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In this paper we study the existence of positive solutions to the equation
Au+u”~ f(x,u)=0 under the Neumann boundary condition D, u+a(x)u=0,
where p=(n+2)/(n—2), f(x,u) is a lower order perturbation of u” at infinity.
When z(x)=0, we prove the existence of a positive solution provided
fim, ,o f(x, u)u=a(x)<0, a(x)}#0, and f(x, u) > — Au— Bu® for some constants
A, B=0, ge(1,n/(n—2)). For general «(x), we prove the existence under an
additional assumption on the boundary ¢Q. € 1991 Academic Press, Inc.

1. INTRODUCTION

Let Q be a bounded domain in R” with C' boundary, n>3. In this
paper we are concerned with the problem of existence of a function u
satisfying the nonlinear elliptic problem

—Adu=u”"+ f(x, u) in £,
D u+x(x)u=0 on 642, {1.1)

u>0 in Q,

where p=(n+2)/(n-2), v=(y,, .., 7,,) is the unit outward normal to ¢,
a(x) is a nonnegative function, f(x, u) is a lower order perturbation of u”
at infinity, and f(x, 0)=0.

ue H(Q) is a weak solution of (1.1) if

P

J (DijuD;v—ulv— fl(x, u)v)dx-+—J ax)ur ds=0 Yve H(Q),
Q

cs2

and u >0, u#0. We verify in Section 2 that thc weak solutions of (1.1) are
equivalent to the nonzero critical points of the functional

a

1 1 1 »
J(u)= JQ (5 | Dul? —m u?*' — Flx, u)) a'x+§ ‘ a(x)u” ds,

Vs
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where F(x, u)= [§ f(x, t) dt, u, =max(u, 0). Since p+1=2n/(n—2), the
embedding H(2) < L?*+'(R) is not compact, the functional J(u) does not
satisfy the (PS) condition. Hence we cannot apply the standard variational-
methods directly.

The Neumann problem of semilinear elliptic equations with subcritical
growth was studied by Ni, Takagi, and Lin, and many existence results
were obtained (see [8-107). The Dirichlet counterpart of (1.1), namely

2
CMu=utt flxu) i@ p="X
n—2
u=0 on 0Q, (1.2)
u>0 in £2.

was studied by Brezis and Nirenberg [3]. Their results show that the
existence of solutions of (1.2) depends strongly on the behavior of f(x, u).
But Problem (1.1) is different from (1.2). We shall prove that Problem (1.1)
possesses a solution for a large class of f(x, u).

This paper is organized as follows. In Section 2, we present a general
existence theorem (Theorem 2.1} which is based on a variant of the
Mountain Pass Lemma. We prove that J(u) satisfies the (PS), condition in
a weak sense for ce (0, (1/27)S"?). That is, if (»;) = H(Q) is a sequence of
functions satisfying J(x;) - c € (0, (1/2n)S™?), and J'(u;) > 0 in H™'(2) as
J— oo, then there exists a subsequence of (u;) which converges weakly to
uy #£0, and u, is a critical point of J(u), where S is the best Sobolev
embedding constant, i.e.,

S= inf {f |Du12dx;j up+1dx=1}.
Q Q

ue HY($2)
In Section 3, we deal with the problem
—Adu=u? + f(x, u) in Q,
D,u=0 on 012, (1.3)
u>0 in Q.

By means of Theorem 2.1, we prove the existence of a nonconstant solution
to (1.3) when f(x, u) = — u for A > 0 sufficiently large. In Section 4, we are
concerned with the problem

—Au=u? in £,
Du+a(x)u=0 on 0%, (14)
u>0 in Q.
where a(x) >0, a(x)#0 (Indeed, there is no solution of (1.4) if a(x)=0.)
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We prove the existence of a solution under an assumption on the boundary
¢$. Finally, in Section 5, we discuss the regularity of solutions of (1.1}. We
also treat equations with variable coeflicients briefly.

2. A GENERAL EXISTENCE THEOREM

Let @ < R", n 3, be a bounded domain with C! boundary. We assume
that f(x,u) is measurable in x and continuous in u and that
sup{f(x, u);xeQ, 0<u< M} < oo for cvery M >0.

Let p=(n+42)/(n—2), a(x)e L7 (2), 2(x)=0. We are concerned with
the problem of the existence of a function u satisfying

—Au=u”"+ f(x, u) in £,
D u+ax)u=0 on ¢Q, (2.1)

u>0 in &,

where v =(y,, ... 7,) is the unit outward normal to ¢Q2. We assume that
there exists a(x)e L= (£) such that

lim f(x, u)/u=a(x) uniformly for xe®, (2.2)
u—0
lim f(x, u)/u?=0 uniformly for xeQ. (2.3)

Morcgyer, we assume that the first eigenvalue 4, of the following problem
is positive:
—Au—a(x)u=rtu in Q,
Dau+ax}u=0 on ¢Q.
That is,
Ay =inf {Lz (1Du|? — a(x)u?) dx + | a(x)u? ds; Jr wrdx = I} >0. (2.4)

J o Q

Assumption (2.4) is satisfied if a(x)=0, a(x)<0, a(x)Z0; or a(x)=0,
2(x)20, «(x)#0. Hencc the norm |ully=Dull 2, + U] 30 IS
equivalent to

|u|H=[Jp (IDuIZ—a(x)uz)dx+Jﬁ a(x)u? ds]

o
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Since the values of f(x, u) for u <0 are irrelevant, we may assume

flx, u)=a(x)u for u<0, xeQ.

We claim that the weak solutions of (2.1) are equivalent to the nonzero
critical points of the functional

= _1_ 2 1 p+1 1 2
J(“)*-fQ [2 | Du| P u’, F(x, u) dx—i-zf(m a(x)u’ds, (2.5)

where F(x, u)= (% f(x, u) du. Indeed, a weak solution of (2.1) is obviously
a critical point of J(u). Conversely, if ue H(Q) is a critical point of J(u),
then

0=<Thuy=] [IDu_"=a(x)u_)1de+| alx)(u.)ds

where u_ =min(u, 0). By virtue of (2.4) we see that u_ =0, which implies
u>=0. Hence u is a weak solution of (2.1).
Denote

c= inf sup J(1)), (2.6)

ve¥ 1e(0,1)

where Y= {y € C([0, 1], H(R2)); y(0)=0, y(1)=y,=1t,}, the constant ¢,
is so large that J(ny,) <0 for all 1> 1. By (2.4), we have

Ju)=C ””“if—jg [F(x, u) — a(x)u? +p:_ i uf™ 1] dx
>(C—e) uly—C. [ ' dx
>(C—é) llully—C, |lull 5+

for some C>0 (in the following, we use C to denote various positive
constants). Let ¢ =1C; we obtain

c=inf sup J(y(z))>0. (2.7)
ve¥ 1e(0,1)
Set
S= inf {f [Du|2dx;f 1u|"“dx=1}, (2.8)
we HYN?) Vo Q
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which is the best Sobolev constant of the embedding H(Q2)< L7+ (Q),
p=(n+2)/(n—2). It is known from [3,11] that S depends only on #;
the infimum in (2.8) is never achieved when Q is a bounded domain.
When Q2=R”" the infimum in (2.8) is achieved by the function
w(x)=(14]xj2)" =272 or (after rescaling) by any of the functions
w(x)=Cle+jx|*)~ " 272

LemMa 2.1. Denote B= B, {x,>h(x')}, where B, = B(0, 1) is the unit
ball in R", h(x') is a C" function defined in {x'e R* ', |x'l < 1} with h, Dh
vanishing at O'. For any ue H(B,) with supp u < B,, we have

(1) If h=0, then

~ T 2(pt 1)
i IDulzdx>2‘2’"SL| l,uv“de : (2.9)
B

vB
(ii) Ve>0, 30 > 0 depending only on ¢, such that if |Dh| <9, then

A : 24p+ 1)
J lDulzdx>(2‘2””S-—g)U lul”“dx] . (2.10})
B B

Proof. (i) Since the values of u(x) for x, <0 arc irrelevant, we may
suppose that u(x) is even in x,. Therefore

, , 1
\Dul*dx== | |Dul?dx
“B 2"3‘;
] ~ 2Z(p+ 1)
>—S[| lu';"”dx]
27 Vs

] 124p+ 1)
=2 2"’S|:f |u5f’*‘de .
VB

(i) By (2.9) and the coordinate transformation y’' = x', y,, = x,, — h{x'),
which straightens the bottom of B, we obtain (2.10) immediately. |

Now we give the main existence theorem of this section.

THEOREM 2.1.  Suppose (2.2)-(2.4) hold, and

1 ni2.
(,<ES ; (2.11)

then there is a solution u of (2.1) which satisfies J(u) < c.

Proof. By Theorem 2.2 in [3], there exists a sequence () = H(£2) such
that J(u) —» ¢ and J'(4;) > 0 in H~'(Q) as j— av; that is,
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1 1
J(uy) = fg [5 1Dy [? = ) = P, uj)] dx

+—21—LQ a(x)u; ds=c+o(l), (2.12)
Tw), 0> =] [Du; Do~ ()% o= f(x, 1)) dx

+]_alue ds=o(ll ) (213)

Let ¢ =u;; then
1 it g [ [ m L
L dx=] | PG u) =56 w) | ds 4 o1)+ ol 1),

Since f(x, u) = a(x)u for u <0, we have

F(x,u)—suf(x,u)=0  for u<O.

Therefore
! ! o
[ | FCe w) =5 f ) [ | @)t de+ O+ iyl ).
Q 4 2 2n Q
Thus
[, ) de<C+ D))
Combining with (2.12) we obtain
! Du,|? d ! Zds<c(1
5| 0D —a(w) det 5[ oo ds <O+l

that is, lluj||i,< C(1+|lu;[l,) for some different C, which implies
””j lm<C.

Extract a subsequence, still denoted by u;, so that
u,—~u weakly in H(Q),

J

u,—~u  weakly in (L?*1(Q))*,

J

u;—u strongly in LY(Q) for all g<p+ 1,

J

u,—u strongly in L*(8Q2).

J

Passing to the limit in (2.13) we see that u is a critical point of J.
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We now verify « #0. Indeed, if u=0, we have (sce [3])

| Flx,u) dx 0, fu,f(x,u,)dx—»O as jo oo (214)
Q

Y

By the compact embedding H(22) s L*(3Q2), we also have

|P ax)u;ds—>0 as j- o (2.15)

Y0

Let ¢ be a small positive constant to be determined, and let (¢,))_, be a

unit partition on Q with diam(supp ¢,) < for each %, where diam(D) is
the diameter of the set D. Since Q€ C!, from Lemma 2.1 we have

. N 2(p+ 1)

| |D(wp1)|2dx>(2-2”"5—8)[1 luwzl”“d-{l

0 v
VI<a<N, ue H(Q)

provided ¢ is sufficiently small. Thus

. 2p 4 1)
I: ()i dx]
e B

1 2
S 7 | PATSNTEYPS

=!‘ i wquz’(

4 || Lipen2

N

< Z H(Pgu,z | plpr 2

2=

hi -
<Q2¥S—e) 'y |QiD(u,<pL"2)|2dx
x=1"

<2 ?"S—¢) ‘[(1+s)[ D, dx +C, | !u,lzdx]
Q Q2
=(2 2""5—8)"1(]-{-8)[ |Du,|? dx + o(1) as j— . (2.16)
v

From (2.13), we have

| 00w — @)t = f )V dx+ | alx)u ds=o(1). (2.17)
Q2 (29

Combining (2.12), (2.17), (2.14) and (2.15), we deduce that

~ -

J |Du,|?* dx — nc, j (u)o*'dx —>nc as j— .
Q2 Q
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Passing to the limit in (2.16) we therefore obtain
(ne)* P+ (272"S—¢) ' (1 +¢)nc,

namely,

1 : 2
c?; [(272"S —¢)/(1 +¢)]"3, (2.18)
which contradicts (2.11) when ¢> 0 is sufficiently small. Thus v #0.

Finally we show that J(u) <c. Since u, — u weakly in H(Q2), we have

-

J Flx, u;) dx - [ F(x, u) dx,
2 v 8

» -

J u, f(x, u;) dx —>J uf (x, u) dx
(9]

Q

as j— 0. By virtue of the compact embedding H(2) < L*(éQ), we also
have

( oz(x)ufdx—»[ a(x)u*dx as j— .
Ve Ve

Set v;=u;—u (then v;—0 in H(Q)), from [2] we have

f (u))7* ! dx = f (v,)7+! dx+J‘ u”*Ydx +o(1),
2 v 2
and

[ 1Dw|2dx={ 1Dul?dx+[ |Dy)l? dx+o(1).
(g e Q2 v

Therefore (2.12) and (2.17) reduce to

J(u)+( BIvalz— j_](vj)ﬁ“]dx=c+o(l)

v

p
and

L [1Dv;1% = (v)5 '] dx = o(1),
respectively. Consequently,

1+
J(u)=c+o(1)—;JQ |Dp,|? dx,

which implies J(u)<c. |
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Set
c¢*= inf {supJ(tu); u>0 and u#0}. (2.19)

wCHIR) 450

Then ¢ < ¢* (see, e.g., [9]). Hence the condition (2.11) in Theorem 2.1 can
be replaced by

1 N\ {2.20)

E ]
¥ < — !
2n

With this notation we have

COROLLARY 2.1. Suppose a(x)e L™(Q) is a nonpositive function, and
a(x)#£0; then there is a 4q>0 such that the problem
—Au=u"+ la(x)u in Q,
D.u=0 on ¢Q, (2.21)
u>0 in Q
possesses at least a solution for each 2.€ (0, 2.4).
Proof. Let u(x)=1, we have sup,.oJ(tv)<(1/2n)S"? if i>0 is

sufficiently small, which implies the conclusion of Corollary 2.1, where

[ 1 1 N
Jw)=| |z |Du)? ———ur*'—Z; | dx.
(1) jg[zl ul p+1u, 2,‘a(x)u_—]dx ]
Similarly we have

COROLLARY 2.2. If #(x)=0 is a bounded measurable function, and
a(x)#O0, then there is a solution of the problem

—du=u” in £,
D.u+2x(x)u=0 on 082, (2.22)
u>0 in £

Sfor 5.>0 small.

3. EXISTENCE OF SOLUTIONS TO (1.3)

We consider the problem
—Adu=u*—u in ,
D.u=0 on 0%, 3.1

u>0 in €,

505:93.2-6
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where A>0, p=(n+2)/(n—2), Q< R" is a bounded domain with C?
boundary, n > 3. Obviously w, = A"*~ 1) is a constant solution of (3.1).

THEOREM 3.1.  Problem (3.1) possesses a nonconstant solution for 7. >0
suitably large.

Remark 3.1. In the case when 1 <p<(n+2)/(n—2), the result of
Theorem 3.1 was proved by Ni and Takagi [10].

Proof of Theorem 3.1. The solutions of (3.1) correspond to the nonzero
critical points of the functional

1 1 1
J(u)= = |Du|®> ———uf* 4 - a? | dx. 3.
el [ el o
If we have proved
|
c¢*= inf {supJ(tu); u>0and u#0} <-— 8" (3.3)
weH(2) 50 2n

then by Theorem 2.1 we obtain a solution u; satisfying

1
Ju)<e<e*<— 85"
2n

On the other hand, a simple computation shows that J(w,)=
(1/n) A" mes(£2). Hence if J(w,) > (1/2n)S™?, namely,

2> S/(2 mes(2))*",

then u; is a nonconstant solution. We¢ now prove (3.3).

Let B(%, R) be a ball containing 2, and 0B(x, R) n 2 # . Choosing
X, €0B(X, R)nQ, we have a,2R™' for each 1<i<n—1, where
%y, .., %, , are the principal curvatures of 02 at x, (relative to the inner
normal). Then with no loss of generality we may suppose that x, is the
origin and Qc {x,>0}. Hence the boundary 9Q near thc origin is
represented by (rotating the x,, ..., x,, , directions if needed)

ln— 1
x,,=h(x’)=§ > axl+o(]x?), Vx' = (xy, .., x,) € D(0, §)
i1

for some 6 >0, where D(0, 3) = B(0, ) n {x,=0}. Set

u‘:(x) — 6(n-- 2)/4(8 + |x|2)- (n——2)/‘2‘
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We claim that

|
Y, =sup J(tu,) < — S™? {3.4)
2n

1>0

for ¢ > 0 sufficiently smali (consequently (3.3) follows). Denote

Ki(e)= jg \Du, |2 dx.  Ky(e)= fQ 17! dx,

and g(x')=413¥" !a,x2. The proof is divided into two cases.

i=1
Case 1, n=4. We have
.

~h(x")
K@):Ln Du,2dx—{ dx'[ |Du,|?dx,+O0@E" P7?)
. )

v D(0,3 Y0

=1K, — ( 1 dx’Jg‘Xl) |Du, |* dx,

< RN 0

hix')
—f dx’ ( |Du, | dx,, + O~ 7?),
D0.5)

vglx')
where R”. = R"n {x,>0}, and

x>

K, = Dutdx=n-2)*| ———d 35
1 J.Rnl u.l X (n ) JR"(l +|x|2)n X ( )
is a constant independent of ¢. Observing that
g(x")
I(e)= | dx'J. \Du, | dx,
.Rn—! 0
. L {E] ‘xlz
= (n—2)2en—22 dx’ I Gl )
=2 Jem e, (e +1x°)"
Vesty |y
=(n—2)? dy’' ———dy,, 3.6)
=2 | (3]
we have
Ly, 1y g(»)
lim e ~'2I(e) = (n — 2)? 2 dy, 37
oyt ( ) ( ) V[R"-'(l‘*“y’lz)" y ( )

which implies I(¢) = O(e'?). Moreover,
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1(e)=

h(x’)
j dx’J |Du,|? dx,
D(0.8)

&(x")

“vn

- h(x') x|?
(n=2)7= 22| dy’ f _ W v
D(0,5) sy (e4+1x]7)

>

o2 |h(x")—g(x')|
_ 2 (n- 2)/2 ’
<Cn-2)c J;)(o.&)———(&-*- ME

where C depends only on & and n. Since A(x') =g(x’) + o(]x'|?), it follows
that Yo >0, 3C(s) >0 such that [A(x')—g(x')| <a |x'|*>+ C(a) [x'|*? for
x"e D(0, 9). Therefore

12 1 5/2
ne<comme| SRR I
‘p,sy  (e+[xX%)

dx' < Ce"*(a + C(o)e'?),

which implies

Li(e)=0(e'?) as &-0. (3.8)
Thus we obtain
K(e)= 3K, — I(e) + o(¢"?). (3.9)
On the other hand
rh(x’) ,
K (e) =J uf*tdx — [ dx'| - uf*ldx, +0("?),
R, Y D(0,8) 0

. , &(x’) .
=5K2—[ dx [ ul=ldx,
SR Y0
rh(x’) o
Ix’ J u?*tdx, + 0(e"?),
D(0,8) #(x)

where

- i
Ky={ ur*'dx= (3.10)

— .
Je Ty &
K, and K, satisfy (see [3])

K\/Ky 27 =S

Since
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- £2(x")
I(e) = | dx'j ur*t dx,
v RN 1 0
rg(x") 1
=¢"? dx' —dx,
‘ JR"-I * Jo e+ x)y
A \7 g2y 1
= dy’ ——dy,, 3.1
Jo /¥ L TEIEBE @1
we have
Y g(y')
lim ¢ Y21I(g) = —=dy. 3.12
tim e 200 = Gy (12
Thus II{e) = O(¢'?). Similarly to (3.8) we have
” h(x") )
dx’' j w?*ldx,|=o0(c"?) as e¢—0.
1V K(0,8) 2(x")
Therefore
K,(e)= 3K, —II(c) + o(c'?). (3.13)
Moreover (sec [3])
0(e'?) n=173,
K_;(s)zJ uldx={0(clogel) n=4, (3.14)
“ 0(c) ns.

Let ¢,> 0 be such a constant that

J(t.u,) =Y. =sup J(tu,)

(>0

—sup | 3 (K(0) + 1K)~ — Kol |

t>0

From (3.9), (3.13), and (3.14), therc exist positive constants ¢,, K’, and K"
such that K,(¢)=K’', K,(¢)+ K;(e)<K” for ¢€(0,¢,). Hence ¢, are
uniformly bounded for g€ (0, ¢;). Note that K;(¢)=o0(c"?) when n>4.
Therefore

Y =J(t,u,)<sup [

t>0

1 1 ,
EKI(E)lz—m Kz(ﬁ)!'H 1]4‘0(81'2)

1 .
=~ KD 27T+ 0(e'2),
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We claim that
K ANK (N0 —=2)n - 5=2/ng | 4(:1/2)
BN ACH/ACLL AN ) ~ « A U
1 1 -2 1/2
=3K,/GK,)" "+ 0(e'?) (3.15)

for ¢ sufficiently small, which implies (3.4) and thereby (3.3).
Indeed, by (3.9), (3.13), and II(¢) = O(¢'?), (3.15) is equivalent to

(71— Y/,

A N1\
(5 K, - 1(3))(5 Kz)

1 1 (n—2)/n
<§K1 (5 K,—II(e)+ 0(81/2)) + 0(g'?)
1o T/1 A\ n=2/1 %
=~2-K1 [(—2' K2> — n (5 K2> II(E):, + 0(81/2),
which reduces to
-2
I(s)/l[(8)>n—n—K1/K2+o(1) as &0, (3.16)
namely,
1(8) n—2
eh_>oII( D> n K,/K,. (3.17)

From (3.6) and (3.11) we have
. I(e) .. I'(e)
lim —==1
N0 IH(e)  +ob IT'(2)

=2 e / fm-l i+ 1y

rn+

(147" /I (1 +r2)”

V2 < f <2n—1, integrating by parts we have

~(n-22["

J"O rf-2 _2(n—1)r° r#

o (1+r2)n—1dr~ 'B__l o (1+r2)ndr

Observing that
P2 pB—2

o B B
fo (l:rz)"dr=fo 1+ 7 d j 1+ Z)n 75
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we obtain
po ph p—1 o pf2
s dr= — dr. 3.18
l, T 2n—[3—1«[0 T+ G18)
Hence
) I(c)#(n_2)2n+1.
n—3

him e~

!
!

On the other hand, from (3.5) and (3.10), we have

11—2K1 (”_2)3 NS ’,n+l s rn_‘

I | ———dr=(n-2)
JO (1+I‘2)" r!l _[0 (1 +r2)” dr=(n )

n K, n

Thus (3.17) follows.
Case 2, n=3. Let 0 <a< A4 < o0 such that a |x'|>< h(x')< 4 |x'|? for

x"e D0, 8); we have
rhix’) 5 .
dx' J iDu,|* dx, + O(e"~ ?)
0

|Du, |2 dx—.[
D(0.8)

K (&)=
=]
,‘aI.\"l2
<G—|  ax | 1wyl dx, + 0(").
Y D(0,6) “0

Since

. ~alx)? . I’}

| dx’ | [Du,|* dx, = Ce"~ 22 | il ,’ 5= dx’

Ynsy Yo “peo.5) (&4 1x]°)

= Coe'? |log ¢,
we deduce that
K (e} < 3K, — Coe'? [log e] + o(e"?). (3.19)
Similarly,
1 - Hx' ,
Ky(e)==K,— dx’ J‘ u? " dx, + 0(e"?)
2 (0.5 0 i
1 Ae™? | x'|? .
2-K,— —— dx' + O(e"?
27 Jpos e+ | xP)" (=)
(3.20)

1 ;
~ K2 - 0(8’12).
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Let J(t,u,)=Y,=sup,.,J(tu,). From (3.14), (3.19), and (3.20), we see
that ¢, are uniformly bounded for ¢ (0, &,) for some ¢,> 0. Thus

1§ 1
Ya < sup I:E Kl(S)lz -—p—+—1' Kz(S)tp+ I:I + 0(81/2)

>0
1
= [K,(e)/(Kx()) 2172 + O(e').
Consequently if
K (e)/(Ky(e))"~2n<272"§ — O(¢¥?)  for £>0 small, (3.21)

then (3.4) (and thereby (3.3)) follows.
By (3.19) and (3.20), (3.21) reduces to

3Ky — Coe' |log e| <27 2"S[LK, — O(¢*) ]~ 2/" 1 0(£'7?)
= 18K (=D 4 O(e2).
Since K,/K{"~?/"=§, we obtain (3.21) immediately. |
We now turn to the problem
—du=u®+ f(x, u) in Q,
D, u=0 on 42, (3.22)
u>0 in Q,

where Q is a bounded domain in R” with C? boundary, n> 3, and f(x, u)
satisfies (2.2) and (2.3) with

a(x)<0, a(x)#£0. (3.23)
THEOREM 3.2. Suppose (2.2), (2.3), and (3.23) hold. Moreover, suppose
f(x,u)= — Au— Bu? Ve, uz0 (3.24)

for some A,B=0, and qe(1,n/(n—2)). Then there exists a solution
of (3.22).

Proof. Let x,€ 082 such that the principal curvatures o, ..., «,_, of 6Q
at x, (relative to the inner normal) are positive. We may suppose that x,
is the origin and Q< {x,>0}. Define K,(¢), K,(¢) as in the proof of
Theorem 3.1, and

Ky(e) = Ka(e, ) = jg F(x, tu,) dx,
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where
u, = eln ---2)/4(8 + |x12)-(n 2):2
From (3.24) we have

0('?) n=3,
0(81,’2)

K3(8)>{ (3.25)

=
\%
'

for any fixed t. Moreover, from (2.2) and (2.3) we have | f(x, t)] <117 + Ct
for some C>0. Hence

Kq(e, )] < 3K ()P '+ CK (e) 12 (3.26)
Let
J(t.u;) =Y, =sup J(tu,),
>0
where

J(u)= L [% | Du|? — u’ 't — F(x, u)} dx.

p+1

From (3.26) we see that ¢, is uniformly bounded for ¢ > 0 sufficiently small.
Therefore,

1 . _
Ylsfl:g [—2_ Kl(g)t—_m K2(£)tp ' l]— K3(87 ’s)
1

= [Ki(e)/IKy(e)] 2] — Ki(e, t,).

By virtue of (3.25), similarly to the proof of Theorem 3.1, we have
Y, < (1/2n)8"? for ¢ > 0 sufficiently small. Thus Theorem 3.2 foliows. }

From the proof of Theorem 3.1 (and Theorem 3.2) we see that the C?
regularity of 62 can be weakened to:

there is a point x, € ¢Q where the principal curvatures
n-1
Ay .y A,y Of 082 are finite and satisfy > o,>0. (3.27)

i=1
In this situation the condition (3.24) can be replaced by

flx,u)= — Au— Bu? forae. xew, uz0, (3.24Y
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where @ is a neighborhood of x,, 4, B=0, and ¢ e (1, n/(n — 2)). Indeed,
we may suppose x, is the origin, and the x,-axis is the inner normal to
682 there. Then the boundary of Q near x, is given by x,=Ah(x")=
13- a,x?+ o(|x’'|?), and the proof of Theorem 3.2 is still applicable.

A typical example of (3.22) is

S w)=alx)u + b(x)u’,

where a(x), b(x)e L=(RQ), a(x) <0, and a(x)#0. From the above we sce
that, if 4(x)=0 ae. in o, then there is a solution of (3.22) for each
ge(l,(n+2)/(n—2)). Otherwise there is a solution of (3.22) for
ge(1,n/(n—2)).

4. EXISTENCE OF SOLUTIONS TO (1.4)

In this section we are concerned with the problem
—du=u" in Q,
Du+a(x)u=0 on 09, (4.1)
u>0 in &,
where Qc R" is a bounded domain with C' boundary, nz3,
p=(n+2)(n-2), alx)e L*(£2), and a(x)=0.

It is well known from Pohozeav’s identity that there is no solution of the
problem

—Adu=u’ in Q,
u=0 on 082, (4.2)

u>0 in £,

where © is a bounded star-shaped domain. But for any a(x) >0, a(x) #0,
we have

THEOREM 4.1. Suppose the origin O €S2, and the x,-axis is the inner
normal to 02 there. Suppose also that the boundary 62 near O is expressed
by x,=h(x') for x' € D(0, 8)= B(0, 8) » {x, =0}, and

lim |x'| '""*A(x)Y=d>0  for some ac(0,1). (4.3)
x"-+0

Then there exists a solution of (4.1).
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Proof. The solutions of (4.1) correspond to the nonzero critical points
of the functional

c /1 1 X 1
J(u)=JQ (5 | Dul|? o ul* ‘) dx +3 " a(x)u? ds.
Let
UE(X) =8(n —2)/4(8+ |x|2) (n 2)3'2.

We claim that

I n
Y, = sup J(tu,) < — S™ (4.4)
2n

>0

for £>0 sufficiently small, which implies (2.20), and consequently by
Theorem 2.1 we obtain a solution of (4.1). Indeed, denote

K,(¢) =L2 |Du, |? dx, KZ(;;)=J; u? " dx.

We have

. ~h(x7)
K(e)=3K —| d<| |Du)?dx,+O(""2?)

Y D(0.6) ©0

r r8(x"Y
=§Kl—J dx'J [Du,|? dx,
Rt 0

h(x"}
— dx’ J. |Du,|* dx, + O(e™ ~2?)

D(0,9) g(x")

where g(x')=d |x’|'" = Similarly to (3.8) we have

» sh(x')
dx' | |Du,|?dx,| = o(e?).
*D(0.6) Yg(x’')
Thus
K,(e)= 5K, — I(e) + o(c*?), (4.5)
where
glx’)
I(e)= ( dx"[ |Du,|? dx,
Y ORI ] 1)
g(x'} (x12

= n_z 2 '(71—2)/'2
(n—=2)"e JRH o Gay S

—no2p | ae [T L

———dx,. 4.6
YR Yo (e+1x|?)" " (46)
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We also have

arh(x))
Ky(e)=1iK, —j dx’ J u”*ldx, + O("?)
0

D(0,3)

&(x") .
Kz-_[ dx’ f uf='dx,
Rt o

N—

4]
- A(x") )
~|a [ urrtdx, + 0
¥ D(0,9) vg(x’)
= 3K, — l(e) + o(e*?), (4.7)

where K, and K, were defined in (3.5) and (3.10), respectively,

cp(x) g2

e =| dx —_x,
@=] ™) Ty ®

~ r 1:"'2g(x' ) 1

dx’ —  ix.
JRH.. S T IR

(4.8)
Observing that

lim & *211(z) =d | T (4.9)
e—0 ’ R l(l+’x,[2)” ’ )

we have /I(¢) = O(¢¥?). Moreover,

, , , t
Ki(e)= Jm a(x)ulds< M LQ gln 22 _—(a LIRS s

|
=M 8(”—2)/2 dx' + 0 C(n 2)/2
“(D(o.a) (e+ 1X'12 + |A(x")?)" * ( )

<M gln=212 dx'+ O(c'" %)

< D(0,8) (8+ |x’|.2)”' 2
= o(e*?). (4.10)

let J(t,u, =Y, =sup,.,J(tu,). From (4.5), (4.7), and (4.10) it follows that
¢, are uniformly bounded for ¢ > 0 sufficiently small. Hence

1 1 .
Ysésup l:i KJ(S)IZ —p—ﬁ Kz(li)lp" 1] + 0(81"")

>0

=% [K](S)//IKZ(E)I(" -2)/'n]n,r'2+()(81/2) as £—0.
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In order to prove (4.4), it suffices to verify
K (e)/|Ky(e)]'"" " <27 2"S + o(e*?) (4.11)
for £ > 0 sufficiently small. By (4.5), (4.7), and [l{¢) = O(s*?), (4.11) reduces
to
ey n-—2

M 1)

K,/K,. (4.12)

From (4.6) and (4.8), we have

im -1—(—2— lim I)
oo Il(g)  c-o0 Il'(2)

. |xll3 o D |X"I +x
=(n—2}2J ————dx’; X
e (14 X2 'JR~-'(1+|X32"
A4+ HPE rn--l+1

=(n—2) .[0 T e

Using (3.18). we obtain

lim 1("“—)=(n—2)2

; n+x
T

n—2-xa
n—2

n

>n=2)y=

K\iK,. (4.13)

This completes the proof of Theorem 4.1. |
Condition (4.3) scems somewhat strange, but it plays a crucial rule in the
proof. On the other hand, we have the following example.

THEOREM 4.2. There exists a radial solution of
—Au=u’ in B(O, 1),
Du+iu=0 on ¢B(0, 1), (4.14)
u>0 in B(0, 1)
if and only if 7€(0,n—2).
Proof. Suppose u = u(r) satisfies (4.14), r = |x|. Integrating the equation

in (4.14) we obtain

[u”dx-—-—[ D,;uds=,i|. u ds,
R v(B
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hence 4> 0. Next we prove 2 < n - 2. Multiplying the equation in (4.14) by
271 x;u;, we have

AV A
1 oy _2 ~
—J uyxu; dx = ——/."J W dx —" J ul dx
B 2 o8 B
- n—-2r
=J8u”x,-u,» dx = . Jw u* lds
—2
o 5 J u”*dx.
B
Notc that
( u?dx+l_[ uzdszf uf = dx.
‘B B ‘B
We obtain
1, +2 . -2, 5
——/,Zf wds =" [ P ds - /,[ u” ds,
2 s n Yo o
that is,

_2
2 (n-2A+2=Zur Y1) =0.
n

Since u(1)> 0, it follows A<n—2.
On the other hand, VZe (0, n—2), the function

u(x)=C(1 +p|x|?) " -22
satisfies (4.14), where pu=4/(n—2— %), C= (u(n—2)n)" =24 |
Finally we return to the problem (2.1). We have

THEOREM 4.3. Suppose the hypotheses of Theorem 4.1, and (2.2)-(2.4)
hold. Suppose also that

flx,u)> —Au—Bu®  V(x,u)eR2x [0, 00)

Jor some A, B=0 and q = (0, n/(n—2)). Then there exists a solution of (2.1).

The proof is similar to that of Theorem 3.2, and is omitted here.

We now give a lemma to verify condition (2.11). Its proof is similar to
that of Lemma 2.1 in [3] (but some computations in the proofs of
Theorem 3.1 and Theorem 4.1 are needed), and is also omitted here.
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LeMva 4.1, Suppose ¢Q e C?, (2.2)-(2.4) hold. Suppose also that there is
a function f(u) such that

flx,u)= flu)y=20  forae. xew, and for all u>= M,

where w is some nonempty open set in Q with o "éQ+# JF, My>0 is a

u

constant, and the primitive F(u)= |} f(1) dt satisfies

e 12 e~ 12N\ {n 2)2
lirr:)s""”’zj F[(l HZ) ]s ds= cc. (4.15)
& — 0 ;

Then (2.11) holds.

Consequently we have

COROLLARY 4.1.  Assume that f(x, u)=a(x)u+ b(x)u?, where a(x), b(x)
are hounded measurable functions, b(x)= 6 >0 in a neighborhood of x, for
some x,€0Q. and (2.4) holds, then there is a solution of (2.1) for all
qe(n/(n—2), (n+2)/(n—-2)).

Proof. We usc Theorem 2.1 and Lemma 4.1 with f(u)=(5/2)u? It is
easy to check (4.15) when ¢ > n/(n—2). Thus Corollary 4.1 follows. §

5. SOME OTHER RESULTS

(1) Regularity of Solutions

The solution u of (1.1) lies in H(2). In fact, u belongs to L*(£2). We first
prove

Lemma 5.1, Suppose éQe C', ue H(Q) is a weak solution of

—Au=a(x)u in 2,

(5.1)

D.u=ux(x)u on (92,
where a(x)e L"*(82), a(x)e L*(Q); then ue L'(Q) for all 1> 1.

Proof. For any fixed x,€ 0, let n(x)>0 be a smooth function with
supp n< B(x,, d) and n(x)=1 for x€ B(x,, 3J), where § is so small that
(with the help of Lemma 2.1)

1 " 2{p 1)
J |Dv|2dx>—S[| |v|”+'dx] , P=n+2
0 4 Q n—2

(5.2)

for any ve H(Q) with supp v < B(x,, §) n Q.
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Let B>1 and N>0 be given. Define Ge C'([0, ®0)) by G(s)=1" if
O0<t<< N and G(t} is linear if 1> N. If u is a solution of (5.1}, then G{u),
G'(u), and F(u)=[4|G’|* dt all belong to H(£2). Since

f[Du-Dufa(x]uu]dx—Jr sxjusds=0  Voe H(Q),

Y52 02

let v = F(u)n’; we obtain

[ |D(Gq)|2dxsc[[ G? |Dq|2dx+j |2(x)| G ds
~$2 v : 2

+ j la(x)| G2 dx], (5.3)
2

where C is a constant independent of 6. Let 6 be so small that
laC L2 gxg.an S SI8C.

From (5.2) and by supp n < B(xg, 8). it follows that

J| 180N G0 dx < 1aCe g on - UGN -

1
<35 DGy
Hence (5.3) reads

[ 10(Gn)? dx<CU G? (Dnlldxﬂ’ |2(x)| G2 ds]. (54)
e 2 &0
By the Sobolev imbedding H(2)c LUr=2~2(5Q), we may choose
f=(n—1)/(n—2)>1in (54). Let N - x¢; we obtain u’y e H(RQ). Since x;
is arbitrary, it follows that »" € H(Q).
Choose again that f=f, = ((n—1)/(n—2))* in (54). Let N = oc, we get
WeH(Q), k=2,3,.. Thus ue L'(2) forall t>1. |

For our purpose we use Lemma 5.1 with a(x)=u”""'+u "'f(x,u)e
L™*(£2), then the regularity of solutions to (2.1) can be obtained by virtue
of the following L7 estimates [1].

Lemma 5.2, Supposc Qe C?, f(x)e L7(Q), ¢(x)e WhP(Q), pe(l, x).
If u is a solution of
—Au= f(x) in Q,
D u=o(x) on 282,
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then

1] w2 o) < CI [flir + @1t nge))-

From this lemma we see that the solutions of (2.1) belong to C!**(Q)
for any « € (0, 1) if a(x)e W"=(éR2) and ¢Q e C2 We can further improve
the smoothness of solutions by means of the Schauder estimates [7].
Consequently by the strong maximum principle it follows that any (weak)
solution of (2.1) is positive everywhere in Q.

(2) Equations with Variable Coefficients

Let Q< R" be a bounded domain with C' boundary, n>3, and let
Lu= -3/ ,_, Di(a,(x) D,u) be a uniformly elliptic operator. We consider
the conormal derivative problem

Lu=>b(x)yu”+ f(x, u) in Q,
Bu= Y a;(x)y,Du+a(x)u=0  on iL, (5.5)
i j= 1
u>0 in Q,

where p=(n+2)/(n—-2), a,(x), b(x), and x(x) arc bounded measurable
functions, x«(x)=0, b(x)>0, and 7= (y,, .., 7,) is the unit outward normal
to 6. We suppose f{x, u) satisfics (2.2), (2.3), and the first cigenvalue of
the following problem is positive:

Lu—a(x)u=/uin Q, Bu=0 on ¢Q.

That is

2 =inf{ﬁ [a;(x) D,u Du—a(x)u®] dx

2

+ Jﬁ a(x)u? ds; (

af2 Q

W2 dx = 1}>0. (5.6)

The solutions of (5.5) correspond to the nonzero critical points of the
functional

1
p+1

J) = [—]Z—aij(x)DiuDju— b(x)uf;*‘—F(x,u)]dx
£
1 b
+§.[-g a(x)u? ds, (5.7)

505:93:2.7
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where the summation convention is used. Set

c=inf sup J(¥(2)), (5.8)

ve¥ 1e(0.1)

where W= {yeC([0, 11, H(Q)); ¥(0)=0, ¥(1)=yo=1,}, and the
constant ¢, is so large that J(z,) <0 for all 1> 1. We have

THEOREM 5.1.  Suppose a,»j(x)eC(Q), (2.2), (2.3), and (5.6) hold. If
| . .
c<—S"?css inf [det(a,(x))/1b(x)|"" *1"? (5.9)
2n xeR

then there exists a solution of (5.5).

The proof is a slight modification of that of Theorem 2.1 and is omitted
here. By virtue of this theorem we can easily extend the rcsults of Theorem
3.1 and Theorem 4.1 to the problem (5.5). For convenience we consider the
simple case

— i D;(a(x) D,u) = b(x)u” + f(x)u in £,

i=1

Du=0 on 0, (5.10)

u>0, in Q.

THEOREM 5.2. Suppose éQc C?, a(x), b(x)e C'(Q), a(x)>d’ >0, and
f(x) <0, f(x)#0. Suppose also that there exists a point x,€ 082 such that

the principal curvatures o, ..., %, ., of 6Q at x, satisfy 3.7 ' a,>0, and

a(x) = a(xq), b(x) < b(xo) Jor all xef2,
a(x) = a(xq) + of|x — xol), (5.11)

b(x)=b(xg)+ o(]x — x4]) as  x— Xxg.

Then there is a solution of (5.10).

Proof. Without loss of generality we may suppose x, is the origin and
the x,-axis is the inner normal of ¢ there. After stretching u(x)=kv(x)
for suitable constant k£, we may also suppose a(xy)=b(x,)=1. Let
u,=e" e+ |x|?) """~ 32 by virtue of Theorem 5.1, it suffices to verify

1
Y, =sup J(tu) <= 5" for £>0 small (5.12)

>0
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Set

Ki(e)=| a(x)1Du,® dx. Kz(8)=‘]ﬂl2 b{x)u? " dx.

By (5.11) we have

-

Ky(e)=] 1Du, | dx -+ o(e"?), K2(8)=J’ Y dx + o(e?).

§2

From the proof of Theorem 3.1 we thus have
Ki(e)= 3K, — I(¢) + o("?),
K,(e)=1K,— 1I(g) + o(¢"?) if nx=4,
or
K (s)<3K, — Coe'? |log g + O(c'?),
1K, — 0" if n=3,

where K|, K,, I(¢), and Il(g) were defined in (3.5), (3.10), (3.6), and (3.11),
respectively. Moreover, from (3.14) we have

o(e'?) n=4,
n=3

K3(8)=J.Qf(x)u,2; dx= {0(81@)

Therefore similarly to (3.4) we obtain (5.12).

We conclude this paper with the following example.

ExaMPLE 5.1. We give positive functions a(x), b(x)e C'(Q) such that
the problem

¥ Di(a(x) D) =b(x)u’  in @,

i=1
D u+a(x)u=0 on £, (5.13)

u>0, in Q.

possesses a solution for any a(x)e L*(R2), 2(x)>=0, and x(x)#0.

Indeed, we may suppose B(0, 2) = Q. Choose a(x) smooth and radially
decreasing with a(x)=1 if |x| <3, a(x)<1/N if |x|>1. And choose
b(x)=|a(x)|""~2. Let uy(x)=1if |x| <1, and uy(x)=max(0, 2 — |x|) if
[x] > 1. Then J(tu,) is independent of a(x). Set ¥ =sup,.,S(tu,); simple
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computations show that ¥ — 0 as N — co. Hence we can fix N such that

Y

10.

11.

< (1/2n)8"?. Using Theorem 5.1 we therefore obtain a solution of (5.13).
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