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a b s t r a c t

In this paper we study a class of preconditioners that satisfy the so-called left and/or
right filtering conditions. For practical applications, we use a multiplicative combination
of filtering based preconditioners with the classical ILU(0) preconditioner, which is known
to be efficient. Although the left filtering condition has amore sound theoreticalmotivation
than the right one, extensive tests on convection–diffusion equations with heterogeneous
and anisotropic diffusion tensors reveal that satisfying left or right filtering conditions
lead to comparable results. On the filtering vector, these numerical tests reveal that e =

[1, . . . , 1]T is a reasonable choice, which is effective and can avoid the preprocessing
needed in other methods to build the filtering vector. Numerical tests show that the
composite preconditioners are rather robust and efficient for these problemswith strongly
varying coefficients.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Large sparse linear systems of equations

Ax = b (1)

with

A =


D1 U1

L1 D2
. . .

. . .
. . . Unx−1

Lnx−1 Dnx

 ∈ Rn×n, b ∈ Rn

arise in many applications. In present work, we consider the preconditioning techniques for linear systems of form (1)
generated from the discretization of the following convection–diffusion problem by a finite volumemethod on a structured
grid in two and three dimensions

div(a(x)u) − div(κ(x)∇u) = f in Ω

u = 0 on ∂ΩD
∂u
∂n

= 0 on ∂ΩN

(2)
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where Ω = [0, 1]n (n = 2, or 3), ∂ΩN = ∂Ω \ ∂ΩD. The vector field a, and the tensor κ are the given coefficients of
the partial differential operator. In the 2D case, we have ∂ΩD = [0, 1] × {0, 1}, and in the 3D case, we have ∂ΩD =

[0, 1] × {0, 1} × [0, 1]. Due to the discontinuous coefficients in the PDE problems and the size of A, preconditioning
plays an important role in improving the efficiency of iterative solvers. It is generally recognized that pointwise incomplete
factorization preconditioners, e.g. ILU(0) and MILU [1,2] are not efficient for such kind of problems. Algebraic multigrid
methods [3,4] have been proved successful for a wide class of problems of form (1). Another type of popular preconditioning
technique is based on the block incomplete factorization of the coefficient matrix A, and it has been discussed in [5–13].

In this paper we study a class of preconditioners that satisfy the so-called left and/or right filtering conditions. The formal
definitions are given as follows.

Definition 1. A preconditioner M satisfies the right filtering property if

Ag = Mg (3)

where g is a filtering vector.

Definition 2. A preconditioner M satisfies the left filtering property if

gTA = gTM (4)

where g is a filtering vector.

Right filtering conditions are used to design preconditioners in [13,12,14–17] for tridiagonal blockmatrices. Left filtering
is used in MILU [6] and in a very popular preconditioner in the oil industry called nested factorization [18,19]. With an
appropriate choice of the starting vector, the Krylov subspace methods preconditioned by a left filtering preconditioner
are able to make the residual vector orthogonal with the left filtering vector throughout the iterations. This property is
important in oil industry. Several filtering vectors have been considered in the literature: a vector of all ones in MILU and
nested factorization, sine functions in [13], eigenvectors associatedwith certain generalized eigenvalue problems in [12,14],
adaptive test vectors in [15], and Ritz vectors in [20].

We introduce a new preconditioner that satisfies both left and right filtering conditions. It is based on the tangential
filtering preconditioner considered earlier in [20]. The preconditioner constructed by this approach is referred to as the
two sides tangential filtering decomposition preconditioner and is denoted as Mlr . This difference makes sense only for
nonsymmetric problems.

Our main goal is to study the behavior of the preconditioners based on left and/or right filtering. Our study is based on
extensive experimental tests that address several issues of interest:
• left and/or right filtering conditions,
• composite preconditioner based on an ILU(0) and filtering preconditioners,
• choice of the filtering vectors.

Our study is based on composite preconditioners since it has been observed in [20] that the convergence of Krylov
subspacemethods is improvedwhena filtering preconditioner is combinedwith an ILU(0)preconditioner, denotedbyMilu in
this paper. This is because ILU(0) preconditioner can be very efficient tomakemost of the eigenvalues of the preconditioned
matrix around 1, whereas this preconditioner has difficulties in removing the eigenvalues that are close to 0 [21,22]. We
consider the composite preconditioners implicitly defined by

M(r)
c = (M−1

+ M−1
ilu − M−1

ilu AM
−1)−1 (5)

and

M(l)
c = (M−1

+ M−1
ilu − M−1AM−1

ilu )−1. (6)

If M has the right filtering property, it is shown later in the paper that this property is inherited by M(r)
c . Also, if M has

the left filtering property, then it is also inherited byM(l)
c . Here the subscript c refers to the composite preconditioner, while

the superscript (r) ((l)) refers to the fact that the corresponding composite preconditioner inherits the right (left) filtering
property.

The choice of the filtering vector is an important issue. In our tests we compare the use of the Ritz vector (corresponding
to the smallest eigenvalue in modulus) with the use of the vector e = [1, 1, . . . , 1]T , and their combination on both left and
right filtering conditions.

Our findings are as follows:
• Thenumerical experiments reveal that on our test problems, there is little difference betweenusing the right combination

approach (5) and the left combination approach (6).
• The composite preconditioner based on a combination ofMlr andMilu is robust, and converges much faster than a single

preconditioner. This is in accordance with the results presented in [20]. Spectrum analysis shows that the composite
preconditioners benefit from each of the preconditioners, and can make the spectrum of the preconditioned matrix well
clustered at one. Several examples are given to illustrate the spectrum distribution of the preconditioned matrices.
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• The numerical results show that for our test problems e = [1, 1, . . . , 1]T is an appropriate choice for the filtering vector.
The preconditioner based on this choice is as efficient as the preconditioners obtained when other vectors are used.
However other vector choices need a preprocessing phase to construct the filtering preconditioner, and hence an overall
more number of iterations. This represents hence an improvement over the preconditioner used for example in [20].

The paper is organized as follows. In Section 2 we briefly review right and left filtering based preconditioners and we
introduce the two sides filtering decomposition. The properties of the two sides tangential filtering preconditioner and the
composite preconditioners are analyzed in Section 3. Numerical tests are described in Section 4. Finally, we conclude the
paper in Section 5, and present some representative spectrum plots of the preconditioned matrices in the Appendix.

2. Tangential filtering decomposition

In this section, we give the definitions of the left and right filtering conditions, and then we introduce the two sides
tangential filtering preconditioner that satisfies both the left and right filtering conditions.

We refer to the diagonal matrix constructed from the vector v as Diag(v), and to the block diagonal matrix constructed
from the blocks A0, A1, . . . , An as B Diag(A1, A2, . . . , An). The elementwise vector division is denoted by ./.

2.1. Filtering conditions

Right filtering conditions are used in the design of several preconditioners, as for example in [20,16,17,12,14,15,13]. We
describe here more in detail the low frequency tangential filtering preconditioner introduced in [20], which is used later
to develop the two sides tangential filtering preconditioner. In this paper, we refer to this preconditioner with the right
tangential filtering property (3) as Mr .

Definition 3. The right tangential filtering preconditioner Mr of A from (1) is defined by an incomplete block factoriza-
tion [20]

Mr =


T̃1
L1 T̃2

. . .
. . .

Lnx−1 T̃nx



T̃−1
1

T̃−1
2

. . .

T̃−1
nx



T̃1 U1

T̃2
. . .

. . . Unx−1

T̃nx

 , (7)

and a filtering vector g = [gT
1 , . . . , gT

nx ]
T . The diagonal blocks are computed as

T̃i =


D1, i = 1,
Di − Li−1(2βi−1 − βi−1T̃i−1βi−1)Ui−1, 1 < i ≤ nx.

(8)

where βi−1 is a diagonal approximation of T̃−1
i−1, i = 2, . . . , nx, computed as

βi−1 = Diag(T̃−1
i−1Ui−1gi./(Ui−1gi)). (9)

Suppose g is an eigenvector of A associated with its smallest (in modulus) eigenvalue, and Mr is the preconditioner
constructed by using g as a right filtering vector. Then

M−1
r Ag = g,

which implies that g becomes an eigenvector of M−1
r A associated with eigenvalue 1. Roughly speaking, the right filtering

preconditioner is able to move the ‘‘unwanted’’ eigenvalues to 1, such that the convergence of the preconditioned iterative
method can be efficiently accelerated.

An interesting observation is thatwith an appropriate choice ofβi−1 in Definition 3, a preconditioner that satisfies the left
filtering property can be obtained. The following definition introduces this preconditioner, that we refer to as left tangential
filtering preconditionerMl.

Definition 4. The left tangential filtering preconditionerMl of A from (1) is defined by an incomplete block factorization

Ml =


T̃1
L1 T̃2

. . .
. . .

Lnx−1 T̃nx



T̃−1
1

T̃−1
2

. . .

T̃−1
nx



T̃1 U1

T̃2
. . .

. . . Unx−1

T̃nx

 , (10)



2650 L. Grigori et al. / Journal of Computational and Applied Mathematics 235 (2011) 2647–2661

and a filtering vector g = [gT
1 , . . . , gT

nx ]
T . The diagonal blocks are computed as

T̃i =


D1, i = 1,
Di − Li−1(2βi−1 − βi−1T̃i−1βi−1)Ui−1, 1 < i ≤ nx.

(11)

where βi−1 is a diagonal approximation to T̃−1
i−1, i = 2, . . . , nx, computed as

βi−1 = Diag(T̃−T
i−1L

T
i−1gi./L

T
i−1gi). (12)

The left filtering condition is also used implicitly in the MILU preconditioner [6] and in a very popular preconditioner
in the oil industry called nested factorization [18]. Both preconditioners satisfy the left filtering condition with a special
filtering vector e whose elements are all 1.

The left filtering condition has amore sound theoreticalmotivation than the right one. It can be viewed as the constrained
residual acceleration method, which is an old technique that has been used in petroleum reservoir simulation since
1970s [23,24]. In contrast to the right filtering preconditioner, the residual constraint is able to eliminate the eigenspace
corresponding to the smallest eigenvalues of the iteration matrix. This property has been analyzed in [23]. We remark that
the left filtering preconditioner inherits this nice property for well chosen left filtering vectors.

By choosing the starting vector appropriately, Krylov subspace methods preconditioned by a left filtering preconditioner
are able to make the residual vector orthogonal with respect to the left filtering vector throughout the iterations, this
property has been mentioned in [18,23]. For completeness, we give the following theorem for preconditioned Krylov
subspace methods.

Theorem 1. Taking Ml with left filtering property (4) as a preconditioner, and using M−1
l r0 as a starting vector to construct a

Krylov subspace, then we have

gT rk = 0, (13)

where rk = b − Axk, with xk is the kth approximate solution computed by a Krylov subspace method and x0 = M−1
l b.

Proof. Suppose left preconditioning is used, then the kth approximate solution xk is derived from the combined subspace

xk ∈ x0 + K(r̂0,M−1
l Ar̂0, . . . , (M−1

l A)k−1r̂0) with r̂0 = M−1
l r0.

Thus, xk takes the form of

xk = x0 + Pk−1(M−1
l A)M−1

l r0,

where Pk−1(λ) is a polynomial of degree no more than k − 1. Therefore we have

rk = r0 − APk−1(M−1
l A)M−1

l r0
= r0 − Pk(AM−1

l )r0.

As

gT r0 = gT (b − Ax0)
= gT (b − AM−1b)
= gT (M − A)M−1b
= 0.

So suppose Pk(λ) =
∑k

i=1 αiλ
i, then

gT rk = gT r0 − gTPk(AM−1
l )r0

=

k−
i=1

αigT (I − (AM−1
l )i)r0

=

k−
i=1

αigT (I − AM−1
l )Qi−1(AM−1

l )r0

=

k−
i=1

αigT (Ml − A)M−1
l Qi−1(AM−1

l )r0

= 0,

where Qi−1(λ) =
1−λi

1−λ
is a polynomial of degree i − 1, for each i = 1, . . . , k. �
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If g = [1, . . . , 1]T , then we have sum(rk) = 0 throughout the iterations, i.e., the sum of the residual components is zero.
This property is very important in improving the convergence rate and the acceptability of the interim solutions in reservoir
simulations [25,18].

2.2. Two sides tangential filtering decomposition

In this subsection, we introduce the two sides tangential filtering decomposition. One of the motivations behind this
preconditioner comes from the following observation. Suppose that we have two approximations βi−1 and γi−1 of T̃−1

i−1.
Assume that the approximations satisfy

‖I − T̃i−1βi−1‖ ≤ α < 1 and ‖I − T̃i−1γi−1‖ ≤ α < 1

respectively. Then we can combine the two approximations as

Mβγ = βi−1 + γi−1 − γi−1T̃i−1βi−1.

By the assumptions, it holds that

‖I − T̃i−1Mβγ ‖ ≤ ‖I − T̃i−1βi−1‖ ‖I − T̃i−1γi−1‖ ≤ α2.

Therefore,Mβγ should be a better approximation of T̃−1
i−1 than just using βi−1 or γi−1, if the above assumptions are satisfied.

Definition 5. The two sides tangential filtering preconditionerMlr is defined by the incomplete block factorization

Mlr =


T̃1
L1 T̃2

. . .
. . .

Lnx−1 T̃nx



T̃−1
1

T̃−1
2

. . .

T̃−1
nx



T̃1 U1

T̃2
. . .

. . . Unx−1

T̃nx

 , (14)

along with left filtering vector f = [f1, f2, . . . , fnx ]
T and right filtering vector g = [g1, g2, . . . , gnx ]

T , where the diagonal
blocks T̃i are formed by

T̃i =


D1, i = 1,
Di − Li−1(βi−1 + γi−1 − γi−1T̃i−1βi−1)Ui−1, 1 < i ≤ nx.

(15)

The matrices βi−1 and γi−1 are diagonal approximations of T̃−1
i−1, computed by

βi−1 = Diag(T̃−1
i−1Ui−1fi./Ui−1fi), (16)

and

γi−1 = Diag(T̃−T
i−1L

T
i−1gi./L

T
i−1gi). (17)

We should point out that the notations T̃i used in (15) are the same with the ones used in formula (8). By setting Θi,i−1 =

Li−1γi−1 and Θi−1,i = βi−1Ui−1, it is not difficult to find that (15) reduces to the formula

T̃i =


D1, i = 1,
Di − Θi,i−1Ui−1 + Li−1Θi−1,i − Θi,i−1T̃i−1Θi−1,i, 1 < i ≤ nx,

proposed in [14] for nonsymmetric problems. In practical applications, the approach of constructing the approximations
discussed in this paper is quite different from that of [14], where a symmetrization is carried out before determining the
transfer matrices Θi,j. Hence the filtering properties do not exist any longer.

The following lemma and theorem show that the two sides tangential filtering preconditioner Mlr satisfies both the left
and the right filtering conditions.

Lemma 1. If the matrices (T̃i)2≤i≤nx are invertible, then we have

Mlr − A = B Diag(N1,N2, . . . ,Nnx),

where

Ni =


0, i = 1,
Li−1(γi−1T̃i−1 − I)T̃−1

i−1(T̃i−1βi−1 − I)Ui−1, 2 ≤ i ≤ nx.
(18)
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Proof. From the induction formula (15), it is easy to see that

N1 = 0,

and

Ni = Li−1(−γi−1 − βi−1 + γi−1T̃i−1βi−1 + T̃−1
i−1)Ui−1, 2 ≤ i ≤ nx,

or written in compact form

Ni = Li−1(γi−1T̃i−1 − I)T̃−1
i−1(T̃i−1βi−1 − I).

Thus (18) holds. �

Theorem 2. The two sides tangential filtering preconditioner Mlr as described in Definition 5 satisfies the left filtering condition
on the vector g and the right filtering condition on the vector f, that is

gT (Mlr − A) = 0, (19)

and

(Mlr − A)f = 0. (20)

Proof. From Lemma 1 and the definition of diagonal matrices βi−1 and γi−1 in Definition 5, the following two relations

(T̃i−1βi−1 − I)Ui−1fi = 0

and

gT
i Li−1(γi−1T̃i−1 − I) = 0

are satisfied. Hence the theorem holds. �

In the rest of this section we give several properties of the two sides tangential filtering preconditioner. We use A ≻ B
(A ≽ B) to denote that A − B is symmetric positive definite (semidefinite). Consider the two sides tangential filtering
preconditioner Mlr given in Definition 5. In the following discussions, we always assume g = f is used in the symmetric
case, then it is obvious that the approximations βi = γi. The following lemma has been established in [20].

Lemma 2. If A ≻ 0, then matrices T̃i ≽ Ti, 1 ≤ i ≤ nx − 1. Moreover,Mlr ≻ 0 and Mlr − A ≽ 0 hold.

Based on Lemma 2 and Refs. [26,3,27], we have the following theorem.

Theorem 3. If A ≻ 0, andMlr is the two sides tangential filtering decomposition preconditioner then

A = Mlr − Nlr , (21)

is a P-regular splitting, therefore ρ(M−1
lr Nlr) < 1.

2.3. On the choice of the filtering vectors

The choice of the filtering vector is an important issue, and is widely studied in [20,16,17,28,12,14,15]. Generally, the
filtering vector should enable the preconditioner to effectively damp the error components in different frequencies. It has
been suggested in [12,14,13] that several preconditioners should be constructed by using different types of filtering vectors.
Particularly, the sine function

(f j)k = sin(πωjhk)

is considered in [13], where h is the grid size, ωj is the frequency. The filtering vectors are generalized to eigenvectors
associated with a generalized eigenvalue problem in [12,14]. The number of filtering vectors is suggested to be proportional
to log2(n). Then the final preconditioning process is equivalent to implementing a single preconditioner that is formed by
combining these different preconditioners in a multiplicative way. For a special class of model problems, the convergence
rate is proven to be independent of the number of unknowns. However, there are some difficult cases on which the
preconditioned iterative solver is not efficient. As an improvement, an adaptive filtering approach is considered in [15]. The
method uses a sequence of filtering vectors (error approximations) that can be computed adaptively. There are also some
inexact filtering decompositions, for example the tangential decomposition [16] and two-frequency decomposition [17],
which have the average filtering condition, not the exact one. The methods of using a sequence of filtering preconditioners
are appealing, but considerable setup time and memory are needed [29].

In [20], the authors propose a low frequency tangential filtering decomposition, which forms preconditioners with right
filtering property. By combining the filtering preconditioner with the classical ILU(0) preconditioner in a multiplicative
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way, a composite preconditioner is analyzed. The filtering vector is chosen as the Ritz vector corresponding to the lowest
eigenvalue of the preconditioned matrix (by ILU(0)). The approach has the merit of efficiently smoothing both the high and
the low frequency error components. However, a preprocessing is still needed to generate the filtering vector, which causes
extra computation time.

In this paper, we recommend to use e = [1, 1, . . . , 1]T as both the left and the right filtering vectors. As it will be
illustrated by the numerical examples, using e as the filtering vector is robust and generally better than other vectors in
terms of iterations. Moreover, this choice can save the preprocessing that is needed in other methods to form the filtering
vectors. Therefore, the choice for the filtering vector can be much more efficient in terms of total computational cost and
solution time.

On the left filtering vector, we believe that using e as the filtering vector is especially important. According to the analysis
in [25,18,28,23], such kind of left filtering is equivalent to imposing a zero sum constraint on the residual vectors computed
by the preconditioned iterative solver. By setting an appropriate initial approximate solution, this constraint ensures the
mass conservation property,which is very important for solving linear systems arising from reservoir simulations [25,18,23].

On the right filtering vectors, we have tried other choices, e.g. Ritz vectors. However, this strategy is not as efficient
from the view point of computational cost. To further exploit the potential power of the tangential frequency filtering
preconditioner, we also test and compare different combination approaches of the left and right filtering vectors, like using
e as the left filtering vector, and the Ritz vector as right filtering vector, and so on (see the numerical examples in Section 4).
It is possible to explore other better choices of the right filtering vectors. However, we believe that the preconditioner using
e as the filtering vector is well suited for our problems arising from the discretization of structured grids.

3. Analysis of composite preconditioning techniques

It is well known that the ILU(0) preconditioner Milu is quite efficient in damping the high frequency error components
of the coefficient matrix, whereas the low frequency errors are difficult to damp. Therefore, the asymptotic convergence
rate of iterative methods are dominated by the low frequency error components such that the asymptotic behavior of the
preconditioned matrix with ILU(0) is generally not better than that of the original matrix [21,22]. It is proposed in [20]
to combine the ILU(0) preconditioner with the tangential filtering preconditioner so as to circumvent the inefficiency of a
single preconditioner. In this paper, we consider to combine the newly built two sides tangential filtering preconditioner
with the ILU(0) preconditioner.

Suppose

A = Milu − Nilu

is the splitting associated with the ILU(0) preconditionerMilu.
There are two multiplicative approaches to combine the preconditionersMlr and Milu,

M(r)
c = (M−1

lr + M−1
ilu − M−1

ilu AM
−1
lr )−1 (22)

and

M(l)
c = (M−1

lr + M−1
ilu − M−1

lr AM−1
ilu )−1. (23)

Here the subscript c refers to the composite preconditioner, where the superscript (r) ((l)) implies that the corresponding
preconditioner has the right (left) filtering property, as is illustrated by the following theorems.

Theorem 4. The composite preconditioner M(r)
c inherits the right filtering property (20), that is, if (Mlr − A)f = 0, then

(M(r)
c − A)f = 0. (24)

Proof. From (20) and (22) we have

M(r)
c

−1Af = M−1
ilu Af + M−1

lr Af − M−1
ilu AM

−1
lr Af

= M−1
ilu Af + f − M−1

ilu Af
= f,

which is equivalent to (M(r)
c − A)f = 0. �

Theorem 5. The composite preconditioner M(l)
c inherits the left filtering property (19), that is, if gT (Mlr − A) = 0, then

gT (M(l)
c − A) = 0. (25)

The proof proceeds similar to that of Theorem 4.
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Table 1
Comparison of two combination approaches.

h = 1/100 Advection–diffusion Non-homogeneous Skyscraper Convective skyscraper Anisotropic

M(l)
c 27 26 26 19 18

M(r)
c 27 26 25 19 17

Remarks. (1)When using the tangential filtering preconditionerMr proposed in [20] to combinewith ILU(0), the composite
preconditioner possesses the right filtering property if combination approach (22) is used. However, there is no filtering
property if combination approach (23) is used.

(2) For M(l)
c preconditioned Krylov subspace methods, if the starting vector x0 is chosen as x0 = (M(l)

c )−1b, then the sum of
the residual vector rk is equal to zero, i.e.,

eT rk = 0.

Now we regard composite preconditioners M(r)
c and M(l)

c as they are derived from the following splittings of A,
respectively.

A = M(r)
c − N(r)

c , A = M(l)
c − N(l)

c . (26)

For the corresponding fixed point iteration

xk+1 = M−1
c Ncxk + M−1

c b, (27)

withMc chosen asM(r)
c or M(l)

c , we have the following proposition which has been analyzed in [3].

Proposition 1. For the fixed point iteration (27), the usage of M(r)
c andM(l)

c as preconditioner leads to the same convergence rate.

For the fixed point iteration, from Proposition 1 we can see that there is no difference in convergence rate between
using the preconditioner M(r)

c or M(l)
c . For preconditioned Krylov subspace methods, we can also expect that the two

combination approaches will produce nearly the same results. This is exactly what is observed in the numerical tests. In
Table 1, the GMRES method preconditioned by two different combinative preconditioners (22) and (23) are compared by
some representative examples generated from the discretization of (2) with five different boundary conditions (see next
section of this paper). The tested matrices are two dimensional with mesh size h =

1
100 . From this table we can see that

there is at most a difference of one step in the number of iterations.
For a special class of matrices which often arise from discretization of elliptic and parabolic differential equations, the

following theorem reveals that the fixed point iteration (27) associated with the composite preconditioner is convergent,
and converges faster than just using the ILU(0) preconditioner or the two sides tangential filtering preconditioner Mlr . We
first recall a useful result which will be used in our proof. It has been established in [30] in a more general operator setting:

Lemma 3 (Ashby et al. [30]). If A is symmetric positive definite and G is A-self-adjoint in the sense that (Gu, v)A = (u,Gv)A,
then

‖G‖A = ρ(G).

Theorem 6. Assume A is a symmetric M-matrix, then the fixed point iteration (27) associated with one of the composite
preconditioners is convergent, i.e.

ρ(M−1
c Nc) ≤ ρ(M−1

ilu Nilu) · ρ(M−1
lr Nlr) < 1.

Proof. Firstly, for a symmetricM-matrix A, the splitting associated with theMilu preconditioner is regular splitting and thus
convergent [1,31], i.e. ρ(M−1

ilu Nilu) < 1. Secondly, from the definition of an M-matrix, we have that A is symmetric positive
definite. Therefore, from Theorem 3 we also have ρ(M−1

lr Nlr) < 1. Thirdly, as

((I − M−1
lr A)u, v)A = (u, (I − M−1

lr A)v)A

and

((I − M−1
ilu A)u, v)A = (u, (I − M−1

ilu A)v)A,
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whereu, v ∈ Rn and (u, v)A is the inner product induced by the SPDmatrixA. So both I−M−1
lr A and I−M−1

ilu A are self-adjoint
(or symmetric) with respect to the inner product induced by matrix A. Then based on Lemma 3, we have

‖I − M−1
lr A‖A = ρ(I − M−1

lr A)

and

‖I − M−1
lr A‖A = ρ(I − M−1

ilu A).

Therefore

ρ(M−1
c Nc) = ρ(I − M−1

c A)

≤ ‖I − M−1
c A‖A

≤ ‖I − M−1
lr A‖A · ‖I − M−1

ilu A‖A

= ρ(I − M−1
lr A) · ρ(I − M−1

ilu A)

= ρ(M−1
ilu Nilu) · ρ(M−1

lr Nlr)

< 1.

The proof is complete. �

For a symmetric M-matrix A, both λ(M−1
ilu A) and λ(M−1

lr A) are in interval (0, 1]. Therefore, the following result is an
immediate corollary of Theorem 6.

Corollary. Assume A is a symmetric M-matrix, then

ρ(M−1
c Nc) ≤ |1 − λmin(M−1

lr A)| · |1 − λmin(M−1
ilu A)|.

From the spectrum distribution plots (in the Appendix), it is easy to see that even though sometimes λmin(M−1
lr A) and

λmin(M−1
ilu A) are close to zero, λmin(M−1

c A) can be well separated from zero. This implies that the fixed point iteration
associated with the composite preconditioner should be much faster than that ofMilu orMlr .

4. Numerical tests

In this section,we present numerical results that compare the performance of the preconditioners discussed in this paper.
The performance of composite preconditioners is compared with Milu and the two sides tangential filtering decomposition
preconditionerMlr . Several different approaches of constructing the filtering preconditionerMlr are considered, themeaning
of the notation is described below. As we have illustrated, there is only a small difference between using two composite
preconditioners. So the combination approach (5) is always used in our test, if two preconditioners are combined.

Mlr : Two sides tangential filtering decomposition preconditioner.
Milu: the ILU(0) preconditioner.
Mc : Combination ofMilu withMlr , where e is used as both the left and the right filtering vectors in constructingMlr .
Mcr1: Combination ofMilu withMr , where e is chosen as a filtering vector in constructingMr .
Mcl1: Combination ofMilu with Ml, where e is chosen as the filtering vector in constructingMl.
Mcrr : Combination ofMilu withMr , where a Ritz vector is chosen as the filtering vector in constructingMr .
Mc1r : Combination ofMilu withMlr , where e and a Ritz vector are chosen as the left and the right filtering vectors
respectively in constructingMlr .

For symmetric problems, the preconditioners Mcr1, Mcl1 and Mc are equivalent when the same filtering vector is used.
In this case, just Mc is displayed. The linear systems are solved by the GMRES algorithm preconditioned by the previously
outlined composite preconditioners. The algorithm is unrestarted and the maximum Krylov subspace is set to be 200. The
algorithm is stopped whenever the relative norm ‖b−Axk‖

‖b‖
is less than 10−12. The exact solution is generated randomly.

Unless special explanations, the initial approximate solution is always chosen such that the sum of the residual vectors be
zero throughout all the iterations. In the following tables, iter denotes the number of iterations, error denotes the infinite
normof the difference between the final approximate solution and the exact solution,We use ‘‘−’’ to denote that themethod
fails to converge within 200 iterations, and cpu to denote the time it takes to construct the preconditioner and to solve the
linear systems. We have used 25 steps of GMRES preconditioned byMilu to generate the Ritz vector as a filtering vector. All
experiments were performed on a windows XP system with Intel Core 2 Quad CPU 2.66 GHz and main memory 2GB using
Matlab 7.0.4 [32].

The considered boundary value problem (2) is discretized on a regular Cartesian grid with a cell-centered finite volume
scheme. Full up-winding is used for the convective term in the partial differential equation. The following five different cases
are considered.
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Table 2
Results for Case I, advection–diffusion problem in two dimensions; nonsymmetric.

1/h Milu Mc Mc1r Mcrr Mcl1 Mcr1

Iter Error Iter Error Cpu Iter Error Cpu Iter Error Cpu Iter Error Cpu Iter Error Cpu

100 110 4.2e−9 27 1.6e−10 1.9 25 1.7e−10 2.2 25 9.9e−11 2.2 26 1.4e−10 1.8 26 1.5e−10 1.8
200 198 1.7e−9 38 3.7e−10 24.4 36 3.1e−10 25.3 35 2.4e−10 24.1 37 3.9e−10 23.3 37 3.7e−10 23.3
300 − − 45 1.0e−9 109.2 43 9.2e−10 109.9 42 4.9e−10 106.3 45 9.2e−10 106.2 45 8.1e−10 107.1
400 − − 53 1.1e−9 411.9 51 1.6e−9 406.3 49 6.7e−10 389.5 52 1.0e−9 397.1 52 1.5e−9 395.7

Table 3
Results for Case II, non-homogeneous problems in two dimensions; symmetric.

1/h Milu Mc Mc1r Mcrr

Iter Error Iter Error Cpu Iter Error Cpu Iter Error Cpu

100 108 3.1e−9 26 1.1e−10 1.8 25 1.6e−10 2.2 25 1.2e−10 2.2
200 190 8.5e−9 37 7.1e−10 24.2 36 3.5e−10 25.3 34 2.9e−10 23.9
300 − − 46 4.8e−10 109.1 44 7.0e−10 112.2 42 3.1e−10 106.3
400 − − 52 1.1e−9 406.7 52 1.2e−9 412.8 49 9.1e−10 387.6

Table 4
Results for Case III, skyscrapers problems in two (top) and three (bottom) dimensions; symmetric.

1/h Milu Mc Mc1r Mcrr

Iter Error Iter Error Cpu Iter Error Cpu Iter Error Cpu

100 – – 25 3.8e−7 2.0 26 3.0e−7 2.3 38 7.6e−6 3.2
200 – – 40 1.1e−6 25.1 43 1.1e−6 28.9 49 5.9e−7 32.9
300 – – 47 4.5e−6 115.5 75 2.4e−6 179.4 55 6.8e−7 133.2
400 – – 59 6.7e−6 448.3 119 1.8e−6 930.1 193 3.0e−6 1677.5

20 128 4.6e−8 11 1.0e−8 5.2 11 3.5e−9 5.5 13 5.2e−9 5.4
30 199 6.5e−7 14 6.0e−8 68.6 14 6.4e−8 69.7 28 2.2e−10 68.7
40 – – 15 7.0e−8 477.2 17 5.1e−8 481.3 27 2.3e−9 436.2

Case I. The advection–diffusion problem with a rotating velocity in two dimensions:
The tensor κ is the identity, and the velocity is a = (2π(x2 − 0.5), 2π(x1 − 0.5))T . The uniform grid with n × n nodes,

n = 100, 200, 300, 400 are tested respectively. Table 2 displays the results obtained by using different preconditioners.

Case II. Non-homogeneous problems with large jumps in the coefficients in two dimensions:
The values of a are zero. The tensor κ is isotropic and discontinuous. It jumps from the constant value 103 in the ring

1
2
√
2

≤ |x − c| ≤
1
2 , c = ( 1

2 ,
1
2 )

T , to 1 outside. Table 3 displays the results obtained by using different preconditioners.

Case III. Skyscraper problems:
The tensor κ is isotropic and discontinuous. The domain contains many zones of high permeability which are isolated

from each other. Let [x] denote the integer value of x. In 2D, we have

κ(x) =


103

∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0 mod(2), i = 1, 2,
1, otherwise,

and in 3D

κ(x) =


103

∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0 mod(2), i = 1, 2, 3,
1, otherwise.

The parameter a is zero vector. Table 4 displays the results obtained by using different preconditioners for both the 2D and
3D problems.

Case IV. Convective skyscraper problems:
The same with the Skyscraper problems except that the velocity field is changed to be a = (1000, 1000, 1000)T . The

tested results are displayed in Table 5.

Case V. Anisotropic layers:
The domain is made of 10 anisotropic layers with jumps of up to four orders of magnitude and an anisotropy ratio of

up to 103 in each layer. For the 3D problem, the cube is divided into 10 layers parallel to z = 0, of size 0.1, in which the
coefficients are constant. The coefficient κx in the ith layer is given by v(i), the latter being the ith component of the vector
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Table 5
Results for Case IV, convective skyscrapers in two (top) and three (bottom) dimensions; nonsymmetric.

1/h Milu Mc Mc1r Mcrr Mcl1 Mcr1

Iter Error Iter Error Cpu Iter Error Cpu Iter Error Cpu Iter Error Cpu Iter Error Cpu

100 185 3.6e−8 19 2.3e−10 1.4 20 6.0e−10 1.7 26 1.3e−8 2.4 19 4.2e−10 1.4 21 6.7e−9 1.6
200 – – 26 1.4e−8 18.5 55 4.5e−9 35.8 42 9.9e−8 29.0 26 2.6e−8 18.1 30 8.0e−8 20.5
300 – – 28 1.2e−7 77.6 54 7.1e−8 135.1 52 6.9e−8 193.2 28 4.5e−8 74.7 37 2.7e−7 198.6
400 – – 39 1.3e−7 320 95 1.3e−7 4785.6 110 2.3e−7 3652.6 39 1.0e−7 311.2 54 2.5e−7 1077.2

20 66 2.6e−10 6 1.4e−9 4.6 10 4.0e−10 5.4 16 3.4e−10 5.7 9 5.3e−10 4.4 9 4.3e−10 4.4
30 110 2.1e−9 12 5.2e−11 67.7 27 2.3e−10 76.4 37 4.1e−10 73.5 31 1.6e−10 68.9 15 2.3e−10 60.6
40 114 3.5e−9 10 6.2e−11 469.1 14 2.9e−11 477.2 32 1.9e−9 442.6 12 2.1e−11 412.2 13 8.2e−10 413.5

Table 6
Results for Case V, anisotropic layers in two (top) and three (bottom) dimensions; symmetric.

1/h Milu Mc Mc1r Mcrr

Iter Error Iter Error Cpu Iter Error Cpu Iter Error Cpu

100 188 5.2e−7 17 2.2e−7 1.4 19 1.8e−7 1.9 21 1.1e−7 2.1
200 – – 29 1.3e−6 20.0 63 5.0e−6 40.3 35 3.2e−6 25.1
300 – – 40 9.8e−8 97.9 71 4.4e−6 171.7 41 5.6e−6 106.2
400 – – 50 7.6e−8 389.1 162 1.6e−5 1351.2 55 9.4e−7 434.8

20 25 1.5e−8 11 1.9e−8 6.0 11 3.7e−8 7.2 14 5.3e−7 6.4
30 33 2.5e−7 12 7.8e−8 72.4 18 1.1e−7 89.6 18 1.0e−7 81.2
40 40 1.8e−7 12 2.1e−7 572.3 33 4.1e−6 636.1 22 1.3e−7 560.3

v = [α, β, α, β, α, β, γ , α, α], where α = 1, β = 102 and γ = 104. We have κy = 10κx and κz = 1000κx. The velocity
field is zero. Numerical results are shown in Table 6.

From Tables 3–6 we can see that Mc , Mcl1 and Mcr1 lead to similar results for 2D problems. For the 3D problems, Mc is
faster thanMcl1 andMcr1 in terms of iteration numbers. For the symmetric problems,Mc ,Mcr1 andMcl1 are equivalent, and
they are more robust thanMcrr andMc1r . In conclusion, the numerical result illustrated that:

• Using e as a filtering vector is more robust than using a Ritz vector as the filtering vector.
• For the nonsymmetric cases, the left filtering preconditioner leads to comparable results to that of right filtering

preconditioner for the convection–diffusion equations with heterogeneous and anisotropic diffusion tensors.
• For 3D nonsymmetric problems, the two sides filtering preconditioner leads to the smallest iteration numbers. However,

the two sides filtering preconditioner is not the fastest in terms of cpu time. This is due to the fact that two local
approximatematrices (16) and (17) have to be generated during the construction of the preconditioner, and this requires
more computation than constructing the one side filtering preconditioner.

Performance of the restarted GMRES method [2] and the BiCGStab method [33] is examined on four represent matrices
from our previous examples. The maximum subspace dimension for the GMRES method is set to be 20, and the algorithm
is stopped whenever the relative norm ‖b−Axk‖

‖b‖
is less than 10−12. In Figs. 1–2, we depict the convergence curves by

the preconditioned GMRES(20) and BiCGStab. From these figures we can see that both methods converge very fast
preconditioned with the Mc preconditioner, compared with the GMRES(20) method, the BiCGStab method has better
convergence behavior in terms of iteration numbers.

5. Conclusions

In this paper, we have discussed the left, right, and two sides tangential filtering decompositions. The filtering
preconditioner constructed by the introduced decomposition is combined with the classical ILU(0) preconditioner in
multiplicative ways. The composite preconditioners are very efficient in damping the high and low frequency modes, and
thus perform very well for the block tridiagonal linear systems arising from the discretization of PDE problems on Cartesian
grids. On the filtering vector, we adopt e as the filtering vector in this paper. There are several advantages of this choice.
Firstly, it is as efficient as other vector choices, and the preprocessing that is needed to construct the filtering preconditioner
can be saved, secondly, using e as the left filtering vector is able to enable the zero material balance error all throughout the
iterations, which is important to improve the convergence.
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Fig. 1. Convergence curves of preconditioned GMRES(20) and BiCGStab byMc . Left: Non-homogeneous 200 × 200, right: Skyscraper 200 × 200.

Fig. 2. Convergence curves of preconditioned GMRES(20) and BiCGStab byMc . Left: Convective Skyscraper 200×200, right: Anisotropic layers 200×200.

Fig. 3. Spectrum distribution of the preconditioned advection–diffusion 50 × 50 matrix.
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Fig. 4. Spectrum distribution of the preconditioned non-homogeneous 50 × 50 matrix.

Fig. 5. Spectrum distribution of the preconditioned skyscraper 50 × 50 matrix.

Appendix

The eigenvalue distribution of the preconditioned matrix is plotted from Figs. 3–7. The notations used in the figures are
as follows:
A: the coefficient matrix.
M−1

ilu A: the preconditioned matrix by ILU(0) preconditioner.

M−1
lr A: the preconditioned matrix by two sides filtering preconditioner proposed in this paper.

M−1
c A: the preconditioned matrix by the combination preconditioner (23) (the same as using (22)).
From these figures we can see that the composite preconditioners tend to make the spectrum clustered at 1. In the

symmetric case, complex eigenvalues appear due to the nonsymmetric composite preconditioner, but their imaginary parts
are usually very small.
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Fig. 6. Spectrum distribution of the preconditioned convective skyscraper 50 × 50 matrix.

Fig. 7. Spectrum distribution of the preconditioned anisotropic layers 50 × 50 matrix.
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