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We propose a relativistic Lorentz-invariant spin-noncommutative algebra. Using the Weyl ordering of 
noncommutative position operators, we find a mapping from a space of commutative functions into space 
of noncommutative functions. The Lagrange function of an electromagnetic field in the space with spin 
noncommutativity is constructed. In such a space electromagnetic field becomes non-abelian. A gauge 
transformation law of this field is also obtained. Exact nonlinear field equations of noncommutative 
electromagnetic field are derived from the least action principle. Within the perturbative approach we 
consider field of a point charge in a constant magnetic field and interaction of two plane waves. An exact 
solution of a plane wave propagation in a constant magnetic and electric fields is found.
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1. Introduction

Noncommutativity of position operators appears in string the-
ory [1,2] and quantum gravity [3]. In [2] it was shown that coordi-
nates on D-brane in a constant Neveu–Schwarz B-field satisfy the 
following commutation relations

[Xi, X j] = iθi j, (1)

where θi j is a constant antisymmetric tensor. This type of noncom-
mutativity is called canonical noncommutativity. The same non-
commutativity appears in compactifying the IKKT M-theory [1]. 
In quantum gravity the noncommutativity can be thought of as 
a phenomenological effect from quantum space–time, which in-
corporates the notion of the minimal length into ordinary physics. 
Moreover, noncommutativity arises even in the pure classical me-
chanics. It can be shown that coordinates of a charged particle 
with a small mass in a strong magnetic field do not commute (the 
corresponding Poisson bracket is non-zero) [4,5].

It is interesting that, decades before string theory, in search-
ing for a generalization of the ordinary commutation relations 
between the operators of dynamical variables Snyder developed a 
noncommutative Lorentz-invariant algebra of the following form

[Xμ, Xν ] = il2Lμν, (2)
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where Lμν are generators of the Lorentz rotation group, l is a small 
parameter [6,7].

One of the biggest problems of canonical noncommutativity (1)
with a constant right-hand part of coordinate commutator is a vi-
olation of a rotational symmetry and as a consequence existing of 
a chosen direction.

Rotational invariance (or more widely Lorentz-invariance) can 
be restored in noncommutative spaces by replacing constants θi j

with some more complicated objects. There are already several ro-
tational (Lorentz) invariant noncommutative algebras. First of all, 
the above-mentioned Snyder algebra is Lorentz-invariant (2). The 
other example of such an algebra can be built by assuming that 
θi j are operators commuting with each other and transforming as 
components of tensor [3]. Objects θi j can be composed from some 
additional degrees of freedom. In this way by using coordinates of 
an additional harmonic oscillator rotational invariant noncommu-
tativity was introduced in [8,9].

Recently, there were proposed several rotational invariant non-
commutativities, where coordinate commutators are postulated to 
be proportional to some functions of spin operators. These algebras 
are known in literature as spin noncommutativity or noncommu-
tativity due to spin.

In [10] the following algebra with spin noncommutativity was 
proposed

[
Xi, X j

] = ih̄θ2εi jksk,
[

Xi, P j
] = ih̄δi j,

[
Pi, P j

] = 0,[
s , s

] = ih̄ε s ,
[

X , s
] = ih̄θε s ,

(3)

i j i jk k i j i jk k
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where θ is the parameter of spin noncommutativity, sk is the k-th 
component of spin operator, δi j is the Kronecker delta-symbol, 
εi jk is the Levi-Civita tensor. This algebra is obtained by shifting 
position operators by spin operators

Xi = xi + θ si, Pi = pi . (4)

It is easy to see that algebra (3) is invariant with respect to spatial 
rotations.

In [10] supersymmetric extension of a harmonic oscillator was 
considered in a space with spin noncommutativity (3). It was 
shown the degeneracy of the ground state of this oscillator with 
spontaneously broken symmetry with respect to rotations. Using 
obtained results a new phase was predicted in systems with dom-
inating dipole–dipole interactions (e.g. bose-condensate of 52Cr).

Topology of the Aharonov–Bohm effect in space (3) was inves-
tigated in [11]. It was shown that the leading contribution due to 
the noncommutativity is inherited from commutative problem (i.e. 
topological properties do not deform, although the field has strong 
anisotropy at small scales r ∼ θ ).

Using this algebra (with replacing θ → iθ ) it is possible to ex-
plain the triplet Cooper pairing mechanism, which was found in 
some exotic superconductors: for any non-zero θ there exist triplet 
states with energy smaller than for singlet states [12].

In [13] corrections to the hydrogen atom energy spectrum due 
to spin noncommutativity (3) were found. Logarithmic dependence 
of s-levels energy on θ was obtained within the modified perturba-
tion theory, which was developed there. Moreover, an upper bound 
for parameter of noncommutativity was estimated using a precise 
measurement of the transition frequency between 2s − 1s energy 
levels.

The other spin noncommutativity [14] was built by intro-
ducing the following position operators Xμ = xμ + θW μ , where 
W μ = 1

2 εμνρσ Sνρ pσ is the Pauli–Lubansky pseudo-vector, Sνρ =
i
4 [γν, γρ ]. The corresponding algebra reads[
Xμ, Xν

] = iθ h̄εμνρσ Sρσ − iθ2εμνρσ Wρ Pσ ,[
Xμ, Pν

] = −ih̄ημν,
[

Pμ, Pν
] = 0, (5)[

Xμ,γ ν
] = − iθ

2
εμνρσ Pργσ ,

where ημν is the Minkowski tensor. Such a coordinate noncom-
mutativity appears in quantum twistors theory [15] and within the 
quasiclassical approximation of a motion of a spinning particle in 
curved space–time [16,17]. One of the main advantages of this al-
gebra is its relativistic invariance. In space with this algebra the 
Dirac equation was studied in [18]. The conservation law for an 
electrical current was estimated. In addition, there it was shown 
that noncommutativity breaks the degeneracy of energy levels for 
an electron in a constant magnetic field. Although (5) is Lorentz 
invariant, it breaks micro-causality [19].

A non-relativistic reduction of (5) was built by shifting the 
commutative position operators by the 3D analogue of the Pauli–
Lubansky vector W i = 1

4 εi jkσ j pk [20]. The obtained algebra reads

[
Xi, X j

] = iθεi jksk + i
θ2

4h̄
εi jk Pk(s,P),[

Xi, P j
] = ih̄δi j,

[
Pi, P j

] = 0, (6)[
si, s j

] = ih̄εi jksk,
[

Xi, s j
] = i

θ

2
(P j si − δi j(s,P)).

In space with this algebra a minimal length is present. An exact 
solution of harmonic oscillator in this spin noncommutativity (6)
was found [20].
Spin noncommutativity appears also on the classical level 
within the consideration of a spinning particle in (2 + 1) dimen-
sions (anyons) [21,22].

Electrodynamics in space with canonical noncommutativity is 
well studied on both classical and quantum levels [23–36]. As far 
as we know, in space with spin noncommutativity the electromag-
netic field has not been considered before.

In the present paper we build a new Lorentz-invariant coor-
dinate noncommutativity. In some sense it reminds Snyder alge-
bra (2), but is quite simpler. In space with proposed algebra we 
define an analogue of the Moyal product. An unique feature of 
the obtained product is the decomposition of this product into a 
product of two matrix function objects, which can be associated 
with a function in space with spin noncommutativity. In space 
with this algebra we develop a classical electrodynamics. From the 
least action principle we derive exact equations of electromagnetic 
field (in all order of parameter θ ). Therefore, the proposed alge-
bra provides a useful tool for a non-perturbative studying of the 
noncommutative field theory. Within the noncommutative elec-
trodynamics we consider a field of a point charged particle in a 
constant magnetic field, interaction of two plane waves, propaga-
tion of a plane wave in a constant magnetic and electric field (an 
exact solution).

2. Relativistic Lorentz-invariant spin noncommutativity

Direct relativistic extension of the algebra with spin noncom-
mutativity (3) can be built by replacing the Pauli matrices (which 
generate the Clifford algebra C
(3)) with the Dirac gamma ma-
trices (C
(1, 3)) in representation (4). Obtained noncommutative 
position operators become matrices and are equal to ordinary co-
ordinates shifted by the corresponding matrices γ μ

Xμ = xμ + iθγ μ, (7)

where the imaginary unit is added for the hermiticity of space 
coordinates. More precisely new coordinates should be written as 
Xμ = xμ ⊗E4 + iθ1 ⊗ γ μ , where E4 denotes a unit 4 × 4 matrix, 
but for the sake of simplicity we will omit such a notation with 
a direct product. By assuming that momenta in noncommutative 
space are the same as in the commutative case Pμ = pμ = i∂μ , it 
is easy to write down the full closed algebra

[Xμ, Xν ] = 2iθ2σμν,
[

Xμ,σαβ
] = 2θ(γ αημβ − γ βημα),

[Xμ, Pν ] = −iημν, [Pμ, Pν ] = 0,
[

Pμ,σαβ
] = 0,[

σαβ,σγ δ

] = i
(
ηαγ σβδ − ηβγ σαδ − ηαδσβγ + ηβδσαγ

)
,

(8)

where σμν = i [γ μ,γ ν ] /2.
Note that both σμν and Lμν are generators of S O (1, 3) but in 

different representations. In such a context coordinate commuta-
tor in (8) is similar to the Snyder one (2). But in general, since σ
commute with p, the full algebra (8) differs from the Snyder alge-
bra. For example, on the contrary to the Snyder algebra, which is 
nonlinear, the algebra (2) is linear.

On the other hand, a shifting of coordinates in the represen-
tation (7) recalls the view of the superspace coordinates Xμ =
xμ + iθσμθ , where θ is the Majorana spinor, σμ = (1, σ i) (for ex-
ample, see [37–39]). But in the case of the proposed algebra, there 
are no additional Grassman variables.

To develop any theory in a noncommutative space the first 
thing one must do is to find a rule how to construct a noncom-
mutative counterpart for a given commutative function f (x). With 
the necessity, a problem of the position operators ordering appears 
on such a transition to noncommutative space. Usually the Weyl 
ordering of noncommutative operators is chosen
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f → f̃ =
∫

dnk eikμ Xμ
Fk, (9)

where Fk = 1/(2π)n
∫

dnxeikx f (x) is the Fourier component of 
f (x).

In the case of coordinates (7) one can obtain

f̃ (x) =
∫

d4k ei(kX) Fk = T̂

∫
d4kei(kx) Fk = T̂ f (x), (10)

where T̂ = eiθ(γ ∂) , (AB) = ημν AμBν denotes a (3 + 1)D scalar 
product. So we can identify the matrix function f̃ (x) = T̂ f (x) as 
a noncommutative equivalent of commutative f (x). Operator T̂
maps the smooth function f ∈ C∞ into a space C∞ ⊗ C
(1, 3). 
Of course, properties of the product of such functions differs from 
properties of the Moyal star-product in canonical noncommutativ-
ity. In particular, one can show that T̂ f T̂ f �= T̂ ( f g) (which turns 
into equality for the Moyal product), but nevertheless the proposed 
product is associative.

Let us analyze the ordering of gamma matrices in the expres-
sion T̂ f (x). Action of T = eiθ(γ ∂) on f (x) is equal to the Taylor 
expansion

f̃ = eiθ(γ ∂) f (x) =
∞∑

n=0

inθn

n! (γ ∂)n f (x)

=
∞∑

n=0

(iθ)n

n! f (n)
μ1μ2...μnγ

μ1γ μ2 · ... · γ μn , (11)

where (n) denotes the order of derivative of f (x). Inasmuch as 
derivatives commute, multiplier with fixed number of derivatives 
with respect to every coordinate is equal to symmetrized prod-
uct of gamma matrices. This expression is equal to the Taylor 
expansion of f (x + iθγ ) in θ , where every term consist of all 
symmetrized permutations of gamma matrices. For instance, in the 
case of n = 3, μ1 = x, μ2 = x, μ3 = y the corresponding term in 
expansion reads

(iθ)3

3! f ′′′
xxy · (2γxγxγy + 2γxγyγx + 2γyγxγx).

On the other hand, using the identity (γ ∂)2 = −∂2 one can 
rewrite T̂ in the following form

T̂ = eiθ(γ ∂) = C̃ + iθ(γ ∂̃), (12)

where C̃ = cos(θ
√−∂2), ∂̃μ = sinc(θ

√−∂2)∂μ , sinc(x) = sin(x)/x. 
This representation is useful in deriving some properties of non-
commutative product. Firstly, using the Taylor expansion of T̂ it 
can be showed that the following natural properties are satisfied 
1̃ = 1, T̂ xμ = xμ + iθγ μ = Xμ . Expression for a product of two 
noncommutative functions f̃ and g̃ can be obtained in the follow-
ing form[

C̃ + iθ(γ ∂̃)
]

f ·
[

C̃ + iθ(γ ∂̃)
]

g

= C̃ f C̃ g − θ2(γ ∂̃) f (γ ∂̃)g + iθ
(
(γ ∂̃) f C̃ g + C̃ f (γ ∂̃)g

)
. (13)

Using the well-known identity (γ A)(γ B) = (AB) − iσμν AμBν and 
identities C̃ f C̃ g − ∂̃μ f ∂̃μg = C̃( f g) and ∂̃μ f C̃ g + C̃ f ∂̃μg = ∂̃μ( f g), 
which can be obtained from the definition, one can find

T̂ ( f )T̂ (g) = T̂ ( f g) + iθ2σμν∂̃μ f ∂̃ν g. (14)

This expression shows the connection between product of two 
noncommutative functions T̂ ( f )T̂ (g) and a noncommutative coun-
terpart of the commutative product of these functions. It can be 
showed by direct calculations that such a product of noncommu-
tative functions is associative

f̃ (g̃h̃) = ( f̃ g̃)h̃. (15)

From (14) it follows that ( f̃ )n = T̂ ( f n). Action of T̂ on a com-
posite function ϕ( f (x)) can be obtained in the same way. Acting 
by T̂ on the Taylor expansion of ϕ( f (x)) and using (14) one obtain

T̂ϕ( f ) = ϕ(T̂ f ). (16)

Since T̂ commutes with derivative, the differentiation of a 
noncommutative function can be easily performed ∂μ T̂ ( f (x)) =
T̂ (∂μ f (x)). The differentiation of a composite function is a bit 
more complicated

∂ρϕ̃( f ) = T̂
(

∂ f
∂ϕ ∂ρϕ

)
= T̂

(
∂ f
∂ϕ

)
T̂

(
∂ρϕ

) − iθ2σμν
(
∂μ

∂ f
∂ϕ

)(
∂ν∂ρϕ

)
or

∂ρϕ̃( f ) = T̂
(
∂ρϕ ∂ f

∂ϕ

)
= T̂

(
∂ρϕ

)
T̂

(
∂ f
∂ϕ

)
+ iθ2σμν

(
∂μ

∂ f
∂ϕ

)(
∂ν∂ρϕ

)
.

(17)

In the next section we will build an action of a noncommuta-
tive electromagnetic field. The action should be a scalar. Therefore 
let us define the integration of a noncommutative function f̃ as 
(1/4) 

∫
dx Sp{ f̃ }. Inasmuch as gamma matrices are traceless, we 

have (1/4) 
∫

dx Sp{ f̃ } = ∫
dxf (x). Since σμν are also traceless, in-

tegral of product of two functions in noncommutative space is 
the same as in the commutative case (1/4) 

∫
dx Sp{ f̃ g̃} = ∫

dxf g . 
In such a manner it can be showed that integral of a prod-
uct of three noncommutative functions do not feel the noncom-
mutativity too. And only integral of a product of four noncom-
mutative functions changes due to noncommutativity. Using the 
equality Sp{σμνσαβ} = ημαηνβ − ημβηνα , it can be showed that ∫

dx Sp{ f̃ g̃h̃ j̃} �= ∫
dxf ghj.

3. Electromagnetic field in a space with spin noncommutativity

3.1. Tensor of electromagnetic field. Action for electromagnetic field

Potential of an electromagnetic field in noncommutative space 
should be associated with the matrix function Ãμ = T̂ Aμ in the 
manner described in Section 2. Noncommutative electromagnetic 
field Ãμ is non-abelian, so commutator of different components of 
the potential equals[

eiθ(γ ∂) Aμ, eiθ(γ ∂) Aν
]

= 2iθ2σαβ ∂̃α Aμ∂̃β Aν . (18)

Then tensor of such an electromagnetic field reads

F̃ μν = ∂μ Ãν − ∂ν Ãμ − ie
[

Ãμ, Ãν
]

= ∂μ Ãν − ∂ν Ãμ + 2eθ2σαβ ∂̃α Aμ∂̃β Aν . (19)

The Lagrange function and the action can be found in the fol-
lowing form

S = 1

4

∫
d4x Sp

{
−1

4
F̃ μν F̃μν

}
. (20)

After tracing it can be rewritten as follows

S =
∫

d4x
{
−1

4
F μν Fμν − 1

4
e2θ4

(
∂̃α Aμ∂̃α Aμ∂̃β Aν ∂̃β Aν

− ∂̃α Aμ∂̃α Aν ∂̃β Aν ∂̃β Aμ

)}
. (21)
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It is evident that the action (21) is invariant with respect to 
Lorentz transformations as it is written implicitly in a covariant 
form. Also it is easy to see that it is C-, P- and T -invariant. From 
(21) it follows that corrections due to the noncommutativity are of 
the fourth order in θ .

3.2. Gauge transformations

Gauge transformation for the electromagnetic field in noncom-
mutative space differs from ordinary U (1) transformations. We 
find the gauge transformation law for the noncommutative elec-
tromagnetic field Ãμ from the condition of a gauge invariance of a 
covariant derivative under the multiplication by exp (ieα̃)

D′
μ(eieα̃ ϕ̃) = ∂μ(eieα̃ ϕ̃) + ie Ã′

μeieα̃ ϕ̃

= eieα̃(∂μϕ̃ + ie Ãμϕ̃) = eieα̃Dμϕ̃, (22)

where D = ∂ + ie A, ϕ is the matter field, the prime denotes a 
variable after the transformation.

Differentiating by parts the first term in the left-hand side, we 
obtain

ie Ã′
μeieα̃ ϕ̃ = eieα̃ ie Ãμe−ieα̃(eieα̃ ϕ̃) − (∂μeieα̃)e−ieα̃(eieα̃ ϕ̃).

Taking into account the arbitrariness of ϕ̃ we find the following 
gauge transformation law

Ã′
μ = eieα̃ Ãμe−ieα̃ + i

e
· eieα̃(∂μe−ieα̃). (23)

The shape of this transformation law is similar to the gauge trans-
formation law for a non-abelian field in a commutative space. After 
commuting Aμ and e−ieα̃ and differentiating e−ieα̃ we obtain

Ã′
μ = Ãμ + ∂μα̃ − iθ2σνβ(eieα̃ ∂̃νe−ieα)∂̃β(2Aμ + ∂μα). (24)

The corresponding infinitesimal transformations read

Ã′
μ = Ãμ + ∂μα̃ − 2eθ2σνβ ∂̃να∂̃β Aμ. (25)

As in the case of the Yang–Mills field it is easy to find a gauge 
transformation law for F̃ μν and show action’s invariance with re-
spect to the gauge transformations. The gauge transformations for 
Aμ are more complicated and can be obtained by acting T̂ −1 =
e−iθ(γ ∂) on the (24).

Algebra of the gauge group is u(1) ⊗ soγ (1, 3), where soγ (1, 3)

consist of γ μ , σμν and the unit matrix. The corresponding gauge 
group is U (1) ⊗ S L(1, 3). The first multiplier reflects intrinsic sym-
metry of an electromagnetic field and the latter one is present due 
to the noncommutative structure of a space–time.

Moreover, an algebra of a gauge group of an arbitrary non-
abelian field in noncommutative space can be written as a direct 
product g ⊗ soγ (1, 3), where g is the algebra of the gauge group 
G of the field in commutative space. But in this case because of 
the non-abelian character of G the noncommutative gauge group 
is not simply a direct product G ⊗ S L(1, 3).

3.3. Field equations

Let us find equations of the electromagnetic field in noncom-
mutative space from the least action principle. After varying the 
action (21) we obtain the exact equations

∂2 Aμ + e2θ4∂̃α

(
∂̃α Aμ∂̃β Aν ∂̃β Aν − ∂̃β Aμ∂̃α Aν ∂̃β Aν

)
= 0. (26)

It is easy to see that in the limit of commutative space θ → 0 these 
equations become the Maxwell equations.
Some general remarks about the structure of these equations 
can be said. Despite they are nonlinear, it is easy to see that the 
equation for a chosen component Aμ is linear if other components 
are known. This feature may be helpful in perturbative analysis of 
these equations. If a certain component Aμ is constant in commu-
tative space, it satisfies the corresponding equation (26) automati-
cally. So in this case Aμ in noncommutative space is the same as 
in the commutative space. In particular, if Aμ = 0 in commutative 
space, it equals zero in noncommutative space too.

On the other hand, if there is only one non-zero component Aκ , 
the equation for it reads

∂2 Aκ + e2θ4∂̃α

(
∂̃α Aκ ∂̃β Aκ ∂̃β Aκ − ∂̃β Aκ ∂̃α Aκ ∂̃β Aκ

)
= ∂2 Aκ = 0 (27)

and coincides with the commutative Maxwell equation. So, non-
commutativity does not affect the systems, which are described 
by vector potential with one non-zero component. Moreover, if 
a vector potential by the appropriate Lorentz transformation can 
be reduced to the vector with only one non-zero component, it 
also does not feel the noncommutativity. Such systems usually are 
simple and consist of one source of the field, e.g. a point charge, 
a linear wire with a current, a plane wave, etc. Spin noncommuta-
tivity does not influence these systems.

Interaction of the field with a current jμ can be easily in-
cluded by adding the corresponding term in the action (21) Sint =
(1/4) 

∫
dx Sp( j̃ Ã) = ∫

dx( j A). So, spin noncommutativity does not 
affect the interaction between the field and a given current. The 
equations taking into account the sources read

∂2 Aμ + e2θ4∂̃α

(
∂̃α Aμ∂̃β Aν ∂̃β Aν − ∂̃β Aμ∂̃α Aν ∂̃β Aν

)
= jμ

(28)

reducing to (26) for jμ = 0.
Finally, we can find a law of conversation of current using the 

Noether method. Under the gauge transformations (24) an action 
of electromagnetic field S + Sint transforms as follows

S + Sint → S + Sint +
∫

d4x
{
(∂μα) jμ

−2e2θ4(∂̃βα)∂̃β Aμ∂̃γ Aν ∂̃γ Fμν

}
+O(α2). (29)

After integration by parts in the third term we obtain a law of 
conservation of current

∂μ

[
jμ − 2e2θ4sinc(

√
−θ∂2)(∂̃μ Aα∂̃ν Aβ ∂̃ν Fαβ)

]
= 0. (30)

It is remarkable that the same conservation law can be obtained 
from the field equations (28) by acting the derivative ∂μ on both 
sides of the equations.

4. Electromagnetic field of several systems

4.1. Electrostatic field of a point charge in a constant magnetic field

As it was shown in Section 3, spin noncommutativity (8) does 
not modify the electrostatic field of a point particle. The situation 
changes when a particle is placed in a magnetic field. Since elec-
tromagnetic field is a non-abelian in the noncommutative space, 
electric and magnetic fields interact with each other. In particular, 
such an interaction leads to the modification of the Coulomb law 
in an external magnetic field.

Influence of a constant magnetic field on the electric field of 
a charged particle in the space with canonical noncommutativ-
ity was obtained by deriving the corresponding corrections to the 
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commutative potential from the Lagrange function of the electro-
magnetic field [25,32,40,31]. Up to the first order in θ i j Coulomb 
potential reads [31]

A0(x) = q

r

(
1 − e

[
1

r2
(xB)(xθ) + (Bθ)

])
, (31)

where θ i = εi jkθ jk , r2 = (xx), B is the magnetic field.
For the sake of completeness let us mention the other ap-

proach to study noncommutative Coulomb potential. Within this 
scheme noncommutative Hamiltonian of hydrogen atom is built by 
replacing position operators x with their noncommutative counter-
parts X . In this case potential energy becomes an operator. The 
corresponding Schrödinger equation describes a motion of an elec-
tron in a modified Coulomb potential. In this way, Hydrogen atom 
was studied in spaces with canonical noncommutativity [26,32]
and spin noncommutativity (3) [13].

In this subsection we consider the modification of the Coulomb 
law in a constant magnetic field due to spin noncommutativity. 
Let us find the solution of field equations (28) with current jμ =
(−qδ(x);0;0;0)T in the following form

A0 = q

4πr
+ e2θ4 A0

(1) +O(θ8),

Ai = εi jkh jxk + e2θ4 Ai
(1) +O(θ8),

(32)

where index (1) denotes the first order term in expansion of Aμ

in θ4. In the commutative limit θ → 0 vector potential Aμ repro-
duces the electrostatic field of a point charge −q and a constant 
magnetic field h. Substitution of ansatz (32) in field equations (26)
gives the following equations for Aμ

(1)

∇2 A0
(1) = qh2

4πr3
− 3q(hx)2

4πr5
+ qh2δ(x), (33)

∇2 Ai
(1) = 2q2

(4π)2r6
εi jkh jxk, (34)

where ∇ = ex∂x + e y∂y + ez∂z is the del operator.
These equations can be easily solved. Finally, the solutions (32)

read

A0 = q

4πr

[
1 − e2θ4

(
h2 − (h, er)

2

2

)]
+O(θ8), (35)

Ai = εi jkh jxk

[
1 + e2θ4

2

q2

(4π)2r4

]
+O(θ8), (36)

where er = x/r. As it can be seen from (35), the magnetic field 
shields the charge making its value smaller. In addition, this 
screening is anisotropic, the biggest effect appears in the perpen-
dicular to h directions. In both spin and canonical noncommutativ-
ities this effect is distance-independent. But on the contrary to the 
case of canonical noncommutativity, in spin noncommutativity the 
shielding never turns zero in any directions and always decreases 
the charge value.

On the other hand, it follows from (36) that there is an inverse 
effect: the charge also affects the magnetic field. This influence 
does not depend on the sign of a charge, but only on its absolute 
value. This influence is short-range and always effectively increases 
the value of the magnetic field strength.

4.2. Interaction of two plane waves

Since field equations (26) are nonlinear, the superposition prin-
ciple is not obeyed, and in general case a sum of two solutions (e.g. 
plane waves) will not be a solution of these equations. In pertur-
bative analysis it can be treated as interaction of these solutions 
(in our case plane waves) with each other. In this subsection we 
consider interaction of two plane waves in space with spin non-
commutativity.

Such a problem for canonical noncommutativity was studied 
in [25]. The authors within the perturbative scheme have found 
a corrections to the potential of two waves. As a zero approxima-
tion they have considered potential of two waves in the form of 
a superposition of two complex exponents Aeikx and Beik′x . But 
such a trick with considering the complex exponent against of real 
trigonometric functions cannot be used for nonlinear equations, 
since one requires from electromagnetic field to be real.

Let us find the solution Aμ of (26), which in commutative limit 
θ → 0 reduces to Aμ

∣∣
θ=0 = Aμ

(0) , where

A0
(0) = 0; A1

(0) = 0; A2
(0) = B sin � cos(kx); (37)

A3
(0) = C cos(qx) + B cos � cos(kx). (38)

In commutative space this potential describes a proliferation of 
two plane waves with amplitudes B , C and wave vectors kμ

and qμ . The angle between directions of oscillation of the waves 
is �.

Substitution of an ansatz Aμ = Aμ
(0) + Aμ

s in (26) leads to the 
equation like ∂2 f = B cos(kx). If kμ is not a null vector k2 �= 0, 
the solution is simple and reads f = −B cos(kx)/k2. But such a 
solution cannot be used in the case of photonic wave vectors. It 
can be easily checked that in this case the solution of such an 
equation can be found in the form

f = (ax)

2(ak)
sin(kx),

where aμ is an arbitrary vector satisfying conditions (ax) �= 0, 
(ak) �= 0. But this solution describes a resonant increasing of the 
field and so the energy of the field. It is clear that such a resonant 
behaviour cannot take place in our system and is an artifact of the 
performed ansatz.

This problem can be solved within the idea of the so-called 
Bogolyubov–Krylov method [41]. According to this scheme the so-
lution of the corresponding equations should be found in the fol-
lowing form

A0 = 0; A1 = 0 A2 = B sin � cos(kx + e2θ4 f1) + e2θ4a1, (39)

A3 = C cos(qx + e2θ4 f2) + B cos � cos(kx + e2θ4 f3)

+ e2θ4a2. (40)

Substitution of (39) and (40) in the field equations (26) gives 
the following equations for auxiliary functions f1, f2, f3, a1, a2

sin(kx)∂2 f1 − 2 cos(kx)kα∂α f1

= − C

2
(kq)2 (Bc cos qx − C sin kx) , (41)

∂2a1 = − BsC

4
(kq)2 (−Bc {cos(2q − k)x + cos(2q + k)x}

+ C {cos(2k − q)x + cos(2k + q)x}) , (42)

sin(qx)∂2 f2 − 2 cos(qx)qα∂α f2 = − B2
s

2
(kq)2 cos qx, (43)

f3 = 0, (44)

∂2a2 = B2
s C

4
(kq)2 {cos(2k − q)x + cos(2k + q)x} , (45)

where Bs = B sin �, Bc = B cos�.
These equations are already free of foregoing pathologies and 

can be easily integrated. Finally, in the first order of approximation 
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the vector potential of the system of two waves in space with spin 
noncommutativity reads

A2 = Bs cos

(
kx + e2

4
θ4C2(kq)(qx) + e2θ4ϕ

)
+ e2θ4a1, (46)

A3 = C cos

(
qx + e2

4
θ4 B2

s (kq)(kx)

)
+ Bc cos(kx) + e2θ4a2, (47)

where

ϕ = BcC

4
(kq) sin(q + k)x,

a1 = BsC

16
(kq) (Bc {cos(2q − k)x − cos(2q + k)x}

− C {cos(2k − q)x − cos(2k + q)x}) ,

a2 = − B2
s C

16
(kq) {cos(2k − q)x − cos(2k + q)x} .

The last expression shows that spin noncommutativity effectively 
changes the wave vector of some components of waves and pro-
duces higher harmonics. The latter effect is expectable because of 
nonlinearity of the electrodynamics.

From (46), (47) it also follows that two waves do not inter-
act with each other if � = 0 or � = π . This corresponds to the 
case where only one component of field is present (39), (40) and 
from assertions of Section 3 it should be so. The influence of spin 
noncommutativity is zero in the case of (kq) = |k||q| − (k, q) =
|k||q|(1 − cosϑ) = 0, where ϑ is the angle between kμ and qμ . 
This corresponds to the propagation of waves in the same direc-
tion (ϑ = 0).

4.3. Exact solution for a plane wave propagation in constant electric 
and magnetic fields

Propagation of a plane wave in a constant magnetic field in 
space with canonical noncommutativity was studied in [28]. In this 
paper a modified dispersion relation for an electromagnetic wave 
was obtained in the first order of approximation in θ . It reads

ω = |k|(1 − θ T bT ), (48)

where θi = εi jkθ
i j/2, and T in index denotes the transverse to k

component.
Problem of propagation of a plane wave in a constant magnetic 

and electric fields in space with spin noncommutativity can be 
solved exactly. Let us choose the vector potential in the following 
form

Aμ
0 = Aμ

f + Aμ
w , (49)

where Aμ
f = (−Ex;ax;bx;0)T is the potential of a constant elec-

tric and magnetic fields, the term Aμ
w = (0;0;0; A cos(kx))T cor-

responds to the plane wave. Potential Aμ
f in commutative space 

corresponds to the magnetic field B = (−bz; az; bx −ay)
T and elec-

tric field E . Note that in commutative space some components 
of a, b can be putted equal to zero by the corresponding gauge 
transformations, so the values of the external fields do not de-
pend on these components. But in noncommutative space it cannot 
be done. Therefore, different sets of a, b, which in commutative 
space correspond to the same field, correspond to different fields 
in noncommutative space. Vector potential with additional linear 
combination of coordinates in A3

f in commutative space also de-
scribes the constant magnetic field, but in noncommutative space 
such a problem cannot be solved exactly.
The first step in obtaining the solution is an observation that 
the first order corrections A0

(1) , A1
(1) , A2

(1) equal zero. It can be ob-
tained from (26) that

∂2 A0
(1) = 0, ∂2 A1

(1) = 0, ∂2 A2
(1) = 0.

The equation for A3
(1) is a bit more complicated and reads

∂2 A3
(1) = Ã cos(kx),

where Ã = A 
[
(E,k)2 − (a,k)2 − (b,k)2

]
. This equation is reso-

nant. But consideration within the Bogolyubov–Krylov method as 
in the previous subsection shows that the solution of this equation 
is a plane wave with modified wave vector and what is important 
no nonlinearities appear in this case.

Equations for all the next terms of expansions of Aμ in θ4 are 
qualitatively the same: noncommutativity does not influence the 
potentials of a constant fields A0

(n) , A1
(n) , A2

(n) and changes the wave 
vector of the wave.

Using such an analysis within the perturbative scheme, we can 
conclude that the exact solution of the field equations (26) is 
again a plane wave A3 = A cos(ksx) which proliferates in a con-
stant fields

A0 = −Ex, A1 = ax, A2 = bx. (50)

Substitution of this ansatz into (26) gives the following equa-
tions

∂2 A0 = 0; ∂2 A1 = 0; ∂2 A2 = 0; (51)

∂2 A3 = −e2θ4(E2 − a2 − b2)∂̃2 A3

− e2θ4
[
(E∇̃)2 − (a∇̃)2 − (b∇̃)2

]
A3. (52)

Equations (51) are exact and are in complete agreement with the 
assertion (50) of linearity of A0, A1, A2. From (52) it can be found 
an exact modified dispersion relation for kμ

s , which reads

ω2
s = k2

s
1 + e2θ4

([E,ks]2 − [a,ks]2 − [b,ks]2
)

sinc2(θks)

1 + e2θ4
(

E2 − a2 − b2
)

sinc2(θks)
, (53)

where ks =
√

ω2
s − k2

s . This expression can be also rewritten in the 
following manner

k2
s = −e2θ4

(
(E,ks)

2 − (a,ks)
2 − (b,ks)

2
)

sinc2(θks)

1 + e2θ4
(

E2 − a2 − b2
)

sinc2(θks)
, (54)

Equation (54) has a unique solution for k2
s for a given set of 

E , a, b and k. Therefore, there are no birefringence of a plane elec-
tromagnetic wave in external constant fields. The sign of k2

s (sign of 
a squared mass m2 = k2

s ) depends on the sign of numerator in (54). 
In particular, in the pure electric field k2

s < 0 (since square of a 
mass is negative such a photons can be called like ‘tachionic’ pho-
tons), in the magnetic field k2

s > 0 (photons with mass m2 = k2
s ).

It is interesting to compare obtained result with (48). In the 
first order of θ4 in the absence of electric field E (53) reads

ω = |k|[1 + e2θ4((a, ek)
2 + (b, ek)

2)], (55)

where ek = k/k. As we can see, in a space with spin noncommu-
tativity the influence of a magnetic field on the wave dispersion 
relation is qualitatively different from that in the case of canon-
ical noncommutativity. Spin noncommutativity always increases 
the multiplier near |k| in dispersion relation written in the man-
ner of (55). Moreover, on the contrary to the case of canonical 
noncommutativity, in spin noncommutativity modifications of the 
dispersion relation depends on longitudinal with respect to k com-
ponents of a magnetic field.
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5. Conclusions

In the present paper we have introduced new Lorentz-invariant 
noncommutativity (8). Noncommutative position operators are 
built from the commutative coordinates by shifting the last by the 
corresponding Dirac gamma matrices Xμ = xμ + iθγ μ . We have 
found that every commutative function f (x) has its noncommu-
tative counterpart eiθ(γμ∂μ) f (x) in space with spin noncommuta-
tivity. Also we have considered a product of such noncommutative 
functions. This product differs from the Moyal product, but never-
theless it is associative. In Section 2 we have studied mathematical 
properties of such noncommutative functions in detail.

In Section 3 an action for the electromagnetic field in space 
with spin noncommutativity has been built (20), (21). We have 
found the gauge transformation law of such a field (25). These 
transformations resemble the gauge transformation of the Yang–
Mills field. It is interesting that in the case of the abelian group 
U (1) of electromagnetic field, the group of noncommutative elec-
tromagnetic field can be written as a direct product U (1) ⊗
S L(1, 3). Also the exact nonlinear field equations (26) have been 
obtained from the least action principle. In addition, the structure 
of these equations has been analysed. Although these equations 
have been obtained for free field, interaction with an external cur-
rent jμ can be easily included in this scheme (28).

Nonlinearity of the field equations leads to the interaction be-
tween electric and magnetic fields. Within the framework of ob-
tained electrodynamics we have considered the influence of a mag-
netic field on an electrostatic field of a point charge. We have 
found that the magnetic field shields the charge in the Coulomb 
law, moreover such a screening is anisotropic and always decreases 
the effective charge value (35). Also we have studied an interac-
tion of two waves in the space with spin noncommutativity within 
the perturbation theory. Ordinary expansion of potential Aμ in θ4

leads to resonant equations, which is an artifact of perturbations. 
To avoid resonant term we have used well-known from theoret-
ical mechanics the Bogolyubov–Krylov method of studying non-
linear oscillations. Interaction of two electromagnetic plane waves 
changes the wave vector of each wave and produces higher-mode 
oscillations (46), (47). An exact solution of a plane wave propaga-
tion in constant magnetic and electric fields has been found. It has 
been shown that external field modifies the dispersion relation of 
the wave (53).
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