
show that our model has a global and positive solution and obtain its explicit expression.
Then we establish the sufficient conditions for extinction, non-persistence in the mean,
weak persistence, persistence in the mean and stochastic permanence of the solution. The
critical value between weak persistence and extinction is obtained. In addition, the limit
of the average in time of the sample path of the solution is estimated by two constants.
Afterwards, the lower-growth rate and the upper-growth rate of the solution are estimated.
Finally, sufficient conditions for global attractivity are established.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of logistic equation has long been and will continue to be one of the dominant themes in both ecology
and mathematical ecology due to its importance. Since population dynamics in the real world is inevitably affected by
environmental noise which is an important component in an ecosystem, several authors (see e.g. [1–7]) have investigated
the following stochastic logistic equation

dx(t) = x(t)(r(t) − a(t)x(t))dt + σ(t)x(t)dB(t), (1)

where x(t) is the population size and B(t) is a standard Brownianmotion. Many important results of solutions of Eq. (1) have
been obtained.

On the other hand, the theory of impulsive differential equation appears as a natural description of several kinds
of real processes subject to certain perturbations whose duration is negligible in comparison with the duration of the
process. Processes of this type are often studied in various fields of science and technology: population dynamics, ecology,
biological systems, physics, pharmacokinetics, optimal control, etc.; see e.g., the monographs [8,9]. Various population
dynamical systems of impulsive differential equations have been proposed and investigated extensively. Many important
and interesting results on the dynamical behaviors for such systems have been found; see e.g., [10–17] and the references
therein. Recently, stability of stochastic differential equation (SDE) with impulsive effects has been done by Sakthivel and
Luo [18], Zhao et al. [19], Li and Sun [20], Li et al. [21] and Li et al. [22]. However, so far as our knowledge is concerned, very
little amount of work on the stochastic population dynamics with impulsive effects has been done.

In this paper, we will study the following stochastic logistic system with impulsive perturbations:
dx(t) = x(t)(r(t) − a(t)x(t))dt + σ(t)x(t)dB(t), t ≠ tk, k ∈ N
x(t+k ) − x(tk) = bkx(tk), k ∈ N (2)
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where N denotes the set of positive integers, 0 < t1 < t2 < · · · , limk→+∞ tk = +∞, r(t), a(t) and σ(t) are continuous
bounded functions on R+ := [0, +∞). The following additional restrictions on (2) are natural for biological meanings:

inf
t∈R+

a(t) > 0, 1 + bk > 0, k ∈ N.

When bk > 0, the perturbation stands for planting of the species, while bk < 0 stands for harvesting. The main aims of
this work are to investigate how impulses affect on the existence of positive solutions, permanence, persistence, extinction
and global attractivity of Eq. (2). Our results show that the impulse does not affect all of these properties if the impulsive
perturbations are bounded. However, if the impulsive perturbations are unbounded, some properties could be changed
significantly. The important contributions of this paper is therefore clear.

To proceed, we need some appropriate definitions of persistence. Based on these definitions, we shall establish the
persistence and extinction results for Eq. (2). Ma and his co-workers proposed the concepts of weak persistence [23], non-
persistence in the mean [24] and persistence in the mean [24] for some deterministic models. Especially, Wang andMa [25]
pointed out the fact that there is only threshold between weak persistence and extinction of populations for general non-
autonomous population models.

Definition 1. • x(t) is said to be extinctive if limt→+∞ x(t) = 0.
• x(t) is said to be nonpersistent in the mean if limt→+∞ t−1

 t
0 x(s)ds = 0.

• x(t) is said to be weakly persistent if lim supt→+∞ x(t) > 0.
• x(t) is said to be persistent in the mean if lim inft→+∞ t−1

 t
0 x(s)ds > 0.

• x(t) is said to be stochastically permanent if for every ε ∈ (0, 1), there are constants β > 0, δ > 0 such that

lim inf
t→+∞

P {x(t) ≥ β} ≥ 1 − ε, lim inf
t→+∞

P {x(t) ≤ δ} ≥ 1 − ε.

The rest of the paper is arranged as follows. In Section 2, we give a new definition of solution of ISDE, which is more
convenient for use than the existing definition. Then we show that Eq. (2) has a global and positive solution for any positive
initial condition and give its explicit expression. In Section 3, sufficient conditions for extinction, non-persistence in the
mean, weak persistence, persistence in the mean and stochastic permanence of the population represented by Eq. (2) are
established. The critical value between weak persistence and extinction is obtained. Moreover, the limit of the average in
time of the sample path of the solution is estimated by two constants. In Section 4, the lower-growth rate and the upper-
growth rate of the solutions are estimated. In Section 5, we investigate the global attractivity of Eq. (2). In the last section,
we give the conclusions and illustrate our main results through some examples and figures.

2. Global positive solution

Throughout this paper, let (Ω, F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions. LetB(t)denote a standardBrownianmotiondefined on this probability space.Moreover,we always assume
that a product equals unity if the number of factors is zero.

Definition 2. Consider the following ISDE:
dX(t) = F(t, X(t))dt + G(t, X(t))dB(t), t ≠ tk, k ∈ N
X(t+k ) − X(tk) = BkX(tk), k ∈ N (3)

with initial condition X(0). A stochastic process X(t) = (X1(t), . . . , Xn(t))T , t ∈ R+, is said to be a solution of ISDE (3) if

(i) X(t) is Ft-adapted and is continuous on (0, t1) and each interval (tk, tk+1) ⊂ R+, k ∈ N; F(t, X(t)) ∈ L1(R+; Rn),
G(t, X(t)) ∈ L2(R+; Rn), where Lk(R+; Rn) is all Rn valued measurable {Ft}-adapted processes f (t) satisfying T
0 |f (t)|kdt < ∞ a.s. (almost surely) for every T > 0;

(ii) for each tk, k ∈ N , X(t+k ) = limt→t+k
X(t) and X(t−k ) = limt→t−k

X(t) exist and X(tk) = X(t−k ) with probability one;
(iii) for almost all t ∈ [0, t1], X(t) obeys the integral equation

X(t) = X(0) +

 t

0
F(s, X(s))ds +

 t

0
G(s, X(s))dB(s). (4)

And for almost all t ∈ (tk, tk+1], k ∈ N , X(t) obeys the integral equation

X(t) = X(t+k ) +

 t

tk
F(s, X(s))ds +

 t

tk
G(s, X(s))dB(s). (5)

Moreover, X(t) satisfies the impulsive conditions at each t = tk, k ∈ N with probability one.

Remark 1. One of the definitions of the solution of an ISDE is as follows.
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Definition 3 (See e.g. [19–22]). A function X̃(t) = (X̃1(t), . . . , X̃n(t))T , t ∈ R+, is said to be a solution of ISDE (3) if
(a) X̃(t) is absolutely continuous on (0, t1) and (tk, tk+1) ⊂ R+, k ∈ N;
(b) for each tk, k ∈ N , X̃(t+k ) = limt→t+k

X̃(t) and X̃(t−k ) = limt→t−k
X̃(t) exist and X̃(tk) = X̃(t−k );

(c) X̃(t) obeys (3) for almost every t ∈ R+ \ {tk} and satisfies the impulsive conditions at each t = tk, k ∈ N .
This is an important definition. However, if we use this definition, many important ISDEs will not have non-zero solutions.
For example, consider the famous Black–Scholes model with impulsive effects:

dY (t) = rY (t)dt + σY (t)dB(t), t ≠ tk, k ∈ N; Y (0) = Y0
Y (t+k ) − Y (tk) = bkY (tk), k ∈ N.

(6)

It is well-known that Y (t) = Y0 exp{(r − 0.5σ 2)t + σB(t)} is the unique non-zero function that satisfies Eq. (6) on interval
(0, t1), which is continuous on (0, t1) but is not absolutely continuous on (0, t1) (because B(t) is not absolutely continuous).
That is to say if we adopt Definition 3, Eq. (6) will not have a non-zero solution. In the following, we can find that if we use
Definition 3, system (2) will not have a non-zero solution either.

Remark 2. Now let us see how we obtain Definition 2. First of all, note that if the impulsive conditions are dropped
(i.e. Bk = 0), then ISDE (3) becomes the following SDE:

dX(t) = F(t, X(t))dt + G(t, X(t))dB(t).

Consequently, definition of a solution of SDE should be a special case of definition of a solution of ISDE. According to the
classical definition of a solution of SDE (see e.g. [26]), condition (i), Eqs. (4) and (5) should be satisfied. Second, since there
are impulsive perturbations in Eq. (3), then condition (ii) and impulsive conditions in (iii) should be satisfied. According to
the above two facts, we propose Definition 2.

Theorem 1. For any initial value x(0) = x0 > 0, there exists a unique positive solution x(t) to Eq. (2) a.s., which is global and
represented by

x(t) =


0<tk<t

(1 + bk) exp
 t

0 [r(s) − 0.5σ 2(s)]ds +
 t
0 σ(s)dB(s)


1/x0 +

 t
0


0<tk<s

(1 + bk)a(s) exp
 s

0 [r(τ ) − 0.5σ 2(τ )]dτ +
 s
0 σ(τ)dB(τ )


ds

.

Proof. Let

z(t) = exp

−

 t

0
[r(s) − 0.5σ 2(s)]ds −

 t

0
σ(s)dB(s)


×


1/x0 +

 t

0


0<tk<s

(1 + bk)a(s) exp
 s

0
[r(τ ) − 0.5σ 2(τ )]dτ +

 s

0
σ(τ)dB(τ )


ds


.

Then making use of Itô’s formula, we obtain that z(t) satisfies the equation

dz(t) = z(t)(σ 2(t) − r(t))dt − z(t)σ (t)dB(t) +


0<tk<t

(1 + bk)a(t)dt.

Define y(t) = 1/z(t); then it follows from Itô’s formula that

dy(t) = −
dz(t)
z2(t)

+
(dz(t))2

z3(t)

= −y(t)(σ 2(t) − r(t))dt + y(t)σ 2(t)dt − y2(t)


0<tk<t

(1 + bk)a(t)dt + y(t)σ (t)dB(t)

= y(t)


r(t) −


0<tk<t

(1 + bk)a(t)y(t)


dt + σ(t)y(t)dB(t). (7)

Let

x(t) =


0<tk<t

(1 + bk)y(t)

=


0<tk<t

(1 + bk) exp
 t

0 [r(s) − 0.5σ 2(s)]ds +
 t
0 σ(s)dB(s)


1/x0 +

 t
0


0<tk<s

(1 + bk)a(s) exp
 s

0 [r(τ ) − 0.5σ 2(τ )]dτ +
 s
0 σ(τ)dB(τ )


ds

;
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then it is easy to see that x(t) is continuous on each interval (tk, tk+1) ⊂ R+, k ∈ N and for any t ≠ tk,

dx(t) = d

 
0<tk<t

(1 + bk)y(t)


=


0<tk<t

(1 + bk)dy(t)

=


0<tk<t

(1 + bk)y(t)


r(t) −


0<tk<t

(1 + bk)a(t)y(t)


dt +


0<tk<t

(1 + bk)σ (t)y(t)dB(t)

= x(t)(r(t) − a(t)x(t))dt + σ(t)x(t)dB(t).

On the other hand, for each k ∈ N and tk ∈ [0, +∞),

x(t+k ) = lim
t→t+k


0<tj<t

(1 + bj)y(t) =


0<tj≤tk

(1 + bj)y(t+k ) = (1 + bk)


0<tj<tk

(1 + bj)y(tk) = (1 + bk)x(tk).

At the same time,

x(t−k ) = lim
t→t−k


0<tj<t

(1 + bj)y(t) =


0<tj<tk

(1 + bj)y(t−k ) =


0<tj<tk

(1 + bj)y(tk) = x(tk).

Now let us prove the uniqueness of the solution. For t ∈ (0, t1], system (2) becomes the following classical equation:

dx(t) = x(t)(r(t) − a(t)x(t))dt + σ(t)x(t)dB(t), t ∈ (0, t1]. (8)

Since the coefficients of Eq. (8) are local Lipschitz continuous, by the theory of SDE (see e.g. Theorem 3.15 in [26], p. 91), the
solution of Eq. (8) is unique. For t ∈ (tk, tk+1], k ∈ N , system (2) becomes:

dx(t) = x(t)(r(t) − a(t)x(t))dt + σ(t)x(t)dB(t), t ∈ (tk, tk+1], k ∈ N. (9)

Note that the coefficients of Eq. (9) are also local Lipschitz continuous; then the solution of Eq. (9) is also unique.
Consequently, the solution of system (2) is unique. �

3. Persistence and extinction

Theorem 1 shows that Eq. (2) has a positive solution for any positive initial value. This nice property provides us with a
great opportunity to discuss inmore detail how the solution varies in R+. Now, let us studywhen the population represented
by Eq. (2) goes to extinction and when it does not. Define f̌ = inft∈R+

f (t), f̂ = supt∈R+
f (t).

Theorem 2. Suppose that x(t) is a solution of Eq. (2); then

lim sup
t→+∞

t−1 ln x(t) ≤ lim sup
t→+∞

t−1

 
0<tk<t

ln(1 + bk) +

 t

0
b(s)ds


=: b∗, a.s.,

where b(t) = r(t) − 0.5σ 2(t). Particularly, if b∗ < 0, then limt→+∞ x(t) = 0 a.s.

Proof. Applying Itô’s formula to Eq. (7), we have

d ln y(t) =
dy(t)
y(t)

−
(dy(t))2

2y2(t)

=


r(t) − a(t)


0<tk<t

(1 + bk)y(t) − 0.5σ 2(t)


dt + σ(t)dB(t)

= [b(t) − a(t)x(t)]dt + σ(t)dB(t).

Integrating both sides from 0 to t , one can see that

ln y(t) − ln y(0) =

 t

0
b(s)ds −

 t

0
a(s)x(s)ds + M1(t), (10)

where M1(t) =
 t
0 σ(s)dB(s). Note that M1(t) is a local martingale, whose quadratic variation is ⟨M1(t),M1(t)⟩ =

 t
0

σ 2(s)ds ≤ σ̂ 2t. Making use of the strong law of large numbers for local martingales (see e.g. [26] on page 16) leads to

lim
t→+∞

M1(t)/t = 0 a.s. (11)
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On the other hand, it follows from (10) that
0<tk<t

ln(1 + bk) + ln y(t) − ln y(0) =


0<tk<t

ln(1 + bk) +

 t

0
b(s)ds −

 t

0
a(s)x(s)ds + M1(t).

In other words, we have shown that

ln x(t) − ln x(0) =


0<tk<t

ln(1 + bk) +

 t

0
b(s)ds −

 t

0
a(s)x(s)ds + M1(t). (12)

Therefore

ln x(t) − ln x(0) ≤


0<tk<t

ln(1 + bk) +

 t

0
b(s)ds + M1(t).

Then the desired assertion follows from (11) immediately. �

Theorem 3. The solution of Eq. (2) obeys

lim sup
t→+∞

t−1
 t

0
x(s)ds ≤ b∗/ǎ a.s.

Particularly, if b∗
= 0, then the population represented by Eq. (2) is non-persistent in the mean a.s., i.e. limt→+∞ t−1

 t
0 x(s)ds

= 0 a.s.

Proof. For arbitrarily fixed ε > 0, there is a constant T1 such that

ln x(0)/t ≤ ε/3, t−1

 
0<tk<t

ln(1 + bk) +

 t

0
b(s)ds


≤ b∗

+ ε/3, M1(t)/t ≤ ε/3

for t ≥ T . Substituting this inequality into (12) yields

ln x(t) = ln x(0) +


0<tk<t

ln(1 + bk) +

 t

0
b(s)ds −

 t

0
a(s)x(s)ds + M1(t)

≤ λt − ǎ
 t

0
x(s)ds

for all t ≥ T almost surely, where λ = b∗
+ε. Denote h(t) =

 t
0 x(s)ds. Consequently, exp(ǎh(t))(dh/dt) ≤ exp{λt}, t ≥ T .

Integrating this inequality from T to t , we have

ǎ−1
[exp{ǎh(t)} − exp{ǎh(T )}] ≤ λ−1

[exp{λt} − exp{λT }].

Rewriting this inequality we can observe

exp{ǎh(t)} ≤ exp{ǎh(T )} + ǎλ−1 exp{λt} − ǎλ−1 exp{λT }.

Taking logarithm of both sides, one can see that

h(t) ≤ ǎ−1 ln{ǎλ−1 exp{λt} + exp{ǎh(T )} − ǎλ−1 exp{λT }}.

In other words, we have shown that

lim sup
t→+∞

t−1
 t

0
x(s)ds ≤ ǎ−1 lim sup

t→+∞

{t−1 ln{ǎλ−1 exp{λt} + exp{ǎh(T )} − ǎλ−1 exp{λT }}}.

Making use of the L’Hospital’s rule, we obtain

lim sup
t→+∞

t−1
 t

0
x(s)ds ≤ ǎ−1 lim sup

t→+∞

{t−1 ln[ǎλ−1 exp(λt)]} = λ/ǎ.

The required assertion follows from the arbitrariness of ε. �

Theorem 4. If b∗ > 0, then the population represented by Eq. (2) is weakly persistent a.s., i.e. lim supt→+∞ x(t) > 0 a.s.
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Proof. If this assertion is not true, then P (S) > 0, where S is the set S = {lim supt→+∞ x(t) = 0}. It follows from (12) that

t−1
[ln x(t) − ln x(0)] = t−1

 
0<tk<t

ln(1 + bk) +

 t

0
b(s)ds


− t−1

 t

0
a(s)x(s)ds + M1(t)/t. (13)

On the other hand, for ∀ω ∈ S, we have limt→+∞ x(t, ω) = 0. Thus it follows from the boundedness of a(t) that

lim sup
t→+∞

t−1
[ln x(t, ω) − ln x(0)] ≤ 0, lim

t→+∞
t−1

 t

0
a(s)x(s, ω)ds = 0.

Substituting these inequalities into (13) and making use of (11), one can obtain the contradiction 0 ≥ lim supt→+∞ t−1

ln x(t, ω) = b∗ > 0. �

Remark 3. Theorems 2–4 have an interesting biological interpretation. Observe that the extinction and persistence of
species x(t) depend only on b∗. If b∗ > 0, the population x(t) is weakly persistent. If b∗ < 0, the population x(t) goes
to extinction.

Now, we strengthen the conditions to give some other results.

Theorem 5. Denote b∗ = lim inft→+∞ t−1
[


0<tk<t ln(1 + bk) +
 t
0 b(s)ds]. Then the solution of Eq. (2) satisfies

lim inf
t→+∞

t−1
 t

0
x(s)ds ≥ b∗/â, a.s.

Particularly, if b∗ > 0, then the population represented by Eq. (2) is persistent in the mean a.s.

Proof. Without loss of generality, in the proof we suppose that b∗ > 0. For ∀ε > 0, there exists a T such that

t−1

 
0<tk<t

ln(1 + bk) +

 t

0
b(s)ds


≥ b∗ − ε/3, M1(t)/t ≥ −ε/3, ln x(0)/t ≥ −ε/3

for all t > T . Substituting these inequalities into Eq. (11) and noting that t−1
 t
0 a(s)x(s)ds ≤ ât−1

 t
0 x(s)ds, we obtain

ln x(t) ≥ νt − â
 t

0
x(s)ds; t > T ,

where ν = b∗ − ε. Let g(t) =
 t
0 x(s)ds; then we get

ln(dg/dt) ≥ νt − âg(t); t > T .

Consequently

exp{âg(t)}(dg/dt) ≥ exp{νt}, t > T .

Integrating this inequality from T to t leads to

â−1
[exp{âg(t)} − exp{âg(T )}] ≥ ν−1

[exp{νt} − exp{νT }].

Rewriting this inequality, we have

exp{âg(t)} ≥ exp{âg(T )} + âν−1 exp{νt} − âν−1 exp{νT }.

Taking logarithm of both sides gives

g(t) ≥ â−1 ln{âν−1 exp{νt} + exp{âg(T )} − âν−1 exp{νT }}.

That is to say

lim inf
t→+∞

t−1
 t

0
x(s)ds ≥ lim inf

t→+∞
â−1

{t−1 ln{âν−1 exp{νt} + exp{âg(T )} − âν−1 exp{νT }}}.

In view of the L’Hospital’s rule, we can observe that

lim inf
t→+∞

t−1
 t

0
x(s)ds ≥ lim inf

t→+∞
â−1

{t−1 ln[âν−1 exp(νt)]} = ν/â.

The desired assertion follows from the arbitrariness of ε. �

Now let us turn to studying the stochastic permanence of Eq. (2).
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Assumption 1. There are two positive constantsm and M such thatm ≤


0<tk<t(1 + bk) ≤ M for all t > 0.

Remark 4. Assumption 1 is easy to be satisfied. For example, if bk = exp{(−1)k+1/k2} − 1, then exp{0.75} <


0<tk<t(1 +

bk) < e for all t > t2. Thus 1 ≤


0<tk<t(1 + bk) ≤ e for all t > 0.

Theorem 6. Under Assumption 1. If b̌ = mint≥0[r(t) − 0.5σ 2(t)] > 0, then x(t) is stochastically permanent.

Proof. First of all, let us prove that for given 0 < ε < 1, there is a positive constant β such that lim inft→+∞ P {x(t) ≥ β} ≥

1 − ε. Define V1(y) = 1/y for y > 0. Using Itô’s formula to Eq. (7) results in

dV1(y) = −V1(y)


r(t) −


0<tk<t

(1 + bk)a(t)y


dt + V1(y)σ 2(t)dt − V1(y)σ (t)dB(t).

Since b̌ > 0, we can choose a positive constant θ such that b̌ > 0.5θσ̂ 2. Define V2(y) = (1+V1(y))θ . Applying Itô’s formula
again results in

dV2(y) = θ(1 + V1(y))θ−1dV1(y) + 0.5θ(θ − 1)(1 + V1(y))θ−2(dV1(y))2

= θ(1 + V1(y))θ−2


−(1 + V1(y))V1(y)


r(t) − a(t)


0<tk<t

(1 + bk)y



+ (1 + V1(y))V1(y)σ 2(t) + 0.5(θ − 1)V 2
1 (y)σ 2(t)


dt − θ(1 + V1(y))θ−1V1(y)σ (t)dB(t)

= θ(1 + V1(y))θ−2


− V 2

1 (y)[r(t) − 0.5σ 2(t) − 0.5θσ 2(t)]

+ V1(y)


−r(t) + σ 2(t) + a(t)


0<tk<t

(1 + bk)


+ a(t)


0<tk<t

(1 + bk)


dt

− θ(1 + V1(y))θ−1V1(y)σ (t)dB(t)

≤ θ(1 + V1(y))θ−2
{−V 2

1 (y)[b̌ − 0.5θσ̂ 2] + V1(y)[σ̂ 2 + âM] + âM}dt

− θ(1 + V1(y))θ−1V1(y)σ (t)dB(t). (14)

Now, choose κ sufficiently small to satisfy

0 <
κ

θ
< b̌ − 0.5θσ̂ 2.

Define V3(y) = exp{κt}V2(y). In view of Itô’s formula,

dV3(y) = κ exp{κt}V2(y)dt + exp{κt}dV2(y)

≤ θ exp{κt}(1 + V1(y))θ−2
{κ(1 + V1(y))2/θ − [b̌ − 0.5θσ̂ 2]V 2

1 (y) + V1(y)[σ̂ 2 + âM] + âM}dt

− θ exp{κt}(1 + V1(y))θ−1V1(y)σ (t)dB(t)

= θ exp{κt}(1 + V1(y))θ−2
{−[b̌ − 0.5θσ̂ 2 − κ/θ ]V 2

1 (y) + V1(y)[σ̂ 2 + âM + 2κ/θ ] + âM + κ/θ}dt

− θ exp{κt}(1 + V1(y))θ−1V1(y)σ (t)dB(t)
=: exp{κt}H(y)dt − θ exp{κt}(1 + V1(y))θ−1V1(y)σ (t)dB(t),

where

H(y) = θ(1 + V1(y))θ−2
{−[b̌ − 0.5θσ̂ 2 − κ/θ ]V 2

1 (y) + V1(y)[σ̂ 2 + âM + 2κ/θ ] + âM + κ/θ}.

Now let us prove H(y) is upper bounded in y > 0. Set K1 = b̌− 0.5θσ̂ 2 − κ/θ , K2 = σ̂ 2 + âM + 2κ/θ and K3 = âM + κ/θ .
Then K1 > 0, K2 > 0, K3 > 0 and

H(y) = θ


1 +

1
y

θ−2 
−

K1

y2
+

K2

y
+ K3


=: θ


1 +

1
y

θ−2

H̃(y).

Case (i). If 1
y ≥

K2+
√

K2
2 +4K1K3

2K1
=: K4, then H̃(y) ≤ 0; thus H(y) ≤ 0.
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Case (ii). If 0 < 1
y ≤ K4, then H̃(y) ≤

4K1K3+K2
2

4K1
. As for θ(1+

1
y )

θ−2, if θ ≥ 2, then θ(1+
1
y )

θ−2
≤ θ(1+ K4)

θ−2. If θ < 2, then

θ(1 +
1
y )

θ−2
≤ θ . Set K5 = max{θ(1 + K4)

θ−2, θ} and H1 = K5
4K1K3+K2

2
4K1

. Then we have shown that H(y) is upper bounded
for y > 0, namely supy>0 H(y) ≤ H1. Consequently,

dV3(y) ≤ H1 exp{κt}dt − θ exp{κt}(1 + V1(y))θ−1V1(y)σ (t)dB(t).

Integrating and then taking expectations, one can get that

E[V3(y(t))] = E[exp{κt}(1 + V1(y(t)))θ ] ≤ (1 + V1(y(0)))θ +
H1

κ
exp{κt}.

Consequently,

lim sup
t→+∞

E[V θ
1 (y(t))] ≤ lim sup

t→+∞

E[(1 + V1(y(t)))θ ] ≤
H1

κ
. (15)

In other words, we have shown that lim supt→+∞ E[1/yθ (t)] ≤ H1/κ =: H2. Then

lim sup
t→+∞

E[1/xθ (t)] = lim sup
t→+∞

 
0<tk<t

(1 + bk)

−θ

E[1/yθ (t)] ≤ m−θH2 := H3.

Thus for any ε > 0, set β = ε
1
θ /H

1
θ
3 , by Chebyshev’s inequality, we have

P {x(t) < β} = P {x−θ (t) > β−θ
} ≤

E[x−θ (t)]
β−θ

= βθE[x−θ (t)].

In other words, lim supt→+∞ P {x(t) < β} ≤ βθH3 = ε. Consequently

lim inf
t→+∞

P {x(t) ≥ β} ≥ 1 − ε.

Nextwe show that for arbitrary fixed ε > 0, there exists a positive constant δ such that lim inft→+∞ P {x(t) ≤ δ} ≥ 1−ε.
For arbitrarily given q > 0, applying Itô’s formula to Eq. (7), one can observe that

dyq(t) = qyq(t)


r(t) − a(t)


0<tk<t

(1 + bk)y(t) + 0.5(q − 1)σ 2(t)


dt + qσ(t)yq(t)dB(t)

≤ qyq(t)[r(t) − a(t)my(t) + 0.5(q − 1)σ 2(t)]dt + qσ(t)yq(t)dB(t).

Integrating from 0 to t and taking expectations, we obtain

E(yq(t)) − E(yq(0)) ≤ q
 t

0
E{yq(s)[r(s) − a(s)my(s) + 0.5(q − 1)σ 2(t)]}ds.

Hence dE(yq(t))
dt ≤ qE(yq(t))[r(t) + 0.5(q − 1)σ 2(t)] − ma(t)qE(yq+1(t)). Note that for 0 < r < p < +∞, we have the

following Hölder’s inequality

(E(yp))1/p ≥ (E(yr))1/r .

Choose p = q + 1 and r = q; then we get

E(yq+1) ≥ (E(yq))(q+1)/q.

Consequently

dE(yq(t))
dt

≤ qE(yq(t))[r(t) + 0.5(q − 1)σ 2(t)] − qma(t)E(yq(t))
q+1
q .

Denote n(t) = E(xq(t)); we have

dn
dt

≤ qn(t)[r(t) + 0.5(q − 1)σ 2(t) − ma(t)n1/q(t)] ≤ qn(t)[r̂ + 0.5qσ̂ 2 − mǎn1/q(t)].

Using the standard comparison theorem, we obtain that

lim sup
t→+∞

n(t) = lim sup
t→+∞

E(yq(t)) ≤


r̂ + 0.5qσ̂ 2

mǎ

q

=: G1(q). (16)
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Consequently,

lim sup
t→+∞

E(xq(t)) = lim sup
t→+∞

 
0<tk<t

(1 + bk)

q

E(yq(t)) ≤


M

r̂ + 0.5qσ̂ 2

mǎ

q

=: L(q).

Then the required assertion follows from Chebyshev’s inequality. �

4. Asymptotic pathwise estimation

In Section 3, we have studied the persistence and extinction of Eq. (2). Now let us further examine how this solution
pathwisely moves in R+.

Theorem 7. Under Assumption 1, the solution of Eq. (2) satisfies

lim sup
t→+∞

ln x(t)
ln t

≤ 1. (17)

If moreover, b̌ > 0, then the solution of Eq. (2) obeys

lim inf
t→+∞

ln x(t)
ln t

≥ −
σ̂ 2

2b̌
. (18)

Proof. Applying Itô’s formula to Eq. (7) results in

d(exp(t) ln y(t)) = exp(t) ln y(t)dt + exp(t)d ln y(t)

= exp(t)


ln y(t) + b(t) − a(t)


0<tk<t

(1 + bk)y(t)


dt + exp(t)σ (t)dB(t).

Thus, we have already shown that

exp(t) ln y(t) − ln y(0) =

 t

0
exp(s)


ln y(s) + b(s) − a(s)


0<tk<s

(1 + bk)y(s)


ds + M2(t), (19)

where M2(t) =
 t
0 exp(s)σ (s)dB(s). The quadratic forms ofM2(t) is

⟨M2(t),M2(t)⟩ =

 t

0
exp(2s)σ 2(s)ds.

In view of the exponential martingale inequality (see e.g. [26], p. 44),

P


sup

0≤t≤γ k
[M2(t) − 0.5 exp(−γ k)⟨M2(t),M2(t)⟩] > ρ exp(γ k) ln k


≤ k−ρ,

where ρ > 1 and γ > 0 are arbitrary. By virtue of Borel–Cantelli lemma (see e.g. [26], p. 7), for almost all ω ∈ Ω , there
exists k0(ω) such that for every k ≥ k0(ω),

M2(t) ≤ 0.5 exp(−γ k)⟨M2(t),M2(t)⟩ + ρ exp(γ k) ln k, 0 ≤ t ≤ γ k.

In other words,

M2(t) ≤ 0.5 exp(−γ k)
 t

0
exp(2s)σ 2(s)ds + ρ exp(γ k) ln k

for 0 ≤ t ≤ γ k. Substituting this inequality into (19) results in

exp(t) ln y(t) − ln y(0) ≤

 t

0
exp(s)


ln y(s) + b(s) − a(s)


0<tk<s

(1 + bk)y(s)


ds

+ 0.5 exp(−γ k)
 t

0
exp(2s)σ 2(s)ds + ρ exp(γ k) ln k

≤

 t

0
exp(s)[ln y(s) + b̂ − ǎmy(s) + 0.5σ̂ 2]ds + ρ exp(γ k) ln k,
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where in the last inequality, we have used the fact that s ≤ γ k. Note that for all y > 0, there exists a positive constant C1

such that ln y + b̂ − ǎmy + 0.5σ̂ 2 ≤ C1. In other words, for any 0 ≤ t ≤ γ k, we have

exp(t) ln y(t) − ln y(0) ≤ C1[exp(t) − 1] + ρ exp(γ k) ln k.

That is to say

ln y(t) ≤ exp(−t) ln y(0) + C1[1 − exp(−t)] + ρ exp(−t) exp(γ k) ln k.

If γ (k − 1) ≤ t ≤ γ k and k ≥ k0(ω), we have

ln y(t)/ ln t ≤ exp(−t) ln y(0)/ ln t + C1[1 − exp(−t)]/ ln t + ρ exp(−γ (k − 1)) exp(γ k) ln k/ ln t.

That is to say lim supt→+∞

ln y(t)
ln t ≤ ρ exp(γ ). Letting ρ → 1 and γ → 0 leads to lim supt→+∞

ln y(t)
ln t ≤ 1. Moreover, it

follows from Assumption 1 that

lim
t→+∞


0<tk<t

(1 + bk)

ln t
= 0. (20)

Then we obtain

lim sup
t→+∞

ln x(t)
ln t

= lim sup
t→+∞


0<tk<t

ln(1 + bk) + ln y(t)

ln t
= lim sup

t→+∞

ln y(t)
ln t

≤ 1.

Now let us prove (17). By (15), there exists a constant C2 > 0 such that

E[(1 + V1(y(t)))θ ] ≤ C2, t ≥ 0. (21)

At the same time, it follows from (14) that

dV2(y) ≤ θ(1 + V1(y))θ−2
{−V 2

1 (y)[b̌ − 0.5θσ̂ 2] + V1(y)[σ̂ 2 + âM] + âM}dt − θ(1 + V1(y))θ−1V1(y)σ (t)dB(t)

≤ θC3(1 + V1(y))θ − θ(1 + V1(y))θ−1V1(y)σ (t)dB(t) (22)

where C3 = max{|b̌ − 0.5θσ̂ 2|, 0.5[σ̂ 2 + âM], âM}. Let υ > 0 be sufficiently small for

θ


C3υ + 6υ0.5


σ̂ 2


< 0.5. (23)

Let k = 1, 2, . . . , making use of (22) gives that

E


sup
(k−1)υ≤t≤kυ

(1 + V1(y(t)))θ


≤ E(1 + V1(y((k − 1)υ)))θ + E


sup
(k−1)υ≤t≤kυ

 t

(k−1)υ
θC3(1 + V1(y(s)))θds


+ E


sup

(k−1)υ≤t≤kυ

 t

(k−1)υ
θ(1 + V1(y(s)))θ−1V1(y(s))σ (s)dB(s)

 . (24)

Compute that

E


sup
(k−1)υ≤t≤kυ

 t

(k−1)υ
θC3(1 + V1(y(s)))θds

 ≤ E
 kυ

(k−1)υ

θC3(1 + V1(y(s)))θ
 ds

≤ θC3υE


sup
(k−1)υ≤t≤kυ

(1 + V1(y(t)))θ


. (25)

At the same time, by Burkholder–Davis–Gundy inequality,

E


sup
(k−1)υ≤t≤kυ

 t

(k−1)υ
θ(1 + V1(y(s)))θ−1V1(y(s))σ (s)dB(s)


≤ 6E

 kυ

(k−1)υ
θ2(1 + V1(y(s)))2θ−2V 2

1 (y(s))σ 2(s)ds
0.5

≤ 6θ


σ̂ 2E
 kυ

(k−1)υ
(1 + V1(y(s)))2θds

0.5

≤ 6θυ0.5


σ̂ 2E


sup

(k−1)υ≤t≤kυ
(1 + V1(y(t)))θ


. (26)



M. Liu, K. Wang / Computers and Mathematics with Applications 63 (2012) 871–886 881

Substituting (25) and (26) into (24) results in

E


sup
(k−1)υ≤t≤kυ

(1 + V1(x(t)))θ


≤ E(1 + V1(x((k − 1)υ)))θ

+ θ


C3υ + 6υ0.5


σ̂ 2


E


sup
(k−1)υ≤t≤kυ

(1 + V1(x(t)))θ


.

It then follows from (21) and (23) that

E


sup
(k−1)υ≤t≤kυ

(1 + V1(y(t)))θ


≤ 2C2.

Let ε > 0 be arbitrary. Then by the Chebyshev inequality, we obtain

P


ω : sup

(k−1)υ≤t≤kυ
(1 + V1(y(t)))θ > (kυ)1+ε


≤

2C2

(kυ)1+ε
, k = 1, 2, . . . .

An application of Borel–Cantelli lemma leads to that for almost all ω ∈ Ω , there is a random integer k0 = k0(ω) such that
for k ≥ k0 and (k − 1)υ ≤ t ≤ kυ ,

ln(1 + V1(y(t)))θ

ln t
≤

(1 + ε) ln(kυ)

ln((k − 1)υ)
.

In other words, we have shown that

lim sup
t→+∞

ln(1 + V1(y(t)))θ

ln t
≤ 1.

Recalling the definition of V1(y), we have lim supt→+∞

ln y−θ (t)
ln t ≤ 1. Consequently lim inft→+∞

ln y(t)
ln t ≥ −1/θ . But this holds

for any θ that obeys b̌ > 0.5θσ̂ 2, therefore

lim inf
t→+∞

ln y(t)
ln t

≥ −
σ̂ 2

2b̌
.

Then the required assertion (17) follows from (20) immediately. �

Theorem 7 indicates that for any ε > 0, there is a positive random variable Tε such that t−(0.5 ˆσ 2/b̌+ε)
≤ x(t) ≤ t1+ε for

t ≥ Tε with probability one. In other words, with probability one, the solution will not grow faster than t1+ε and will not
decay faster than t−(0.5 ˆσ 2/b̌+ε).

5. Global attractivity

Now let us study the global attractivity of Eq. (2).

Definition 4. Let x1(t), x2(t) be two arbitrary solutions of Eq. (2) with initial values x1(0), x2(0) > 0 respectively. If
limt→+∞ |x1(t) − x2(t)| = 0 a.s., then we say Eq. (2) is globally attractive.

To begin with, we prepare some useful lemmas.

Lemma 8 (See e.g. [27]). Suppose that an n-dimensional stochastic process X(t) on t ≥ 0 satisfies the condition

E|X(t) − X(s)|α ≤ c|t − s|1+β , 0 ≤ s, t < ∞,

for some positive constants α, β and c. Then there exists a continuous modification X̃(t) of X(t) which has the property that for
every ϑ ∈ (0, β/α) there is a positive random variable h(ω) such that

P


ω : sup

0<|t−s|<h(ω), 0≤s, t<∞

|X̃(t, ω) − X(t, ω)|

|t − s|ϑ
≤

2
1 − 2−ϑ


= 1.

In other words, almost every sample path of X̃(t) is locally but uniformly Hölder continuous with exponent ϑ .

Lemma 9. Let y(t) be a solution of (7) for any initial values y(0) = y0 > 0. If Assumption 1 holds, then almost every sample
path of y(t) is uniformly continuous for t ≥ 0.
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Proof. It follows from (16) that there is a T > 0, such that E(yq(t)) ≤ 1.5G1(q) for all t ≥ T . At the same time,
by the continuity of E(yq(t)), it is clear that there is a G2(q) > 0 such that E(yq(t)) ≤ G2(q) for t ≤ T . Denote
G(q) = max{1.5G1(q),G2(q)}; then we have for all t ≥ 0,

E(yq(t)) ≤ G(q).

On the other hand, Eq. (7) is equivalent to the following integral equation

y(t) = y0 +

 t

0
y(s)


r(s) − a(s)


0<tk<s

(1 + bk)y(s)


ds +

 t

0
σ(s)y(s)dB(s).

At the same time, it is easy to see that

E

y(t)

r(t) − a(t)


0<tk<t

(1 + bk)y(t)


q

= E


|y(t)|q

r(t) − a(t)


0<tk<t

(1 + bk)y(t)


q

≤ 0.5E|y(t)|2q + 0.5E

r(t) − a(t)


0<tk<t

(1 + bk)y(t)


2q

≤ 0.5G(2q) + 22q−2(|r̂|2q + |âM|
2pE|y(t)|2q)

= 0.5G(2q) + 22q−2(|r̂|2p + |âM|
2qG(2q)) =: K1(q).

Making use of the moment inequality for stochastic integrals (see e.g. [26], Theorem 2.11 on p. 69) gives that for 0 ≤ t1 ≤ t2
and q > 2,

E
 t2

t1
σ(s)y(s)dB(s)

q ≤ (σ̂ 2)q

q(q − 1)

2

q/2
(t2 − t1)(q−2)/2

 t2

t1
E|y(s)|qds

≤ (σ̂ 2)q

q(q − 1)

2

q/2
(t2 − t1)q/2G(q).

Then for 0 < t1 < t2 < ∞, t2 − t1 ≤ 1, 1/q + 1/p = 1, one can derive that

E(|y(t2) − y(t1)|q) = E


 t2

t1
y(s)


r(s) − a(s)


0<tk<s

(1 + bk)y(s)


ds +

 t2

t1
σ(s)x(s)dB(s)


q

≤ 2q−1E


 t2

t1
y(s)


r(s) − a(s)


0<tk<s

(1 + bk)y(s)


ds


q

+ 2q−1E
 t2

t1
σ(s)x(s)dB(s)

q

≤ 2q−1(t2 − t1)q/p
 t2

t1
E

y(s)

r(s) − a(s)


0<tk<s

(1 + bk)y(s)


q

ds

+ 2q−1(σ̂ 2)q

q(q − 1)

2

q/2
(t2 − t1)q/2G(p)

= 2q−1(t2 − t1)q/p+1K1(q) + 2q−1(σ̂ 2)q

q(q − 1)

2

q/2
(t2 − t1)q/2G(q)

≤ 2q−1(t2 − t1)q/2

(t2 − t1)q/2 +


q(q − 1)

2

q/2
K2(q)

≤ 2q−1(t2 − t1)q/2

1 +


q(q − 1)

2

q/2
K2(q),

where K2(q) = max{K1(q), ( ˆσ 2
1 )pG(q)}. Then it follows from Lemma 8 that almost every sample path of y(t) is locally but

uniformly Hölder-continuous with exponent ϑ for every ϑ ∈ (0, q−2
2q ) and therefore almost every sample path of y(t) is

uniformly continuous on t ≥ 0. �

Lemma 10 (See e.g. [28]). Let f be a non-negative function defined on R+ such that f is integrable on R+ and is uniformly
continuous on R+. Then limt→+∞ f (t) = 0.

Now, we are in the position to give our main result of this section.
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Theorem 11. If Assumption 1 holds, then Eq. (2) is globally attractive.

Proof. Let x1(t) and x2(t) be two arbitrary solutions of Eq. (2) with initial values x1(0), x2(0) > 0 respectively. Suppose that
the solution of Eq.

dy(t) = y(t)


r(t) −


0<tk<t

(1 + bk)a(t)y(t)


dt + σ(t)y(t)dB(t); y(0) = x1(0)

is y1(t) and the solution of Eq.

dy(t) = y(t)


r(t) −


0<tk<t

(1 + bk)a(t)y(t)


dt + σ(t)y(t)dB(t); y(0) = x2(0)

is y2(t). Then we have x1(t) =


0<tk<t(1 + bk)y1(t), x2(t) =


0<tk<t(1 + bk)y2(t). Define V̄ (t) = | ln y1(t) − ln y2(t)|.
Then V̄ (t) is continuous and positive on t ≥ 0. A calculation of the right differential d+V̄ (t) of V̄ (t), and making use of Itô’s
formula, we obtain

d+V̄ (t) = sgn(y1(t) − y2(t))d(ln y1(t) − ln y2(t))

= sgn(y1(t) − y2(t))


−


0<tk<t

(1 + bk)a(t)(y1(t) − y2(t))


dt

= −a(t)


0<tk<t

(1 + bk)|y1(t) − y2(t)|dt

≤ −mǎ|y1(t) − y2(t)|dt.

Integrating both sides and then taking the expectation, we can see that

V̄ (t) ≤ V̄ (0) − ǎm
 t

0
|y1(s) − y2(s)|ds.

Consequently,

V̄ (t) + ǎm
 t

0
|y1(s) − y2(s)|ds ≤ V̄ (0) < ∞.

Then it follows from V̄ (t) ≥ 0 that |y1(t)− y2(t)| ∈ L1[0, ∞). Then it follows from Lemmas 9 and 10 that limt→+∞ |y1(t)−

y2(t)| = 0. Thus

lim
t→+∞

|x1(t) − x2(t)| = lim
t→+∞


0<tk<t

(1 + bk)|y1(t) − y2(t)| ≤ M lim
t→+∞

|y1(t) − y2(t)| = 0.

This completes the proof. �

To close this section, we prepare a corollary which will be used later.

Corollary 12. Consider Eq. (1), then

(A ) (i) If b̄∗
= lim supt→+∞ t−1

 t
0 b(s)ds < 0, then x(t) represented by Eq. (1) goes to extinction a.s.;

(ii) If b̄∗
= 0, then x(t) is non-persistent in the mean a.s.;

(iii) If b̄∗ > 0, then x(t) is weakly persistent a.s.;
(iv) If b̄∗ = lim inft→+∞ t−1

 t
0 b(s)ds > 0, then x(t) is persistent in the mean a.s.;

(v) If b̌ = mint≥0[r(t) − 0.5σ 2(t)] > 0, then x(t) is stochastically permanent.
(B) Eq. (1) is globally attractive.

6. Concluding remarks and examples and numerical simulations

In this paper, a stochastic logistic equation with impulsive perturbations is proposed and studied. We first give a new
definition of a solution of ISDE, which is more convenient for use than the existing one (see Remark 1). Using this new
definition, we show that our model has a global and positive solution for any positive initial condition and obtain its explicit
expression. Then we establish the sufficient conditions for extinction, non-persistence in the mean, weak persistence,
persistence in the mean and stochastic permanence of the solution. The critical value between weak persistence and
extinction is obtained. In addition, the limit of the average in time of the sample path of the solution is estimated by two
constants. Afterwards, the lower-growth rate and the upper-growth rate of the solution are estimated. Finally,we investigate
the global attractivity. More precisely, if ǎ > 0,
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(A) Eq. (2) has an explicit solution of the form:

x(t) =


0≤tk<t

(1 + bk) exp
 t

0 [r(s) − 0.5σ 2(s)]ds +
 t
0 σ(s)dB(s)


1/x0 +

 t
0


0<tk<s

(1 + bk)a(s) exp
 s

0 [r(τ ) − 0.5σ 2(τ )]dτ +
 s
0 σ(τ)dB(τ )


ds

.

(B) (a) If b∗
= lim supt→+∞ t−1

[


0<tk<t ln(1 + bk) +
 t
0 b(s)ds], then x(t) goes to extinction a.s.;

(b) If b∗
= 0, then x(t) is non-persistent in the mean a.s.;

(c) If b∗ > 0, then x(t) is weakly persistent a.s.;
(d) If b∗ = lim inft→+∞ t−1

[


0<tk<t ln(1 + bk) +
 t
0 b(s)ds] > 0, then x(t) is persistent in the mean a.s.;

(e) If b̌ = mint≥0[r(t) − 0.5σ 2(t)] > 0 and moreover, Assumption 1 holds, then x(t) is stochastically permanent.
(C) The solution x(t) obeys

b∗/â ≤ lim inf
t→+∞

t−1
 t

0
x(s)ds ≤ lim sup

t→+∞

t−1
 t

0
x(s)ds ≤ b∗/ǎ a.s.

(D) Under Assumption 1, the solution of Eq. (2) satisfies

lim sup
t→+∞

ln x(t)
ln t

≤ 1 a.s.

If moreover, b̌ > 0, then

lim inf
t→+∞

ln x(t)
ln t

≥ −0.5σ̂ 2/b̌ a.s.

(E) If Assumption 1 holds, then Eq. (2) is globally attractive.

The present paper is the first attempt, so far as our knowledge is concerned, to investigate the stochastic population systems
with impulsive perturbations.

Note that if the impulsive perturbations are bounded (i.e. Assumption 1 holds), then b∗
= b̄∗ and by comparing our

Theorems 1–7 and 11 with Corollary 12 we can find that the impulse does not affect the properties including extinction,
persistence, stochastic permanence, global attractivity. However, if the impulsive perturbations are unbounded, some
properties including persistence and extinction could be changed significantly. To see this more clearly, let us consider
the following examples.

Example 1. Consider the following model
dx(t) = x(t)(r(t) − a(t)x(t))dt + σ(t)x(t)dB(t), t ≠ tk, k ∈ N
x(t+k ) − x(tk) = bkx(tk), k ∈ N (27)

where tk = 10k, r(t) = 0.4 + 0.1 sin t, a(t) = 1 − cos 2t, σ (t) =
√
0.802 + 0.2 sin 2t . First of all, set bk = 0 for all k ∈ N

(i.e., there are no impulsive perturbations), then we have b̄∗
= b∗

= −0.001 < 0. Then it follows from Corollary 12 that
the population x(t) goes to extinction; see Fig. 1(a). However, if we take the impulsive perturbations into account by setting
bk = exp{0.5} − 1 for all k ∈ N , then b∗

= 0.499 > 0. By Theorem 4, we can obtain that the population x(t) is weakly
persistent; see Fig. 1(b).

Example 2. Consider Eq. (27) again, where tk = 10k, r(t) = 0.4 + 0.1 sin 2t , a(t) = 1 − cos t, σ (t) =
√
0.78 + 0.2 sin t .

First of all, set bk = 0 for k ∈ N , then we have b̄∗
= b∗

= 0.01 > 0. Making use of Corollary 12, one can see that the
population x(t) is weakly persistent; see Fig. 2(a). However, if we set bk = exp{−1} − 1 for k ∈ N , then b∗

= −0.99 < 0.
In view of Theorem 2, we can get that the population x(t) goes to extinction; see Fig. 2(b).

Example 3. Consider Eq. (27) again, where tk = k, a(t) = 1 − cos t, bk = exp{(−1)k+1/k2} − 1, then exp{0.75} <
∞

k=1(1 + bk) < e. First, suppose that r(t) = 0.4 + 0.1 sin 2t , σ(t) =
√
0.7 + 0.2 sin t . Then it follows from Theorem 6

that the population represented by Eq. (27) is stochastically permanent; Fig. 3 confirms this. Now suppose that r(t) =

0.45 + 0.2 sin 2t, σ (t) =
√
0.8 + 0.1 sin 2t , x1(0) = 0.08 and x2(t) = 0.02. An application of Theorem 11, we obtain that

Eq. (27) is globally attractive; see Fig. 4.

This paper devotes to studying Eq. (2) which is basic and important. Our results are presented for an one dimensional
system, part methods developed here are also applicable to Lotka–Volterra systems with two or more species, and we leave
this for future work.
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a b

Fig. 1. Eq. (27) for tk = 10k, r(t) = 0.4 + 0.1 sin t, a(t) = 1 − cos 2t, σ (t) =
√
0.802 + 0.2 sin 2t , x(0) = 0.1, step size 1t = 0.001. The horizontal axis

in this and following figures represents the time t . (a): bk = 0, k ∈ N; (b): bk = exp{0.5} − 1, k ∈ N .

a b

Fig. 2. Eq. (27) for tk = 10k, r(t) = 0.4 + 0.1 sin 2t , a(t) = 1 − cos t, σ (t) =
√
0.78 + 0.2 sin t., x(0) = 0.1, 1t = 0.001. (a): bk = 0, k ∈ N;

(b): bk = exp{−1} − 1, k ∈ N .

Fig. 3. Eq. (27) for tk = k, a(t) = 1 − cos t, bk = exp{(−1)k+1/k2} − 1, r(t) = 0.4 + 0.1 sin 2t, σ (t) =
√
0.7 + 0.2 sin t , x(0) = 0.05, 1t = 0.001.
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Fig. 4. Eq. (27) for tk = k, a(t) = 1 − cos t, bk = exp{(−1)k+1/k2} − 1, r(t) = 0.45 + 0.2 sin 2t, σ (t) =
√
0.8 + 0.1 sin 2t , x1(0) = 0.08, x2(t) = 0.02,

1t = 0.001.
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