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In this paper we study the existence of positive solutions to the equation 
Au + up - /(x, U) = 0 under the Neumann boundary condition D, u + X(X)U = 0. 
where p = (n f 2):(n - 2), f(x, U) is a lower order perturbation of up at infinity. 
When z(x) =O, we prove the existence of a positive solution provided 
lim, .a f(s, u):‘u=u(x)~O, a(x)$O. and f( x, u) > -Au - Ru* for some constants 
A, B> 0, 9 E (1, $(?I - 2)). For general r(s), we prove the existence under an 
additional assumption on the boundary 20. :(, 1991 Acadomx Press, Inc. 

1. INTR~IHJCTIO~ 

Let Q be a bounded domain in R” with C’ boundary, n >, 3. In this 
paper we are concerned with the problem of existence of a function 11 
satisfying the nonlinear elliptic problem 

-h=u”+J’(x, u) in Q, 

D.,.u + x(x)u =0 on dQ, (I.1 i 

u>o in Q1 

where p = (n + 2)/(n - 2), 7 = (y,, . . . . 7,) is the unit outward normal to %J, 
X(X) is a nonnegative function, f(x, u) is a lower order perturbation of up 
at infinity, and j’(x, 0) = 0. 

u E H(Q) is a weak solution of (1.1) if 
I 

J 
(D,u D,t;-&-j-(x, u)c)dx+ r(x)uc d.s=O t/v E H(Q), 

rr 

and u 20, ~$0. We verify in Section 2 that the weak solutions of (1.1) are 
equivalent to the nonzero critical points of the functional 
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where F(x, u) = s; f(x, t) dt, u + = max(u, 0). Since p + 1 = 2n/(n - 2), the 
embedding H(Q) c Lp+‘(Q) is not compact, the functional J(U) does not 
satisfy the (PS) condition. Hence we cannot apply the standard variational 
methods directly. 

The Neumann problem of semilinear elliptic equations with subcritical 
growth was studied by Ni, Takagi, and Lin, and many existence results 
were obtained (see [S-lo]). The Dirichlet counterpart of (1.1 ), namely 

-Au= uP+f(x, u) in 52, 
n+2 p=---- 
n-2 

u=o on a.Q, (1.2) 

u>o in 52. 

was studied by Brezis and Nirenberg [3]. Their results show that the 
existence of solutions of (1.2) depends strongly on the behavior of f(x, u). 
But Problem (1.1) is different from (1.2). We shall prove that Problem (1.1) 
possesses a solution for a large class off(x, u). 

This paper is organized as follows. In Section 2, we present a general 
existence theorem (Theorem 2.1) which is based on a variant of the 
Mountain Pass Lemma. We prove that J(U) satisfies the (PS), condition in 
a weak sense for CE (0, (1/2n)S”‘2). That is, if (ui) c H(Q) is a sequence of 
functions satisfying J(uj) -+ c E (0, (1/2n)S”“), and J’(uj) --f 0 in H-‘(Q) as 
j+ CXJ, then there exists a subsequence of (uj) which converges weakly to 
u0 $0, and u. is a critical point of J(U), where S is the best Sobolev 
embedding constant, i.e., 

S= inf 
0 UEH1&f4 Q 

,Du,2dx;j/‘+1dx=l}. 

In Section 3, we deal with the problem 

-du=uP+f(x, u) in Q 

D,u=O on &2, (1.3) 

u>o in Q. 

By means of Theorem 2.1, we prove the existence of a nonconstant solution 
to (1.3) whenf(x, U) = - ;lu for II > 0 sufficiently large. In Section 4, we are 
concerned with the problem 

-du=uP in Q, 

D,u+a(x)u=O on da, (1.4) 

U>O in 4. 

where a(x) > 0, U(X) $0 (Indeed, there is no solution of (1.4) if a(x) E 0.) 
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We prove the existence of a solution under an assumption on the boundary 
iX. Finally, in Section 5, we discuss the regularity of solutions of (1.1). We 
also treat equations with variable coefficients briefly. 

2. A GWERAL EXISTENCE THEOREM 

Let B c R”, n >, 3, be a bounded domain with C’ boundary. We assume 
that f’(x. u) is measurable in x and continuous in u and that 
sup{J‘(x,u);xEQ, Odu<M}<cc forcvery iM>O. 

Let p = (n + 2)/(n - 2). x(x) EL”(Q), X(X) >O. We are concerned with 
the problem of the existence of a function u satisfying 

-du=Up+f‘(X, u) in Sz, 

n,u + z(x)u = 0 on ?R, (2.1) 

z4 > 0 in Q, 

where 7 = (7 I , . . . . 7,) is the unit outward normal to IX?. We assume that 
there exists a(x) E L”‘(Q) such that 

jimo f‘( x, u)Iu = u(x) uniformly for s E Q, (2.2) 

lim J‘(x, u)/uP = 0 
u -, %’ 

uniformly for x E R. (2.3) 

Moreover, we assume that the first eigenvalue i,, of the following problem 
is positive: 

That is, 

-Au-a(x)u=i.u in 52, 

n,z~+~(X)U=O on 252. 

j,, = inf (~D~~~-u(x)u~)dx+j r(x)u2ds;[ u’dx=l (2.4) 
FR a 

Assumption (2.4) is satisfied if z(x) ~0, u(x) GO, a(x)fO; or a(x)=O, 
r(x) >, 0, 2(x)$0. Hence the norm IIuIIH= I\Dull,~~~,+ IIuJI~~,~~) is 
equivalent to 

(IDu12-u(x)u’) d,u+ j<ypz(x)z12 ds]li’. 
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Since the values of f(x, U) for u < 0 are irrelevant, we may assume 

f(x, u) = 4x)u for u<O, XE~. 

We claim that the weak solutions of (2.1) are equivalent to the nonzero 
critical points of the functional 

~(.)=~~[flo”l’-~U:“-“x,u)]dx+~~~,”(”)”’d’. (2.5) 

where F(x, U) = 1;; f(x, U) du. Indeed, a weak solution of (2.1) is obviously 
a critical point of J(U). Conversely, if uEH(Q) is a critical point of J(U), 
then 

o= (J’(U), u_)= j [J~u_1*--(x)(u-)*l d~+~an~(4k~2& 
sz 

where U- = min(u, 0). By virtue of (2.4) we see that U- = 0, which implies 
u 3 0. Hence u is a weak solution of (2.1). 

Denote 

c= inf sup J(tj(t)), 
iE*te(o,l) 

(2.6) 

where Y= { $ E C( [O, 11, H(Q)); $(O) = 0, $(l) = I/~ = to}, the constant to 
is so large that J(njo) < 0 for all t 3 1. By (2.4), we have 

for some C> 0 (in the following, we use C to denote various positive 
constants). Let E = $C; we obtain 

Set 

c= inf sup J(+(t)) > 0. 
@eytE(O,l) 

(2.7) 

S= inf 
(s UeHp) D 

IhI* dx; IQ IuIp+l dx= 11, (2.8) 
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which is the best Sobolev constant of the embedding HA(Q) c Lpi l(Q), 
p = (n + 2)/(n - 2). It is known from [3, 111 that S depends only on n; 
the iniimum in (2.8) is never achieved when R is a bounded domain. 
When D = R”, the infimum in (2.8) is achieved by the function 
J.u(-\-) = (1 + IsKi*)- 0i-2)i2, or (after resealing) by any of the functions 
IL.,(.Y) = C(c + jxy12)-(” -2),2. 

LEMMA 2. I. Denote fi = B, n {x, > h(x’) ), where B, = B(O, 1) is the unit 
ball in R”. h(x’) iv u C’ function defined in (x’ E R” II lx’! < 1 ) with h, Dh 
cunishing ut 0’. For my u E H(B,) with supp u c B,, we hate 

(ii) VIE > 0, 36 > 0 depending only on E, such thut !f (Dhl < 6, then 

jB;Du;2d~~~(2-2’“S-c)[~~~u~‘+idx]2~in+’i. (2.10) 

Pruoj: (i) Since the values of U(X) for X, ~0 arc irrelevant, we may 
suppose that u(x) is even in x,,. Therefore 

(ii) By (2.9) and the coordinate transformation y’ =x’, y, =x,, - h(x’), 
which straightens the bottom of B, we obtain (2.10) immediately, i 

Now we give the main existence theorem of this section. 

THEOREM 2.1. Suppose (2.2)-(2.4) hoid, and 

(2.11) 

{hen there is u solution u of (2.1) which satisfies J(u) < L’. 

Proof By Theorem 2.2 in [3], there exists a sequence (ui) c H(Q) such 
that J(u) --f L’ and J’(u,) -+ 0 in H-‘(Q) as j -+ a; that is, 
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+.I Nx)ujv ds=4llvllH). (2.13) 
aa 

Let cp = uj; then 

Since f(x, U) = a(x)u for u < 0, we have 

F(x, 2.4) - $lf(x, u) = 0 for u<O. 

Therefore 

Thus 

s D(~j)‘,‘ld~GC(l+ llujll,). 

Combining with (2.12) we obtain 

that is, IIuJ~<C(1 + IIuj/IH) f or some different C, which implies 
ItUjlIHG c. 

Extract a subsequence, still denoted by uj, so that 

uj - u weakly in H(Q)), 

uj - u weakly in (L,p + l(Q))*, 

uj -+ u strongly in Lq(Q) for all q <p + 1, 

uj + u strongly in L2(dQ). 

Passing to the limit in (2.13) we see that u is a critical point of J. 
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We now verify u f 0. Indeed, if u = 0, we have (see [ 33) 

~i)Ty,u,)d~y+O, j u,,J‘(x,u,)~x+O as j-t%. (2.14) 
R 

By the compact embedding H(Q)4 L’(X?), we also have 

e[,Ql(X)Uid.S+O as j--.x. (2.15) 

Let E be a small positive constant to be determined, and let (cp,);“_, be a 
unit partition on ST with diam(supp q1,)66 for each 2, where diam(D) is 
the diameter of the set ZI. Since 252 E C ‘, from Lemma 2.1 we have 

provided 6 is sufficiently small. Thus 

<(2. 2n.T-E) ’ 
[ 1 

(1 +P) 
a 

IDu,,2dr+c,ji,!u,,‘~.~] 

=(2 ‘:“S-E) --’ (1 +E) [ IDu,)2dx+u(l) as j-+x. (2.16) 
” a 

From (2.13), we have 

.r, [l~u,l2-(uj)~+1-uj.~(~,uj)]d.~+j~f~Z(X)~~d.~=u(l). (2.17) 

Combining (2.12), (2.17), (2.14) and (2.15), WC deduce that 



290 XL-JIA WANG 

Passing to the limit in (2.16) we therefore obtain 

(nC)2:(P+‘)<(2-2?‘“S-&) ’ (1 +&)nc, 

namely, 

c>f [(2-V-4/(1 +E)]‘r;2, (2.18) 

which contradicts (2.11) when c > 0 is sufficiently small. Thus u f 0. 
Finally we show that J(U) <c. Since u, -+ u weakly in H(Q), we have 

J c F(x, u,) dx + [ F(x, u) dx, 
R -n 

1 
R 

U, .f‘(X, Uj) dX + 1 u~(.u, U) dx 
n 

as j -+ cc. By virtue of the compact embedding H(Q) c L’(dQ), WC also 
have 

r cw(x)uf dx + r r(x)u2 dx as j-+x. 
‘BR * c?l2 

Set ui = uj- u (then uj- 0 in H(Q)), from [2] we have 

I (u,)“,+‘dx= 1 (~;)P++‘dx+j ~~+‘dx+o(l), 
n Ji2 I2 

and 

c IDu,l’dx= j~2 IDu(‘rlx+ c IDGj;iJ2dx+O(l). 
-l2 -J-2 

Therefore (2.12) and (2.17) reduce to 

and 

r [lot;j~2-(~j)~..+‘Jdx=o(l), 
‘R 

respectively. Consequently, 

which implies J(U) <c. 1 
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Set 

c* = inf {supJ(tu); u>O and ~$0). (2.19) 
UCH(Rl , > 0 

Then cd c* (see, e.g., [S]). Hence the condition (2.11) in Theorem 2.1 can 
be replaced by 

1 p < - p, 
2n 

(2.20) 

With this notation we have 

COROLLARY 2.1. Suppose a(x) E L” (0) is a nonpositiue function, and 
a(x) g! 0; then there is a i., > 0 such that the problem 

-Au=u”+i.a(x)u in Q, 

D?u=O on 22, (2.21) 

u>o in Q 

possesses at least a solution for each 1. E (0, i,,). 

Proof. Let ~(x)=l, we have sup,,,J(tr;)<(l/2n)S”,’ if i>O is 
sufficiently small, which implies the conclusion of Corollary 2. I, where 

J(u) = 1 
-x2 

;jDu,‘-+ _ up+’ - f i.a(x)u’ 

Similarly we have 

COROLLARY 2.2. Jf z(x) 2 0 is u bounded measurable function, and 
z(x) f 0, then there is a solution qf the problem 

-Au=u” in Q, 

D,u + kY(x)zJ = 0 on 252, 

u>o in Q 

(2.22) 

for i > 0 small. 

3. EXISTENCE OF SOLUTIONS TO (1.3) 

We consider the problem 

-Au=up-).u in Sz, 

D,u=O on C;Q, 

u>o in Q, 

(3.11 

505.93:2-b 
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where i>O, p= (n + 2)/(n - 2) Qc R” is a bounded domain with C’ 
boundary, n b 3. Obviously w;, = j.‘i(P- ‘) . is a constant solution of (3.1). 

THEOREM 3.1. Problem (3.1) posse.wrs a nonconstant solution for 3. > 0 
suitably large. 

Remark 3.1. In the case when 1 <p < (n + 2)/(n - 2), the result of 
Theorem 3.1 was proved by Ni and Takagi [lo]. 

Proof of Theorem 3.1. The solutions of (3.1) correspond to the nonzero 
critical points of the functional 

(3.2) 

If we have proved 

C*= inf (supJ(ru); ~30 and ~$0) <&@2, 
u F H(O) f>O 

(3.3) 

then by Theorem 2.1 we obtain a solution uj. satisfying 

J(Uj.) d C ~ C* < ~ Sn’2. 

On the other hand, a simple computation shows that J(w,) = 
(l/n) A”/2 mes(Q). Hence if J(w,) 3 ( 1/2n)Yi2, namely, 

i 2 S/(2 mes(O))““, 

then 14;. is a nonconstant solution. WC now prove (3.3). 
Let B(& R) be a ball containing 52, and ZB(x, R) nQ # 0. Choosing 

x0 E 2B(Z, R) n f=& we have a,>R-’ for each 1 <i<n-1, where 
aI 9 ..., an I are the principal curvatures of XZ at x0 (relative to the inner 
normal). Then with no loss of generality we may suppose that x,, is the 
origin and 52 c {x,, > O}. Hence the boundary (352 near the origin is 
represented by (rotating the x,, . . . . x, , directions if needed) 

x, = h(x’) = ; ‘,i’ aixf + o( Ix’1 2), Vx’ = (x1, . ..) x,) E D(O,6) 
I. 1 

for some 6>0, where D(O,d)=B(O,6)n {x,~=O}. Set 

u,,(x) = E(+ 2);4cc + Ix,‘). 08 -212. 
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We claim that 

Y,: = sup J( fU,) < $- s,1;* 
rso 

for c > 0 sufkiently small (consequently (3.3) follows). Denote 

and g(x’) = f x3:‘= ,’ a,~;. The proof is divided into two cases. 

Case 1, n 3 4. We have 

dx’ ih(^ ’ IDu, 1’ dx, + O(c”’ 2)‘2) 
00 

- dx’ ih(-“’ IDu,: I2 dx, + O(E+ 2),‘2), 
‘XIX’1 

where R”+ = R”n {x,,>O), and 

is a constant independent of c. Observing that 

Z(E) = [ 
-K”-l 

dx’ j”‘“’ lDu,12 dx, 
0 

we have 

(3.4) 

(3.6) 

(3.7) 

which implies Z(E) = O(E’;‘*). Moreover, 
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where C depends only on 6 and N. Since h(x’) = g(x’) + o( Jx’I 2), it follows 
that t/a > 0, K(a) > 0 such that 1/1(x’) -g(x’)l <(T (~‘1’ + C(a) (~‘1 ‘j2 for 
x’ E D(0, 6). Therefore 

Z,(E) < Cd” -- 2);2 [ CJ (x’12+ C(a) (x’(s!2 
dD(O.6) (c+ IX’12)n-’ 

d-x’ < Cc’12(~ + C(O)C’:~), 

which implies 

Z,(c) = O(&‘:2) as c 40. (3.8) 

Thus we obtain 

On the other hand 

K,(E) = +K, - Z(c) + O(&‘:2). 

K2(c) = jp u,” ’ ’ dx - [ 
‘D(O,fs) 

dx’ 16;“’ ) uf’+ ’ dx, + qEnj2), 

= $K, - [ 
dR” I 

dx’ r,lX” u;- I dx, 
- 0 

where 

K~= C c up+’ d.x= 
* R” 

(3.9) 

(3.10) 

K, and K, satisfy (see [3]) 

K,IK:” 2)‘n = S. 

Since 
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we have 

Thus II(E) = O(E’;*). Similarly to (3.8) we have 

K2(C) = $K, -U(c) + o(c’.2). 

Moreover (see [33) 

K,(+=j u:dx= 
n 

Let t,, > 0 be such a constant that 

J(t,u,) = yc = sup J(%) 
I>0 

ri 

1 
O(EI,:*) n = 3, 

O(l&lW4) n = 4, 

O(c) n > 5. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

From (3.9), (3.13), and (3.14), there exist positive constants co, K’, and K” 
such that K?(E)> K’, K,(E) +K3(c) < K” for EE (0, co). Hence t, are 
uniformly bounded for I:E (0, q,). Note that K,(c) = o(c”‘) when n 24. 
Therefore 

y, = J(t,u,) < sup f K,(c)l’- 
1 

- K2(c)tP’ ’ + o(E”~) 
I>0 P+l 1 

=; [K,(c);(~(~(E))(~ *)J”~]‘~!* + o(E’.‘~). 
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We claim that 

Kl(&)/(K2(&))(n-2)‘n < 2-2’“s+ O(&1’2) 

= ;Kl/(+K2)(“-2)/” + (l(p) (3.15) 

for E sufficiently small, which implies (3.4) and thereby (3.3). 
Indeed, by (3.9), (3.13), and II(E) = O(@), (3.15) is equivalent to 

1 (n-2)/n 
<-K, 

2 
+(E)+o(E”~) 

> 
+ 0(&l’“) 

1 (n-2)/n 
=- 

2K1 
-~(;K2)-2”II(~)]+o(~1~2), 

which reduces to 

n-2 
I(E)/II(&) > - KI/& + 4 1) as E -0, 

n 
(3.16) 

namely, 

I(E) n-2 
91 II(E) n 

->- K1/K2. (3.17) 

From (3.6) and (3.11) we have 

I(&) 
!i%@= 

lirn II(‘) 
E-+0 II’(&) 

Q2 <p < 2n - 1, integrating by parts we have 

s 
m #-2 dr=W- 1) a rp ___ ___ 

(1 +r2)n-1 p-1 i 0 (1+r2)” 
dr 

’ 0 

Observing that 

+--2 

dr-fom (1 +r2)” - dr, 
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we obtain 

r *, rp 
!,) (l dr = B-1 i 5, ro--2 dr 

2n-/I-I do (l+r’)” . (3.18) 

Hence 

lim I(‘) -=(n-2)‘s. 
t .OZZ(E) 

On the other hand, from (3.5) and (3.10), we have 

n-2K, (n-2)3 *‘= r”+’ --=- - 
nK? n J 

dr/ x y”-’ 
----dr=(n-2)2. 

0 (l+r’Y :’ 0 5 (1 +r2)” 

Thus (3.17) follows. 

Case 2, n=3. Let O<a<A < s such that a Ix’l’dh(.x’)<A Ix’i’ for 
x’ E D(0, 6); we have 

IDu,:12 dx,, + O(P). 

Since 

IDu,I~~~Y”Y,CCE(~- *):” [ u ix’j4 

JtJ(0.R) (E + lx’12)” 
d.u’ 

we deduce that 

>, c,P llog El, 

Similarly, 

K,(E) Q ;K, - COP llog E/ + o(F’~~). 

f&(c) = i K, - 1 dx’ ~h’X” uf” ’ dxx, + 0( Pi’) 
JD(0.6) 0 

AC”:’ lx’,2 

(c + lx’lZy 
dx’ + O(c”‘*) 

(3.19) 

=&-O(P). (3.20) 
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Let J(~,u,) = Y, = supIzO J(tu,). From (3.14), (3.19), and (3.20), we see 
that t, are uniformly bounded for E E (0, Q,) for some s0 > 0. Thus 

Y, d sup 
[ 
iK1(E)t2- 

1 
- K2(&)P” + 0(&q 

120 P-t1 I 

=$ [K1(&)/(K2(&))(“-2)‘n]n’2+ 0(&l/2). 

Consequently if 

K1(E)/(K2(E))(n-2)‘E < 2-2’ns- O(E1’2) for E > 0 small, (3.21) 

then (3.4) (and thereby (3.3)) follows. 
By (3.19) and (3.20), (3.21) reduces to 

;K, - CO&1’2 /log El < 2-?s[-K, - 0(&“2)](n--2)‘n + 0(&“2) 
= $3-211” + O(E1/2). 

Since Kl/Ky-2)‘“= S, we obtain (3.21) immediately. 1 

We now turn to the problem 

--du=uP+f(x, u) in Q, 

D,u=O on af2, (3.22) 

u>o in 0, 

where Sz is a bounded domain in R” with C2 boundary, n 2 3, and f(x, u) 
satisfies (2.2) and (2.3) with 

a(x) d 0, a(x) f 0. (3.23) 

THEOREM 3.2. Suppose (2.2), (2.3), and (3.23) hold. Moreover, suppose 

j-(x, u) B - Au - Bug VXEQ, 2.420 (3.24) 

for some A, B > 0, and q E (1, n/(n - 2)). Then there exists a solution 
of (5.22). 

ProoJ: Let x0 E 852 such that the principal curvatures al, . . . . a,- 1 of aQ 
at x0 (relative to the inner normal) are positive. We may suppose that x0 
is the origin and !Z2 c (xn >O}. Define K1(&), K2(.z) as in the proof of 
Theorem 3.1, and 

K3(c) = K3(c, t) = 1 F(x, tu,) dx, 
n 
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where 
Uc=E(- W(E+ 142)-h I)‘?. 

From (3.24) we have 

K~(E) 2 O(c’,“) n = 3, 
o(c’,‘2) n24 

(3.25) 

for any fixed t. Moreover, from (2.2) and (2.3) we have If(x, t)\ < +tP + Cl 
for some C> 0. Hence 

iK,(c, t)l < $K,(r,)F ’ + CK,(&)r’. (3.26) 

J(t,:u,) = Y, = sup J(tu,), 
r>o 

where 

From (3.26) we see that t, is uniformly bounded for c > 0 sufficiently small. 
Therefore, 

f K,(E)? - 
1 

Y,: Q sup - K2(c)tP ’ 1 - K,(G t,) r>o P+l 
=; [K,(E)/IK~(E)I+~)“‘]~‘~- K3(c, t,). 

By virtue of (3.25), similarly to the proof of Theorem 3.1, we have 
Y,: < ( 1/2n)S”12 for I: > 0 sufficiently small. Thus Theorem 3.2 follows. 1 

From the proof of Theorem 3.1 (and Theorem 3.2) we see that the C’ 
regularity of 852 can be weakened to: 

there is a point x,E%~ where the principal curvatures 
n- I 

~1, , . . . . rn ._ , of S2 are finite and satisfy C ai > 0. (3.27) 
r-l 

In this situation the condition (3.24) can be replaced by 

f(x, u) 3 - Au - Bu9 for a.e. XEO, u>o, (3.24)’ 
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where u) is a neighborhood of x0, A: B3 0, and 9~ (1, n/(n - 2)). Indeed, 
we may suppose x0 is the origin, and the x,-axis is the inner normal to 
dQ there. Then the boundary of R near x0 is given by x,=h(x’) = 
4 C:,:: zixf + o( (x’J’), and the proof of Theorem 3.2 is still applicable. 

A typical example of (3.22) is 

f(x, u) = a(x)u + b(X)24 

where a(x), hi L”(Q), a(x)<O, and a(x)fO. From the above we see 
that, if h(x) 20 a.e. in o, then there is a solution of (3.22) for each 
9~ (1, (n +2)/(n- 2)). Otherwise there is a solution of (3.22) for 
4E(l,W-2)). 

4. EXISTENCE OF SOLUTIONS TO (1.4) 

In this section we arc concerned with the problem 

-Au=up in Q, 

n,u + sI(x)u = 0 on LX?, (4.1) 

u>o in 52. 

where Q c R” is a bounded domain with C’ boundary. n 2 3, 
p = (n + 2)/(n - 2) r(x) E L”(Q), and r(x) k 0. 

It is well known from Pohozeav’s identity that there is no solution of the 
problem 

-Au = up in Q, 

u=o on dQ, (4.2) 

u>o in Q, 

where Q is a bounded star-shaped domain. But for any a(x) > 0, Z(X) f 0, 
we have 

THEOREM 4.1. Suppose the origin 0 E X2, and the x,-axis is the inner 
normal to X2 there. Suppose also thut the boundury X2 neur 0 is expressed 
by x, = h(x’) for x’ E D(0, 8) = B(O,6) n {xn = 0}, and 

lim Ix’1 ’ -’ h(x’) = d> 0 fiv some a E (0, 1). (4.3) 
.x-r0 

Then there exists u solution of (4.1). 
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Proof The solutions of (4.1) correspond to the nonzero critical points 
of the functional 

Let 

We claim that 

u,(x) = &(n -yE + 1x12) (n 2’,‘2. 

Y, = sup .I( tu,:) < & Sr.:? 
I>0 

(4.4) 

for F, > 0 suficiently small, which implies (2.20), and consequently by 
Theorem 2.1 we obtain a solution of (4.1). Indeed, denote 

X,(c)=j IDu,(2dx, 
R 

We have 

K2(c) = 1 u,p + ’ d,u. 
n 

JDu,,) 2 dx, + O(E(” - 2,.‘2) 

IDu,,12 d.u,,+ O(e”‘-2’:‘2) 

where g(x’) = d Ix’1 ” ‘. Similarly to (3.8) we have 

Ii dx’ i”(“’ (Lb, ( ’ dx, = o( E”“). 
-/3(0.5) “Y(X’) 

Thus 

where 
(4.5) 

(4.6) 
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We also have 

where K, and K2 were defined in (3.5) and (3.10), respectively, 

= jRn-, dx’ j:‘TcX” (1 + ix,2)n dx,. 

Observing that 

lim c -x~21/(~) = d 
I 

lx’l’+x dx, 
E’O H” 1 (I + IX’12y ’ 

(4.7) 

(4.8) 

(4.9) 

we have II(c) = 0(P2). Moreover, 

K,(e)=j6na(x)u~ds<M[ cc” 2)!2 ’ dy 
* m (c + (X12y -2 

=M[ E(fl-2)j2 1 
‘WO.6) (E + ,x/I2 + Ih~xt~,2~,, 2 dx’ + O(c’” 2”2) 

0ii p - 2v2 1 

-1qo.6) 
(E + ,x,,2J,,- 2 dx’+ WC’” 2)i2) 

= 0(&“‘2). (4.10) 

let J(ILuz= Y,z=~~pr,o J(tu,). From (4.5), (4.7), and (4.10) it follows that 
t, are uniformly bounded for c > 0 sufficiently small. Hence 

Y, < sup ; K,(E)f2- --- K2(~)tP-’ ’ 
1 

+ u(F2) 
r>o 

=; [K,(E)JK2(F)I(n -2)lny9+4p7 as I: + 0. 
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In order to prove (4.4) it suflices to verify 

K1(8),/\K2(E)l’” 2)‘n<2- 2nS+O(Ez2) (4.11 ) 

for E > 0 sufficiently small. By (4.5), (4.7), and II(E) = O(c” ‘), (4.11) reduces 
to 

lim 
I(c) n-2 
- > - K,iK, 

r-oil(c) n 

From (4.6) and (4.8), we have 

Using (3.18). we obtain 

n-2 
> (n - 2)’ = lr K,jK2. 

(4.121 

This completes the proof of Theorem 4.1. 1 

Condition (4.3) seems somewhat strange, but it plays a crucial rule in the 
proof. On the other hand, we have the following example. 

THEOREM 4.2. There exists a radiul solution of‘ 

-Au=& in B(0, 1): 

D,.u+i.u=O on c!B(O, 1). (4.14) 

U>O in B(0, 1) 

if and only if’ i E (0, n - 2). 

Proqf. Suppose u = U(T) satisfies (4.14) r = !x(. Integrating the equation 
in (4.14) we obtain 

U”d,K= - i D,.uds=A [ uds, 
- ‘> R -itI 
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hence ,I> 0. Next we prove 7. < n - 2. Multiplying the equation in (4.14) by 
z;.. , x,uj, we have 

1 r n-2 p - u,;xjujdx= --i.’ 
2 J 

u’dx-- 
J 2 B 

uf dx 
JH 

Note that 

s, n-2 * = upx,ujdx=- 
J 2n ?B 

u” + ’ ds 

n-2 - -- 
J 2 B 

up + ’ dx. 

We obtain 

i ufdx+L 
I 

u2 ds= r up-’ dx. 
‘B PB <B 

1 --;,z n+2 
u2 ds=- r 

n-2 1 
2 2n 

upi’ds---/ r 2 ‘JiB 
u2 ds. 

- ZB 

that is, 

i2-(n-2)i+vuP ‘(l)=O. 

Since u( 1) > 0, it follows /I < n - 2. 
On the other hand, Vi E (0, n - 2), the function 

u(x) = C( 1 + p 1x1’) -(n - 2L’2 

satisfies (4.14), where p = $(n - 2 -i.), C= (p(n -2)n)‘“-2”4. 1 

Finally we return to the problem (2.1). We have 

THEOREM 4.3. Suppose the hypotheses of Theorem 4.1, and (2.2)-(2.4) 
hold. Suppose also that 

,f(x, u)> -Au-BP V(x, U)EL?X [O, co) 

.for some A, B 2 0 and q > (0, n/(n - 2)). Then there exists a solution of (2.1). 

The proof is similar to that of Theorem 3.2, and is omitted here. 
We now give a lemma to verify condition (2.11). Its proof is similar to 

that of Lemma 2.1 in [3] (but some computations in the proofs of 
Theorem 3.1 and Theorem 4.1 are needed), and is also omitted here. 
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LEMMA 4.1. Suppose ZR E C’, (2.2)-(2.4) hold. Suppose also that there is 
a jiunction f(u) such that 

f(x, u)>,f(u)>O for u.e. x E Q, cmd.for ull u b MO, 

where o is some nonempty open set in a with w n ZR # a, M, > 0 is a 
conslant, at7d the primitice F(u) = ji f( 1) dt satisfies 

lim El”-ll;2J~ ‘*F[($)“’ 2”2].yn. ld,y=,p. (4.15) 
c - 0 

Then (2.11) holds. 

Consequently we have 

COROLLARY 4.1. Assume thatf(x, u) = a(x)u + b(x)@, where u(x), b(x) 
are bounded meusurable functions, h(x) > 6 > 0 in a neighborhood of x0 for 
some x0 E Xl, and (2.4) holds; then there is u solution of (2.1) for all 
q~(nl(n-22, (n+2)l(n-2)). 

Proqf: We USC Theorem 2.1 and Lemma 4.1 with f(u) = (d/2)1/‘. It is 
easy to check (4.15) when y > n/(n - 2). Thus Corollary 4.1 follows. a 

5. SOME OTHER RFN,XTS 

(1) Regularity of Solutions 

The solution u of (1.1) lies in H(Q). In fact, u belongs to L”(Q). We first 
prove 

LEMMA 5.1. Suppose LX2 E C’, u E H(Q) is a weak solution qf 

-Au=a(.u)u in 52, 

D.,u = z(x)u on 20, 
(5.1) 

where a(x) E L”‘*(Q), r(x) E L”(Q); then u E L’(Q) ,for all t 2 1. 

ProojI For any fixed X~E a, let q(x) 2 0 be a smooth function with 
supp q c B(x,, 6) and q(x) = 1 for XE B(x,, is), where 6 is so small that 
(with the help of Lemma 2.1) 

for any t: E H(Q) with supp u c B(x,, 6) r\ 6. 
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Let /? > 1 and N > 0 be given. Define GE C ‘( [0, ocj)) by G(t) = 1” if 
0 6 t <IV and G(r) is linear if I > IV. If 1.4 is a solution of (5.1), then G(u), 
G’(K), and F(U) = j’t JG’12 dr all belong to H(Q). Since 

+ j 
R (5.3) 

where C is a constant independent of 6. Let 6 be so small that 

II4x)l1 L”‘J(B(X&R)) 6 WC. 

From (5.2) and by supp q c B(x,, a), it follows that 

Hence (5.3) reads 

By the Sobolev imbedding H(Q) cL~~“-*)“~~~- “(X!), we. may choose 
j=(n-l)l(n -2)> 1 in (5.4). Let N + x; we obtain u’$ EH(Q). Since xn 
is arbitrary, it follows that up E H(Q). 

Choose again that /I = flk = ((n - i )/(n - 2))k in (5.4). Let N + SC, we get 
ufl* E H(l2 ), k = 2, 3, . Thus u E L’(Q) for all t > 1. 1 

For our purpose we use Lemma 5.1 with a(x) = up-l + u -‘f(x, K)E 
Lnf2(Q), then the regularity of solutions to {2.1) can be obtained by virtue 
of the following Lp estimates [f J. 

LEMMA 5.2. Suppose &?E C2,f(x)~Lp(C2), (P(X)E W’-p(t2), pt(L cc). 
ff u is a sohion of 

--du=,f(xj in Cl, 

D,u = q(x) on 252, 
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then 

From this lemma we see that the solutions of (2.1) belong to C’ A “(0) 
for any (x E (0, 1) if Z(X) E lV’.X(?Q) and c?Q E C’. We can further improve 
the smoothness of solutions by means of the Schauder estimates [7]. 
Consequently by the strong maximum principle it follows that any (weak) 
solution of (2.1) is positive everywhere in 8. 

(2 ) Eqzrutians wirh Variuhle Cnefficients 

Let SJ c R” be a bounded domain with C’ boundary, n> 3, and let 
Lu = - C:: j=, Di(ati(x) Dju) be a uniformly elliptic operator. We consider 
the conormal derivative problem 

Lu = b(x)u” +j’(x, u) in R, 

Bu= i a,(x)y, Dju+cY(x)u=o on ZR, (5.5) 
i.J- 1 

u>o in Q, 

where p = (n + 2)!(n - 21, U,(X), h(x), and r(x) arc bounded measurable 
functions, IX(X) >/ 0, h(x) > 0, and 7 = (y,, . . . . Y,~) is the unit outward normal 
to %I. We suppose f(x, U) satisfies (2.2), (2.3), and the first eigenvaluc of 
the following problem is positive: 

That is 

Lu - a(x)u = i.u in Q, Bu = 0 on c’R. 

J1 = inf 
i 

[ [uJx) D,u D,u- u(x)u~] & 
- R 

The solutions of (5.5) correspond to the nonzero critical points of the 
functional 

r(x) u* ds, 

505!Y3,2-7 

(5.7) 
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where the summation convention is used. Set 

c= inf sup J($(t)), 
IIFYlF(0.l) 

(5.8) 

where ‘Y= {$EC([O, 11, H(Q)); $(O)=O, $(l)=$,,-t,}, and the 
constant I,, is so large that J(tll/o) < 0 for all I B 1. We have 

THEOREM 5.1. Suppose Q(X) E C(a), (2.2), (2.3), und (5.6) hold. If 

css Jo; [det(aU(x))/lb(x)(“- 2]“‘2, (5.9) 

then there exists a solution of (5.5). 

The proof is a slight modification of that of Theorem 2.1 and is omitted 
here. By virtue of this theorem we can easily extend the results of Theorem 
3.1 and Theorem 4.1 to the problem (5.5). For convenience we consider the 
simple case 

- i D,(a(x) D,u) = h(x)up +f(x)u in Q, 
i=l 

D,u=O on X?, (5.10) 

u > 0, in R. 

THEOREM 5.2. Suppose al2 c C’, a(x), b(x) E C’(Q), a(x) 3 a’ > 0, and 
f(xl<@ f(x)SO. s uppose also that there exists a point x0 E LX2 such that 
the principul curvatures a,, ,.,, a, , of 552 at x0 satisfy C:‘; i a, > 0, and 

a(x) 2 4x,), 4x) d h(x,) for ull x EC?, 

U(X) = a(xo) + 0(1x - xcll), (5.11) 

b(x) = HX”) + 41x - %I 1 us x-+x(). 

Then there is a solution of (5.10). 

Prooj Without loss of generality we may suppose x0 is the origin and 
the x,,-axis is the inner normal of dQ there. After stretching u(x) =kv(x) 
for suitable constant k, we may also suppose u(xO) = h(x,) = 1. Let 
11, = c (n 2’/4(E+ 142)-b-2)/2; by virtue of Theorem 5.1, it sufices to verify 

Yz = sup J( tu,) < ; S”:2 for c: > 0 small. (5.12) 
I>0 
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Set 

K,(E)= [ u(x) IDu,,12dx, 
*CT? 

K~(~) = I* ht.+: f 1 dx. 
* 12 

By (5.11) we have 

From the proof of Theorem 3.1 WC thus have 

K,(E) = fK, -Z(E) + o(c’12), 

K2(c) = 4 K, - U(c) + o(E’:~) if n34, 

or 

K,(c) < $K, - C,,E”~ (10~ ~1 + 0(,:‘.‘2), 

K2(c) > +K2 - O(E”*) if n = 3, 

where K,, K,, I(r:), and II(s) were defined in (3.5) (3.10) (3.6), and (3.11). 
respectively. Moreover: from (3.14) we have 

Therefore similarly to (3.4) WC obtain (5.12). 1 

We conclude this paper with the following example. 

EXAMPLE 5.1. We give positive functions a(x), ME C’(Q) such that 
the problem 

-it, D,(a(x) D,u) = b(x)P in Q, 

D,u+a(x)24=0 on XI, (5.13) 

u > 0, in Q. 

possesses a solution for any Z(X)E L:“(Q), r(x) 20, and x(x)$0. 
Indeed, we may suppose B(0, 2) c Q. Choose a(x) smooth and radially 

decreasing with a(x) = 1 if Jx( < 4, u(x) < l/N if 1x1 3 1. And choose 
b(x) = (a(~)\“‘(“-~‘. Let U,,(X) = 1 if 1x1 d 1, and uO(x) = max(O, 2 - 1x1) if 
1x1 > 1. Then J( tuo) is independent of CL(X). Set Y = SUP,.,~) J(tu,); simple 
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computations show that Y + 0 as AT+ co. Hence we can fix N such that 
Y < (1/2!~)s”‘~. Using Theorem 5.1 we thercforc obtain a solution of (5.13). 
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