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a b s t r a c t

A nearly unstable sequence of stationary spatial autoregressive processes is investigated,
when the sum of the absolute values of the autoregressive coefficients tends to one. It
is shown that after an appropriate normalization the least squares estimator for these
coefficients has a normal limit distribution. If none of the parameters equals zero then the
typical rate of convergence is n.
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1. Introduction

Spatial autoregressive models have a great importance in many different fields of science such as geography, geology,
biology and agriculture, see e.g. [1] for a detailed discussion, where the authors considered a general unilateralmodel having
the form

Xk,` =
p1∑
i=0

p2∑
j=0

αi,jXk−i,`−j + εk,`, α0,0 = 0. (1.1)

A particular case of the model (1.1) is the so-called doubly geometric spatial autoregressive model

Xk,` = αXk−1,` + βXk,`−1 − αβXk−1,`−1 + εk,`,

introduced by Martin [12]. In fact, this is the simplest spatial model, since its nice product structure ensures that it can be
considered as some kind of combination of two autoregressive processes on the line, and several properties can be derived
by the analogy of one-dimensional autoregressive processes. The doubly geometric model was the first one for which the
nearly unstability has been studied. Bhattacharyya et al. [8] showed that in the case when a sequence of stable models with
αn → 1, βn → 1 was considered, in contrast to the AR(1) model, the sequence of Gauss–Newton estimators (̂αn, β̂n) of
(αn, βn)were asymptotically normal, namely,

n3/2
(
α̂n − αn
β̂n − βn

)
D
−→ N (0,Σ)

with some covariance matrixΣ .
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The doubly geometric model has several applications. Jain [11] used it in the study of image processing, Martin [13],
Cullis and Gleeson [10], Basu and Reinsel [2] in agricultural trials, while Tjøstheim [16] in digital filtering.
In the present paper we study another special case of the model (1.1). We consider the spatial autoregressive process

{Xk,` : k, ` ∈ Z}which is a solution of the spatial stochastic difference equation

Xk,` = αXk−1,` + βXk,`−1 + εk,` (1.2)
with parameters (α, β) ∈ R2. This model is stable (i.e. has a stationary solution) in case |α| + |β| < 1 (see [1]), and
unstable if |α|+ |β| = 1. In a recent paper Paulauskas [14] determined the exact asymptotic behaviour of the variances of a
nonstationary solution of (1.2) with Xk,` = 0 for k+ ` ≤ 0, while Baran et al. [5] in the same model clarified the asymptotic
properties of the least squares estimator (LSE) of (α, β) both in stable and unstable cases.
We remark, that in case |α| + |β| < 1, if {εk,` : k, ` ∈ Z} are independent and identically distributed random variables,

a stationary solution can be given by

Xk,` =
∑

(i,j)∈Uk,`

(
k+ `− i− j
k− i

)
αk−iβ`−jεi,j, (1.3)

where Uk,` := {(i, j) ∈ Z2 : i ≤ k and j ≤ `} and the convergence of the series is understood in L2-sense.
We are interested in the asymptotic behaviour of the stationary solution of (1.2) in the case when the parameters

approach the boundary |α| + |β| = 1. In order to determine the appropriate speed of parameters one may use the idea
of Chan and Wei [9] and consider the order of

In := E

( ∑
(k,`)∈Hn

( (
Xk−1,`

)2 Xk−1,`Xk,`−1
Xk−1,`Xk,`−1

(
Xk,`−1

)2
))

that is exactly the observed Fisher information matrix about (α, β)when the innovations εk,` are normally distributed and
the process is observed on a set Hn ⊂ Z2, n ∈ N. From Theorem 1.1 of [5] we obtain that

In ∼


n2σ 2α,βΓα,β , if |α| + |β| < 1,
n5/2σ 2αΨα,β , if |α| + |β| = 1, 0 < |α| < 1,
n3(4/3)I, if |α| + |β| = 1, |α| ∈ {0, 1},

where

Γα,β := 2
(
1 −%α,β
−%α,β 1

)
, Ψα,β :=

(
1 sign(αβ)

sign(αβ) 1

)
,

I denotes the two-by-two unit matrix and
σ 2α,β := ((1+ α + β)(1+ α − β)(1− α + β)(1− α − β))

−1/2 ,

%α,β :=


(1− α2 − β2)σ 2α,β − 1

2αβσ 2α,β
, if αβ 6= 0,

0 otherwise,

σ 2α :=
29/2

15
√
π |α|(1− |α|)

.

Now, let αn := α − γ /an, βn := β − δ/an, |α| + |β| = 1, |αn| + |βn| < 1. As nonstationary behaviour of Xk,` becomes
dominant when (αn, βn) is near the border, a reasonable choice for the sequence an should retain the order of In to be n5/2

if 0 < |α| < 1 and n3 if |α| ∈ {0, 1}. Since we have σ 2αn,βn ∼ a
1/2
n for 0 < |α| < 1 and σ 2αn,βn ∼ an for |α| ∈ {0, 1} while

%αn,βn ∼ const in both cases, the above consideration yields an = n.
In what follows we consider a nearly unstable sequence of stationary processes, i.e. for each n ∈ N, we take a stationary

solution {X (n)k,` : k, ` ∈ Z} of Eq. (1.2) with parameters (αn, βn) defined as

αn := α −
γn

n
, βn := β −

δn

n
, |αn| + |βn| < 1, (1.4)

where 0 ≤ |α| ≤ 1, |β| = 1− |α| and γn → γ , δn → δ as n→∞, (γ , δ) ∈ R2. We remark that in an earlier paper [3] the
authors considered a similar sequence of stationary processes where the autoregressive parameters were equal and their
sum converged to 1.
For a set H ⊂ Z2, the LSE (̂α(n)H , β̂

(n)
H ) of (αn, βn) based on the observations {X

(n)
k,` : (k, `) ∈ H} has the form(

α̂
(n)
H
β̂
(n)
H

)
=

 ∑
(k,`)∈H

(X (n)k−1,`)2 X (n)k−1,`X
(n)
k,`−1

X (n)k−1,`X
(n)
k,`−1

(
X (n)k,`−1

)2
−1 ∑

(k,`)∈H

(
X (n)k−1,`X

(n)
k,`

X (n)k,`−1X
(n)
k,`

)
.

Consider the triangles Tk,` := {(i, j) ∈ Z2 : i+ j ≥ 1, i ≤ k and j ≤ `} for k, ` ∈ Z. Note that Tk,` = ∅ if k+ ` ≤ 0.
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Theorem 1.1. For each n ∈ N, let {X (n)k,` : k, ` ∈ N} be a stationary solution of Eq. (1.2) with parameters (αn, βn) given by (1.4),
and with independent and identically distributed random variables {ε(n)k,` : k, ` ∈ Z} such that Eε(n)0,0 = 0, Var ε

(n)
0,0 = 1 and

M := supn∈N E
∣∣∣ε(n)0,0∣∣∣8 <∞. Let (kn) and (`n) be sequences of integers such that kn + `n →∞ as n→∞.

If 0 < |α| < 1, |β| = 1− |α| and

lim
n→∞

(kn + `n)n−1/2 (|γn| + |δn|)1/2 = ∞ (1.5)

holds then

(kn + `n)
(
α̂Tkn,`n − αn

β̂Tkn,`n − βn

)
D
−→ N2

(
0, |α||β|Ψ̄α,β

)
as n→∞, where Ψ̄α,β denotes the adjoint matrix of Ψα,β .
If |α| ∈ {0, 1}, |β| = 1− |α| and

lim
n→∞

(kn + `n)n−1
∣∣γ 2n − δ2n∣∣1/2 = ∞ (1.6)

holds then let

[−∞,∞] 3 ω := lim
n→∞

ωn, ωn := α
γn

δn
+ β

δn

γn
.

If |ω| > 1 then

(kn + `n)n1/2
∣∣γ 2n − δ2n∣∣−1/4 (α̂Tkn,`n − αnβ̂Tkn,`n − βn

)
D
−→ N2

(
0,Θ−1α,β,ω

)
as n→∞, where

Θα,β,ω :=
1
4

(
1 θ(α, β, ω)

θ(α, β, ω) 1

)
, θ(α, β, ω) :=


−(α + β)sign(ω)

|ω| +
√
ω2 − 1

if |ω| <∞,

0 if |ω| = ∞.

Remark 1.2. Obviously, |ωn| > 1, so |ω| ≥ 1. Condition |ω| > 1 in Theorem 1.1 is needed to ensure the regularity ofΘα,β,ω .
However, this condition can be omitted and using similar arguments as in the proof of the second statement of Theorem 1.1,
one can easily show that if |α| ∈ {0, 1}, |β| = 1− |α| and (1.6) holds then

(kn + `n)n1/2
∣∣γ 2n − δ2n∣∣−1/4Θ1/2α,β,ωn (α̂Tkn,`n − αnβ̂Tkn,`n − βn

)
D
−→ N2 (0, I) ,

whereΘ1/2α,β,ωn denotes the symmetric positive semidefinite square root ofΘα,β,ωn .

Remark 1.3. Theorem 1.1 shows that in the typical case kn = `n = n and γn = γ 6= 0, δn = δ 6= 0 if 0 < |α| <∞, |β| =
1− |α| then the rate of convergence is n.

We may suppose that (kn + `n) is monotone increasing. Observe, that
(
α̂
(n)
Tkn,`n

, β̂
(n)
Tkn,`n

)
and

(
α̂
(n)
T̃kn ,̃`n

, β̂
(n)
T̃kn ,̃`n

)
have the

same distribution, where k̃n := [(kn + `n)/2] and˜̀n := [(kn + `n + 1)/2]. As k̃n +˜̀n = kn + `n, in Theorem 1.1 we may
substitute (̃kn,˜̀n) for (kn, `n). The sequence (̃kn,˜̀n) can be embedded into the sequence (k′n, `′n), where k′n := [n/2] and
`′n := [(n+1)/2], namely, k

′
qn = k̃n and `

′
qn =

˜̀n with qn := k̃n+˜̀n. Clearly k′n+`′n = n. Consider the sequence (rn) defined
by rn := k for qk ≤ n < qk+1. Then rqn = n, and conditions (1.5) and (1.6) can be replaced by

lim
n→∞

nr−1/2n

(
|γrn | + |δrn |

)1/2
= ∞ (1.7)

and

lim
n→∞

nr−1n
∣∣γ 2rn − δ2rn ∣∣1/2 = ∞, (1.8)

respectively.
Thus, to prove Theorem 1.1 it suffices to show that if 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n
(
α̂T[n/2],[(n+1)/2] − αrn
β̂T[n/2],[(n+1)/2] − βrn

)
D
−→ N2

(
0, |α||β|Ψ̄α,β

)
,
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while in the case |α| ∈ {0, 1}, |β| = 1− |α|, |ω| > 1 and (1.8) holds we have

nr1/2n
∣∣γ 2rn − δ2rn ∣∣−1/4 (α̂T[n/2],[(n+1)/2] − αrnβ̂T[n/2],[(n+1)/2] − βrn

)
D
−→ N2

(
0,Θ−1α,β,ω

)
.

We remark that conditions (1.5) and (1.7) are exactly the same as conditions (4) and (5) of [3], respectively.
To simplify notation we assume that kn = [n/2], `n = [(n+1)/2] and (rn) is a monotone increasing sequence of positive

integers. One can write(
α̂Tkn,`n − αrn
β̂Tkn,`n − βrn

)
= B−1n An,

with

An :=
∑

(k,`)∈Tkn,`n

(
X (rn)k−1,`ε

(rn)
k,`

X (rn)k,`−1ε
(rn)
k,`

)
, Bn :=

∑
(k,`)∈Tkn,`n

(X (rn)k−1,`

)2
X (rn)k−1,`X

(rn)
k,`−1

X (rn)k−1,`X
(rn)
k,`−1

(
X (rn)k,`−1

)2
 .

Concerning the asymptotic behaviour of the random vector An and random matrix Bn we can formulate the following two
propositions.

Proposition 1.4. If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−2rn−1/2
(
|γrn | + |δrn |

)1/2 Bn L2
−→ (32|α||β|)−1/2 Ψα,β as n→∞.

If |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then

n−2r−1n
∣∣γ 2rn − δ2rn ∣∣1/2 Bn L2

−→ Θα,β,ω

as n→∞, where

ω := lim
n→∞

ωrn , ωrn := α
γrn

δrn
+ β

δrn

γrn
. (1.9)

Proposition 1.5. If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−1r−1/4n

(
|γrn | + |δrn |

)1/4 An D
−→ N2

(
0, (32|α||β|)−1/2 Ψα,β

)
as n→∞.

If |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then

n−1r−1/2n

∣∣γ 2rn − δ2rn ∣∣1/4 An D
−→ N2

(
0,Θα,β,ω

)
as n→∞.

In case |α| ∈ {0, 1}, |β| = 1 − |α|, and |ω| 6= 1, Θα,β,ω is a regular matrix, so Propositions 1.4 and 1.5 imply the
corresponding statement of Theorem 1.1. In the case 0 < |α| < 1, |β| = 1 − |α| we have B−1n = B̄n/ det Bn, and in this
situation the statement of Theorem 1.1 is a consequence of the following propositions.

Proposition 1.6. If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−4r−1/2n

(
|γrn | + |δrn |

)1/2 det Bn L2
−→ 2 (8|α||β|)−3/2 as n→∞.

Proposition 1.7. If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−3r−1/2n

(
|γrn | + |δrn |

)1/2 B̄nAn D
−→ N2

(
0,
(
2(8αβ)2

)−1
Ψ̄α,β

)
as n→∞.

Obviously, in the case 0 ≤ |α| ≤ 1, |β| = 1 − |α| if n is large enough, the corresponding sequences αrn and βrn
have the same signs as α and β , respectively. Hence, similarly to [5], it suffices to prove Propositions 1.6 and 1.7 for
0 < α, β < 1, α + β = 1.

2. Covariance structure

Let {Xk,` : k, ` ∈ Z} be a stationary solution of Eq. (1.2) with parameters (α, β), |α|+|β| < 1. Clearly Cov(Xi1,j1 , Xi2,j2) =
Cov(Xi1−i2,j1−j2 , X0,0) for all i1, j1, i2, j2 ∈ Z. Let Rk,` := Cov(Xk,`, X0,0) for k, ` ∈ Z. The following lemma is a natural
generalization of Lemma 4 of [3] (see also [1]).
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Lemma 2.1. Let α 6= 0 and β 6= 0. If k, ` ∈ Z with k · ` ≤ 0 then

Rk,` = σ 2α,β

(
1+ α2 − β2 − σ−2α,β

2α

)|k| (
2β

1+ β2 − α2 + σ−2α,β

)|`|
. (2.1)

If k, ` ∈ Z with k · ` ≥ 0 then

Rk,` = R0,|k−`| −
|k|∧|`|−1∑
i=0

(
|k− `| + 2i

i

)
αiβ |k−`|+i. (2.2)

Remark 2.2. If α > 0 and β > 0 then Rk,` ≥ 0. If α < 0 or β < 0 we have

0 ≤ |Rk,`| ≤ R̃k,` := Cov(̃Xk,`, X̃0,0), k, ` ∈ Z,

where {̃Xk,` : k, ` ∈ Z} is a stationary solution of Eq. (1.2) with parameters (|α|, |β|).

Besides representations (2.1) and (2.2) one can express the covariances as special cases of Appell’s hypergeometric series
F4(a, b, c, d; x, y) defined by

F4(a, b, c, d; x, y) :=
∞∑
m=0

∞∑
n=0

(a)m+n(b)m+n
(c)m(d)nm!n!

xmyn,
√
|x| +

√
|y| < 1,

where a, b, c, d ∈ N and (a)n := a(a+ 1) . . . (a+ n− 1) [7].

Lemma 2.3. Let α 6= 0 and β 6= 0. If k, ` ∈ Z with k · ` ≤ 0 then

Rk,` = α|k|β |`|F4
(
|k| + 1, |`| + 1, |k| + 1, |`| + 1;α2, β2

)
. (2.3)

If k, ` ∈ Z with k · ` ≥ 0 then

Rk,` = α|k|β |`|
(
|k| + |`|
|k|

)
F4
(
|k| + |`| + 1, 1, |k| + 1, |`| + 1;α2, β2

)
.

Moreover, in this case we have

Rk,` = (sign(α))|k| (sign(β))|`|
∞∑
i=0

(|α| + |β|)|k|+|`|+2i P
(
S(ν)i,|k|+|`|+i = |`| + i

)
, (2.4)

where S(ν)n,m := S(ν)n + S
(1−ν)
m , ν := |α|/ (|α| + |β|) and S(ν)n and S(1−ν)m are independent binomial random variables with

parameters (n, ν) and (m, 1− ν), respectively.

Proof. The statements directly follow from representation (1.3) and from the independence of the error terms εi,j. �

We remark, that as

F4

(
a, b, a, b;

−x
(1− x)(1− y)

,
−y

(1− x)(1− y)

)
=
(1− x)b(1− y)a

1− xy
,

representation (2.1) directly follows from (2.3).

Proposition 2.4. If αβ > 0, |α| + |β| < 1 then there exists a universal positive constant K such that∣∣Rk−1,`+1 − Rk,`∣∣ ≤ K
(αβ)3/2

, k, ` ∈ Z.

Proof. Without loss of generality we may assume α > 0 and β > 0.
Suppose k > 0, ` ≥ 0, so (k − 1)(` + 1) ≥ 0 and k · ` ≥ 0. Using notations introduced in Lemma 2.3 with the help of

(2.4) we obtain

Rk−1,`+1 − Rk,` =
∞∑
i=0

(α + β)k+`+2i∆k,`,i(ν), (2.5)

where

∆i,k,`(ν) := P
(
S(ν)i,k+`+i = `+ i+ 1

)
− P

(
S(ν)i,k+`+i = `+ i

)
.
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According to Theorem 2.6 of [5]∆i,k,`(ν) can be approximated by

∆̃i,k,`(ν) :=
1

(2πν(1− ν)(k+ `+ 2i))1/2

(
exp

{
−
(ν`− (1− ν)k+ 1)2

2ν(1− ν)(k+ `+ 2i)

}
− exp

{
−

(ν`− (1− ν)k)2

2ν(1− ν)(k+ `+ 2i)

})
where∣∣∆̃i,k,`(ν)−∆i,k,`(ν)∣∣ ≤ C̃

(ν(1− ν)(k+ `+ 2i))3/2

with some positive constant C̃ . Thus, if on the right-hand side of (2.5) we replace ∆i,k,`(ν) with ∆̃i,k,`(ν), the error of the
approximation is

∞∑
i=0

(α + β)k+`+2i
∣∣∆̃i,k,`(ν)−∆i,k,`(ν)∣∣ ≤ C̃

(ν(1− ν))3/2
ζ (3/2) ≤

C
(αβ)3/2

,

where ζ (x) denotes Riemann’s zeta function.
To find an upper bound for the approximating sum consider first the case ν`− (1− ν)k ≥ 0. In this case

∞∑
i=0

(α + β)k+`+2i
∣∣∆̃i,k,`(ν)∣∣ ≤ ∞∑

i=0

2(ν`− (1− ν)k)+ 1

π1/2 (2ν(1− ν)(k+ `+ 2i))3/2
exp

{
−

(ν`− (1− ν)k)2

2ν(1− ν)(k+ `+ 2i)

}
≤

ζ (3/2)+ 1

(ν(1− ν))3/2
+

1
2ν(1− ν)

Φ̃

(
ν`− (1− ν)k

(2ν(1− ν)(k+ `))1/2

)
≤

ζ (3/2)+ 2

(ν(1− ν))3/2
≤
ζ (3/2)+ 2
(αβ)3/2

,

where Φ̃(x) is the error function defined by

Φ̃(x) :=
2
π1/2

∫ x

0
e−t

2/2dt, x > 0.

Case ν`− (1− ν)k < 0 follows by symmetry.
In case k ≤ 0, ` < 0 implying (k− 1)(`+ 1) ≥ 0 and k · ` > 0, we have

Rk−1,`+1 − Rk,` =
∞∑
i=0

(α + β)−k−`+2i
(
P
(
S(ν)i,−k−`+i = −`+ i− 1

)
− P

(
S(ν)i,−k−`+i = −`+ i

))
and the statement can be proved similarly to the previous case.
Now, suppose k > 0, ` < 0, so (k−1)(`+1) ≤ 0 and k ·` ≤ 0. Using the form (2.1) of the covariances direct calculations

show

Rk−1,`+1 − Rk,` = Rk,`
1− (α + β)2 + σ−2α,β

2αβ
.

It is not difficult to see that 1− (α + β)2 ≤ σ−2α,β , so we have∣∣Rk−1,`+1 − Rk,`∣∣ ≤ ∣∣Rk,`∣∣ σ−2α,β
αβ
≤
1
αβ
.

In a similar way one can obtain the result for k ≤ 0, ` ≥ 0 that completes the proof. �

Using the notations of Lemma 2.3 with the help of the exponential approximation one can easily have the analogue of
Corollary 2.7 of [5].

Corollary 2.5. If αβ > 0, |α| + |β| < 1 then there exists a constant C > 0 such that for all k, ` > 1 and 0 ≤ i ≤ k + ` − 1
we have∣∣∣P (S(ν)k,` = i+ 1)− P

(
S(ν)k,` = i

)∣∣∣ ≤ C
αβ(k+ `)

.

Remark 2.6. Using Theorem 2.4 of [5] it is not difficult to show that under conditions of Corollary 2.5 there exists a constant
D > 0 such that for all k, ` > 1 and 0 ≤ i ≤ k+ `we have∣∣∣P (S(ν)k,` = i)∣∣∣ ≤ D

αβ(k+ `)1/2
.

Now, let {X (n)k,` : k, ` ∈ Z}, n ∈ N, be a nearly unstable sequence of stationary processes described in Theorem 1.1. For
each n ∈ N let us introduce the piecewise constant random fields
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Z (n)1,0(s, t) := r
−1/4
n X (rn)

[ns]+1,[nt], Z (n)0,1(s, t) := r
−1/4
n X (rn)

[ns],[nt]+1,

Y (n)1,0(s, t) := r
−1/2
n X (rn)

[ns]+1,[nt], Y (n)0,1(s, t) := r
−1/2
n X (rn)

[ns],[nt]+1, s, t ∈ R.

Proposition 2.7. Let s1, t1, s2, t2 ∈ R.
If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then for all (i1, j1), (i2, j2) ∈ {(1, 0), (0, 1)} we have

lim
n→∞

(
|γrn | + |δrn |

)1/2
Cov

(
Z (n)i1,j1(s1, t1), Z

(n)
i2,j2
(s2, t2)

)
= 0 if s1 − s2 6= t1 − t2,

lim sup
n→∞

(
|γrn | + |δrn |

)1/2 ∣∣∣Cov (Z (n)i1,j1(s1, t1), Z (n)i2,j2(s2, t2))∣∣∣ ≤ 1
√
8|α||β|

if s1 − s2 = t1 − t2.

If |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then for all (i1, j1), (i2, j2) ∈ {(1, 0), (0, 1)} we have

lim
n→∞

∣∣γ 2rn − δ2rn ∣∣1/2 Cov
(
Y (n)i1,j1(s1, t1), Y

(n)
i2,j2
(s2, t2)

)
= 0 if s1 − s2 6= t1 − t2,

lim sup
n→∞

∣∣γ 2rn − δ2rn ∣∣1/2 ∣∣∣Cov (Y (n)i1,j1(s1, t1), Y (n)i2,j2(s2, t2))∣∣∣ ≤ 12 if s1 − s2 = t1 − t2.

Moreover, if s1 − s2 6= t1 − t2 then the convergence to 0 in both cases has an exponential rate.

Proof. For simplicity we consider only the case 0 ≤ α, β ≤ 1. The other cases can be handled in a similar way.
First, let 0 < α < 1, so β = 1− α. Without loss of generality we may assume αrn > 0, βrn > 0 and δrn > 0, γrn > 0. As

r−1/2n σ 2αrn ,βrn
=

((
γrn + δrn

) (
2−

γrn + δrn

rn

)(
2α −

γrn − δrn

rn

)(
2(1− α)+

γrn − δrn

rn

))−1/2
we have

lim
n→∞

(
γrn + δrn

)1/2 r−1/2n σ 2αrn ,βrn
=

1
√
8α(1− α)

=
1
√
8αβ

. (2.6)

Suppose s1 − s2 ≥ 0 ≥ t1 − t2, so [ns1] − [ns2] ≥ 0 ≥ [nt1] − [nt2]. By (2.1)

0 ≤ Cov
(
Z (n)1,0(s1, t1), Z

(n)
1,0(s2, t2)

)
≤ r−1/2n σ 2αrn ,βrn

(
1−

1
%rn

) n
2 |s1−s2|

(
1+

1
τrn

)− n2 |t1−t2|
if n is large enough, where

%rn :=
2αrn

2αrn − 1− α2rn + β
2
rn + σ

−2
αrn ,βrn

, τrn :=
2βrn

1+ β2rn − α
2
rn + σ

−2
αrn ,βrn

− 2βrn
. (2.7)

As

σ 2α,β =
(
(1+ α2 − β2)2 − 4α2

)−1/2
,

it is easy to see that %rn →∞ and τrn →∞ as n→∞. Moreover, condition (1.7) ensures that n%
−1
rn →∞ and nτ

−1
rn →∞

as n→∞. Hence, if s1 = s2 and t1 = t2,

lim
n→∞

(
γrn + δrn

)1/2
Cov

(
Z (n)1,0(s1, t1), Z

(n)
1,0(s2, t2)

)
=

1
√
8αβ

,

otherwise it converges to 0 in exponential rate.
Further, let s1 − s2 > 0 and t1 − t2 > 0. In this case [ns1] − [ns2] ≥ 0 and [nt1] − [nt2] ≥ 0, so by (2.2) we have

0 ≤ Cov
(
Z (n)1,0(s1, t1), Z

(n)
1,0(s2, t2)

)
≤ r−1/2n σ 2αrn ,βrn

(
1+

1
τrn

)−|[ns1]−[ns2]−[nt1]+[nt2]|
. (2.8)

If s1 − s2 6= t1 − t2 then similarly to the previous case one can show that the right-hand side of (2.8) converges to 0 in
exponential rate as n→∞.
In case s1 − s2 = t1 − t2 we have |[ns1] − [ns2] − [nt1] + [nt2]| ≤ 2, so by (2.8)

lim sup
n→∞

(
γrn + δrn

)1/2
Cov

(
Z (n)1,0(s1, t1), Z

(n)
1,0(s2, t2)

)
≤

1
√
8αβ

.

Obviously, the same results hold for the covariances Cov
(
Z (n)1,0(s1, t1), Z

(n)
0,1(s2, t2)

)
, Cov

(
Z (n)0,1(s1, t1), Z

(n)
1,0(s2, t2)

)
and

Cov
(
Z (n)0,1(s1, t1), Z

(n)
0,1(s2, t2)

)
.
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Now, consider for example the case α = 1, β = 0. Without loss of generality we may assume αrn > 0. Furthermore,
|αrn | + |βrn | < 1 implies γrn > 0 and |δrn | < γrn . As

r−1n σ
2
αrn ,βrn

=

((
γ 2rn − δ

2
rn

) (
2−

γrn + δrn

rn

)(
2−

γrn − δrn

rn

))−1/2
we have

lim
n→∞

(
γ 2rn − δ

2
rn

)1/2
r−1n σ

2
αrn ,βrn

=
1
2
. (2.9)

Again, suppose s1 − s2 ≥ 0 ≥ t1 − t2. The form of covariances (2.1) implies that if n is large enough

0 ≤
∣∣∣Cov (Y (n)1,0(s1, t1), Y (n)1,0(s2, t2))∣∣∣ ≤ r−1n σ 2αrn ,βrn

(
1−

1
%rn

) n
2 |s1−s2|

(
1+

1
|τrn |

)− n2 |t1−t2|
, (2.10)

where %rn and τrn are defined by (2.7). Obviously, if s1 = s2 and t1 = t2 then (2.9) implies

lim sup
n→∞

(
γ 2rn − δ

2
rn

)1/2 ∣∣∣Cov (Y (n)1,0(s1, t1), Y (n)1,0(s2, t2))∣∣∣ ≤ 12 . (2.11)

Further, we have %rn →∞ as n→∞ and now (1.8) ensures n%
−1
rn →∞. Thus, as 1+ 1/|τrn | ≥ 1, if s1 6= s2 then(

γ 2rn − δ
2
rn

)1/2 ∣∣∣Cov (Y (n)1,0(s1, t1), Y (n)1,0(s2, t2))∣∣∣→ 0 (2.12)

as n→∞ in exponential rate. Now, let us assume s1 = s2 and t1 6= t2. Short calculation shows(
1+

1
|τrn |

)−1
=

2|δrn |

2γrn −
γ 2rn−δ

2
rn

rn
+
(
γ 2rn − δ

2
rn

)1/2 ( γ 2rn−δ2rn
rn
− 4 γrnrn + 4

)1/2 . (2.13)

If |δ| < γ then

lim
n→∞

(
1+

1
|τrn |

)−1
=

|δ|

γ + (γ 2 − δ2)1/2
< 1,

so using (2.9) and (2.10) we obtain again (2.12). Further, condition (1.8) implies

lim
n→∞

n
(
γ 2rn − δ

2
rn

)1/2
= ∞.

Hence, with the help of (2.13) one can easily see that if |δ| = γ 6= 0, or δ = γ = 0 and limn→∞ γrn |δrn |
−1
= 1, we

obtain |τrn | → ∞ and n|τrn |
−1
→ ∞ as n → ∞. Thus, (2.9) and (2.10) imply (2.12) and the rate of convergence is again

exponential. In case δ = γ = 0 and limn→∞ γrn |δrn |
−1
= |ω| > 1 we have

lim
n→∞

(
1+

1
|τrn |

)−1
=

1
|ω| + (ω2 − 1)1/2

< 1,

that implies (2.12). Finally, if δ = γ = 0 and limn→∞ γrn |δrn |
−1
= ∞ then (2.12) follows from

lim
n→∞

(
1+

1
|τrn |

)−1
= 0.

Now, let s1 − s2 > 0 and t1 − t2 > 0. Lemma 2.1 and Remark 2.2 imply

0 ≤
∣∣∣Cov (Y (n)1,0(s1, t1), Y (n)1,0(s2, t2))∣∣∣ ≤ r−1n σ 2αrn ,βrn

(
1+

1
|τrn |

)−|[ns1]−[ns2]−[nt1]+[nt2]|
,

where τrn is defined by (2.7). If s1 − s2 = t1 − t2 then as |[ns1] − [ns2] − [nt1] + [nt2]| ≤ 2 and 1+ 1/|τrn | ≥ 1, using (2.9)
we obtain (2.11). Finally, if s1− s2 6= t1− t2 then to prove (2.11) one has to do the same considerations as in the case s1 = s2
and t1 6= t2. �

In order to estimate the covariances wemake use of the following lemmawhich is a natural generalization of Lemma 2.8
of [5].

Lemma 2.8. Let ξ1, ξ2, . . . be independent random variables with Eξi = 0, Eξ 2i = 1 for all i ∈ N, and M4 := supi∈N Eξ 4i <∞.
Let a1, a2, . . . , b1, b2, . . . , c1, c2 . . . , d1, d2 . . . ∈ R, such that

∑
∞

i=1 a
2
i < ∞,

∑
∞

i=1 b
2
i < ∞,

∑
∞

i=1 c
2
i < ∞ and

∑
∞

i=1 d
2
i <

∞. Let
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X :=
∞∑
i=1

aiξi, Y :=
∞∑
i=1

biξi, Z :=
∞∑
i=1

ciξi, W :=
∞∑
i=1

diξi,

where the convergence of the infinite sums is understood in L2-sense. Then

Cov(XY , ZW ) =
∞∑
i=1

(Eξ 4i − 3) aibicidi + Cov(X, Z)Cov(Y ,W )+ Cov(X,W )Cov(Y , Z). (2.14)

Moreover, if ai, bi, ci, di ≥ 0 then

0 ≤ Cov(XY , ZW ) ≤ M4 Cov(X, Z)Cov(Y ,W )+M4 Cov(X,W )Cov(Y , Z),

and

0 ≤ EXYZW ≤ M4 (EXZ EYW + EXW EYZ + EXY EZW ) .

Remark 2.9. Using the definitions of Lemma 2.8 from (2.14) one can easily see, that

|Cov(XY , ZW )| ≤ Cov(̃XỸ , Z̃W̃ ),

where

X̃ :=
∞∑
i=1

|ai|ξi, Ỹ :=
∞∑
i=1

|bi|ξi, Z̃ :=
∞∑
i=1

|ci|ξi, W̃ :=
∞∑
i=1

|di|ξi.

3. Proof of Proposition 1.4

Let us assume αrn 6= 0 and βrn 6= 0. Using the stationarity of
{
X (rn)k,` : k, ` ∈ Z

}
and Lemma 2.1 we obtain

EBn =
∑

(k,`)∈Tkn,`n

Var
(
X (rn)0,0

)
Cov

(
X (rn)0,0 , X

(rn)
1,−1

)
Cov

(
X (rn)0,0 , X

(rn)
1,−1

)
Var

(
X (rn)0,0

) 
=
(kn + `n)(kn + `n + 1)

2
σ 2αrn ,βrn

(
1 Drn
Drn 1

)
=
n(n+ 1)
2

σ 2αrn ,βrn

(
1 Drn
Drn 1

)
,

where

Drn =

(
1+ α2rn − β

2
rn − σ

−2
αrn ,βrn

2αrn

)(
2βrn

1+ β2rn − α
2
rn + σ

−2
αrn ,βrn

)
.

If 0 < |α| < 1 and |β| = 1 − |α| then it is not difficult to see that σ−2αrn ,βrn → 0 and in this way Drn → sign(αβ) as
n→∞. Hence, using the same arguments as in the proof of (2.6) we obtain

lim
n→∞

n−2rn−1/2
(
|γrn | + |δrn |

)1/2
EBn = (32|α||β|)−1/2 Ψα,β .

If |α| ∈ {0, 1} and |β| = 1− |α|, again, we have σ−2αrn ,βrn → 0 as n→∞, and similarly to the proof of (2.9) one can see

lim
n→∞

n−2rn−1
∣∣γ 2rn − δ2rn ∣∣1/2 n(n+ 1)2

σ 2αrn ,βrn
=
1
4
.

Concerning the limit of Drn from the four possible cases that can be handled in the same way we consider only the case
α = 1, β = 0. In this case α γrn

δrn
+ β

δrn
γrn
=

γrn
δrn
and we may assume αrn > 0 and thus |δrn | ≤ γrn (hence γrn > 0). Obviously,

lim
n→∞

1+ α2rn − β
2
rn − σ

−2
αrn ,βrn

2αrn
= 1,

and

2βrn
1+ β2rn − α

2
rn + σ

−2
αrn ,βrn

=

γrn − δrn
2rn

− sign(ωrn)
(
1−

γrn − δrn

2rn

)1/2

×

 γrn

|δrn |

(
1−

γrn − δrn

2rn

)1/2
+

(
γ 2rn

δ2rn
− 1

)1/2 (
1−

γrn + δrn

2rn

)1/2−1 .
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Hence,

lim
n→∞

Drn =
{
−sign(ω)

(
|ω| + (ω2 − 1)1/2

)−1
if |ω| <∞,

0 if |ω| = ∞,

where ω is the limit defined by (1.9) satisfying |ω| ≥ 1. Thus, we have

lim
n→∞

n−2rn−1
∣∣γ 2rn − δ2rn ∣∣1/2 EBn = Θα,β,ω.

Observe, that limn→∞ Drn = limn→∞ θ(α, β, ωrn).
By Remark 2.9 in the remaining part of the proof we may assume αrn ≥ 0, βrn ≥ 0. Hence, using Lemma 2.8 we have

Var

 ∑
(i,j)∈Tkn,`n

(
X (rn)i−1,j

)2 ≤ 2M4 ∑
(i1,j1)∈Tkn,`n

∑
(i2,j2)∈Tkn,`n

Cov
(
X (rn)i1−1,j1

, X (rn)i2−1,j2

)2
, (3.1)

whereM4 := supn∈N E(ε(n)0,0)
4, and from the stationarity of

{
X (rn)k,` : k, ` ∈ Z

}
follows that the triangle Tkn,`n can be replaced

by Tn,0.
Now, (3.1) implies that if 0 < |α| < 1 and |β| = 1− |α|

n−4r−1n
(
|γrn | + |δrn |

)
Var

 ∑
(i,j)∈Tkn,`n

(
X (rn)i−1,j

)2
≤ 2M4

∫∫
T

∫∫
T

((
|γrn | + |δrn |

)1/2
Cov

(
Z0,1(s1, t1), Z0,1(s2, t2)

))2
ds1dt1ds2dt2, (3.2)

while for |α| ∈ {0, 1}, |β| = 1− |α|we have

n−4r−2n
∣∣γ 2rn − δ2rn ∣∣Var

 ∑
(i,j)∈Tkn,`n

(
X (rn)i−1,j

)2
≤ 2M4

∫∫
T

∫∫
T

(∣∣γ 2rn − δ2rn ∣∣1/2 Cov
(
Y0,1(s1, t1), Y0,1(s2, t2)

))2
ds1dt1ds2dt2, (3.3)

where T :=
{
(s, t) ∈ R2 : 0 ≤ s ≤ 1,−s ≤ t ≤ 0

}
. As the area of the triangle T is finite and the integrands in both cases are

uniformly bounded on T × T , Fatou’s lemma and Proposition 2.7 imply that the right-hand sides of (3.2) and (3.3) converge
to 0 as n→∞. In a similar way one can show

n−4κnVar

 ∑
(i,j)∈Tkn,`n

X (rn)i−1,jX
(rn)
i,j−1

→ 0 and n−4κnVar

 ∑
(i,j)∈Tkn,`n

(
X (rn)i,j−1

)2→ 0,

as n→∞, where

κn =

{
r−1n

(
|γrn | + |δrn |

)
if 0 < |α| < 1, |β| = 1− |α|,

r−2n
∣∣γ 2rn − δ2rn ∣∣ if |α| ∈ {0, 1}, |β| = 1− |α|.

that finishes the proof of Proposition 1.4. �

4. Proof of Proposition 1.5

To prove Proposition 1.5 we are going to use the same technique as in [3–5]. For a given n ∈ N and 1 ≤ m ≤ n, let

An,m =
(
A(1)n,m
A(2)n,m

)
:=

∑
(k,`)∈Tkm,`m

(
X (rn)k−1,`ε

(rn)
k,`

X (rn)k,`−1ε
(rn)
k,`

)
,

where An,0 := (0, 0)>. Let F n
m denote the σ -algebra generated by the random variables

{
ε
(rn)
k,` : (k, `) ∈ Ukm,`m

}
. Obviously,

An,n = An =
∑n
m=1(An,m− An,m−1). First we show that

(
An,m − An,m−1,F n

m

)
is a square integrable martingale difference. Let

Rm := Tkm,`m \ Tkm−1,`m−1 , where R1 := Tk1,`1 . Short calculation shows

An,m − An,m−1 = An,m,1 +
∑

(k,`)∈Rm

ε
(rn)
k,` An,m,2,k,`, (4.1)
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where An,m,1 =
(
A(1)n,m,1, A

(2)
n,m,1

)>
and An,m,2,k,` =

(̃
An,m,2,k−1,`, Ãn,m,2,k,`−1

)>
with

A(1)n,m,1 :=
∑

(k,`)∈Rm

ε
(rn)
k,`

∑
(i,j)∈Uk−1,`\Ukm−1,`m−1

(
k+ `− 1− i− j
k− 1− i

)
αk−1−irn β`−jrn ε

(rn)
i,j ,

A(2)n,m,1 :=
∑

(k,`)∈Rm

ε
(rn)
k,`

∑
(i,j)∈Uk,`−1\Ukm−1,`m−1

(
k+ `− 1− i− j

k− i

)
αk−irn β

`−1−j
rn ε

(rn)
i,j ,

Ãn,m,2,k,` :=
∑

(i,j)∈Uk,`∩Ukm−1,`m−1

(
k+ `− i− j
k− i

)
αk−irn β

`−j
rn ε

(rn)
i,j .

We remark that for the odd values ofmwe have Rm =
⋃km
i=−`m+1 {(i, `m)}, and

A(1)n,m,1 =
km∑

k=−`m+2

k−1∑
i=−∞

αk−1−irn ε
(rn)
k,`mε

(rn)
i,`m , A(2)n,m,1 = 0,

while for the even values Rm =
⋃`m
j=−km+1 {(km, j)}, and

A(2)n,m,1 =
`m∑

`=−km+2

`−1∑
j=−∞

β`−1−jrn ε
(rn)
km,`ε

(rn)
km,j, A(1)n,m,1 = 0.

The components of An,m,1 are quadratic forms of the variables
{
ε
(rn)
i,j : (i, j) ∈ Rm

}
, hence An,m,1 is independent of F n

m−1.

Further, the terms Ãn,m,2,k,` are linear combinations of the variables {ε
(rn)
i,j : (i, j) ∈ Ukm−1,`m−1}, thus they are measurable

with respect to F n
m−1. Hence,

E
(
An,m − An,m−1 | F n

m−1

)
= EAn,m,1 +

∑
(k,`)∈Rm

An,m,2,k,`E
(
ε(rn)p,q | F

n
m−1

)
= 0.

By theMartingale Central Limit Theorem (see, e.g. [15, Theorem4, p. 511]), the statement in Proposition 1.5 is a consequence
of the following two propositions, where 1H denotes the indicator function of the set H .

Proposition 4.1. If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−2r−1/2n

(
|γrn | + |δrn |

)1/2 n∑
m=1

E
(
(An,m − An,m−1)(An,m − An,m−1)>|F n

m−1

) L2
−→ (32|α||β|)−1/2 Ψα,β

as n→∞.
If 0 < |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then

n−2r−1n
∣∣γ 2rn − δ2rn ∣∣1/2 n∑

m=1

E
(
(An,m − An,m−1)(An,m − An,m−1)>|F n

m−1

) L2
−→ Θα,β,ω

as n→∞.

Proposition 4.2. If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then for all δ > 0

n−2r−1/2n

(
|γrn | + |δrn |

)1/2 n∑
m=1

E

(
‖An,m − An,m−1‖2 × 1{

‖An,m−An,m−1‖≥δnr
1/4
n (|γrn |+|δrn |)

−1/4
}|F n

m−1

)
converges to 0 in probability as n→∞.
If 0 < |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then for all δ > 0

n−2r−1n
∣∣γ 2rn − δ2rn ∣∣1/2 n∑

m=1

E

(
‖An,m − An,m−1‖2 × 1{

‖An,m−An,m−1‖≥δnr
1/2
n |γ

2
rn−δ

2
rn |
−1/4

}|F n
m−1

)
converges to 0 in probability as n→∞.

The proofs of Propositions 4.1 and 4.2 follow the same line as the proof of Propositions 13 and 14 of [4], respectively. For
more details the authors refer to [6]. �
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5. Proof of Propositions 1.6 and 1.7

The proofs of Propositions 1.6 and 1.7 are very similar to the proofs of Propositions 1.4 and 1.5 of [5], respectively, so
here we merely recall the main ideas. The detailed proofs can be found in [6].
In what followswewill assume 0 < α < 1 and β = 1−α, so without loss of generality wemay suppose that αrn , βrn , γrn

and δrn are all positive. Consider the following expression of det Bn

det Bn =
∑

(i1,j1)∈Tkn,`n

∑
(i2,j2)∈Tkn,`n

W (n)
i1,j1,i2,j2

,

where

W (n)
i1,j1,i2,j2

:=

(
X (rn)i1,j1−1

)2 (
X (rn)i2−1,j2

)2
− X (rn)i1−1,j1

X (rn)i1,j1−1
X (rn)i2−1,j2

X (rn)i2,j2−1
.

With the help of Lemma 2.8, Propositions 2.4 and 2.7 and Fatou’s lemma one can show

lim
n→∞

n−4r−1/2n

(
γrn + δrn

)1/2
E det Bn =

2
(8αβ)3/2

.

Further, after tedious but straightforward calculations, using the independence of the error terms ε(rn)i,j , Corollary 2.5,
Lemma 2.1, Propositions 2.4 and 2.7 and Remark 2.6 one obtains

lim
n→∞

n−8rn
(
γrn + δrn

)
Var (det Bn) = 0

that completes the proof of Proposition 1.6.
Concerning the statement of Proposition 1.7 we have

n−3r−1/2n

(
γrn + δrn

)1/2 B̄nAn = (n−2r−1/2n

(
γrn + δrn

)1/2 B̄n − 1
√
32αβ

1̄

)
1
n
An +

1
√
32αβ

1
n
1̄An,

where 1 denotes the two-by-two matrix of ones. Short straightforward calculations show(
n−2r−1/2n

(
γrn + δrn

)1/2 B̄n − 1
√
32αβ

1̄

)
1
n
An = Cn + Dn,

where

Cn := n−1r−1/4n

(
γrn + δrn

)1/4 diag(An)n−2r−1/4n

(
γrn + δrn

)1/4 B̄n(1, 1)>,
Dn :=

n−2r−1/2n

(
γrn + δrn

)1/2 ∑
(i,j)∈Tkn,`n

X (rn)i−1,jX
(rn)
i,j−1 −

1
√
32αβ

 1
n
(1,−1)An(1,−1)>

and diag(An) denotes the two-by-two diagonal matrix having An in its main diagonal. From Proposition 1.4, representation
(1.3), independence of the error terms ε(rn)i,j and (2.6) we obtain Dn

P
−→ (0, 0)> as n→∞.

Further, using direct calculations one can see

n−2r−1/4n

(
γrn + δrn

)1/4 B̄n(1, 1)> L2
−→ (0, 0)> as n→∞

that together with Proposition 1.5 implies Cn
P
−→ (0, 0)> as n → ∞. Hence, to prove the asymptotic normality of

n−3r−1/2n
(
γrn + δrn

)1/2 B̄nAn it suffices to show the asymptotic normality of n−11̄An.
For a given n ∈ N and 1 ≤ m ≤ n let Qn,m := (1,−1)An,m. Obviously Qn,n = (1,−1)An and from Eq. (4.1) we have

Qn,m − Qn,m−1 = A
(1)
n,m,1 − A

(2)
n,m,1 +

∑
(k,`)∈Rm

ε
(rn)
k,`

(̃
An,m,2,k−1,` − Ãn,m,2,k,`−1

)
.

As
(
Qn,m − Qn,m−1,F n

m

)
is a square integrable martingale difference, similarly to the proof of Proposition 1.5 the statement

of Proposition 1.7 follows from the Martingale Central Limit Theorem. �
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