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Bifurcation of Velocity Distributions in Cooperative Transport of Filaments
by Fast and Slow Motors
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ABSTRACT Several intracellular processes are governed by two different species of molecular motors, fast and slow ones,
that both move in the same direction along the filaments but with different velocities. The transport of filaments arising from
the cooperative action of these motors has been recently studied by three in vitro experiments, in which the filament velocity
was measured for varying fraction of the fast motors adsorbed onto substrate surfaces in a gliding assay. As the fast motor frac-
tion was increased, two experiments found a smooth change whereas the third one observed an abrupt increase of the filament
velocity. Here, we show that all of these experimental results reflect the competition between fast and slow motors and can be
understood in terms of an underlying saddle-node bifurcation. The comparison between theory and experiment leads to predic-
tions for the detachment forces of the two motor species. Our theoretical study shows the existence of three different motility
regimes: 1), fast transport with a single velocity; 2), slow transport with a single velocity; and 3), bistable transport, where the
filament velocity stochastically switches between fast and slow transport. We determine the parameter regions for these regimes
in terms of motility diagrams as a function of the surface fraction of fast motors and microscopic single-motor parameters. An
abrupt increase of the filament velocity for an increasing fraction of fast motors is associated with the occurrence of bistable
transport.
INTRODUCTION
Intracellular cargo transport of organelles and vesicles along
cytoskeletal filaments is an essential biological process (1)
that is carried out by molecular motors. These motors act
as enzymes for nucleotide hydrolysis and are able to convert
chemical energy into mechanical work. Cytoskeletal motor
proteins such as kinesin, dynein, and myosin step along
cytoskeletal filaments and transport cargo in a unidirectional
manner. The properties of single molecular motors have
been studied extensively both experimentally and theoreti-
cally in the last two decades. However, cargos are often
transported by groups of cooperating molecular motors
(2,3). Intracellular cargos are typically transported by small
teams of cooperating molecular motors as theoretically
studied by Klumpp and Lipowsky (4), Beeg et al. (5), and
Driver et al. (6) for motors of the same type. In the
in vitro gliding assays, where filaments are pulled by molec-
ular motors adsorbed on a surface, large ensembles of
motors can cooperate as has been studied theoretically
(7–9) and experimentally (10). Groups of cooperating
motors can also contain different types of motors with the
same directionality (11), or different types of motors with
different directionality such as kinesin and dynein motors
(12–14).

As a result of such cooperative transport, complex
motility patterns are observed that can serve important
biological functions: cooperation of identical motors can
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increase the run-length (4) or groups of motors with
different directionality can give rise to bidirectional trans-
port (15), which allows for cargo transport in different direc-
tions. Here we study the cooperation of molecular motors
with the same directionality but with different velocities
(i.e., fast and slow motors), and find that a cooperative trans-
port mechanism leads to three distinct motility regimes and
to bistable switching between fast and slow transport.

Recently, important intracellular processes have been
identified which involve the function of two types of kinesin
motors such as kinesin-II and OSM-3 (kinesin-2 family) in
the assembly of cilia (11,16), or Xkid (kinesin-10 family)
and Xklp1 (kinesin-4 family) in chromosome positioning
(17). All of these processes involve two types of kinesin
motors walking along microtubules towards the plus-end
but with different velocities. The two types of kinesin
motors are therefore called fast and slow motors henceforth.
We still know relatively little about the exact biological
function of these transport systems, but velocity control of
cargo transport is one possibility.

In vitro gliding assays are a suitable and important tool to
understand the cooperative transport processes for fast and
slow motors. In such gliding assays, cytoskeletal filaments
are pulled by two types of molecular motors whose motor
tails are immobilized on a solid surface. So far, three
independent experimental studies of gliding assays with
different types of kinesin motors have been performed:
fast OSM-3 and slow kinesin-II motors are used by Pan
et al. (16), fast wild-type and slow mutant kinesin-1 motors
by Larson et al. (18), and fast Xklp1 and slow Xkid motors
by Bieling et al. (17). In all three assays, the gliding
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velocities of microtubules were measured for different
surface concentrations of fast motors with a fixed total
motor surface density. In all three experiments, the gliding
velocity showed a nonlinear dependence on the surface
concentration of fast motors and varied between the speed
of a single slow and a single fast motor in all of those exper-
iments. However, there are also qualitative differences in the
results of the three experiments: in the gliding assay by
Larson et al. (18), the gliding velocity showed a switchlike,
abrupt transition from slow to fast motion upon increasing
the surface concentration of fast motors, whereas it changed
smoothly in the other two experiments. This different evolu-
tion of the cooperative transport properties with increasing
fraction of the fast motors remains to be understood in terms
of the single motor properties. Similar phenomena have also
been observed for gliding assays consisting of myosin and
actin filaments (19).

To understand the different experimental results and the
underlying dynamics of cargo transport by fast and slow
motors, we study gliding assays using several theoretical
methods. To begin, we use a master equation approach to
describe the stochastic processes of binding and unbinding
of motor proteins during filament transport. The master
equation results are corroborated by microscopic Brownian
(or Langevin) dynamics simulations (20–22), in which the
stochastic stepping, binding, and unbinding of motors as
well as the force transduction onto microtubules are taken
into account, and in which microtubules perform an over-
damped motion driven by thermal and motor forces. Finally,
we also derive a simplified mean field equation from the
master equation, which allows us to analyze the bifurcation
behavior resulting from the competition between fast and
slow motors.

Using these approaches, we identify three types of
stationary states or motility regimes, which exhibit different
probability distributions for the microtubule velocities:

Regime 1. Fast transport with unimodal velocity distribu-
tions.

Regime 2. Slow transport with unimodal velocity distri-
butions.

Regime 3. Bistable transport with a bimodal velocity
distribution corresponding to stochastic switching
between fast and slow transport.

Our theory provides a quantitative description for the
qualitatively different behavior as observed in the three
experiments reported in Pan et al. (16), Bieling et al. (17),
and Larson et al. (18). This allows us to extract values for
the detachment forces of the two motor species from the
experimental data.

Using the mean field approach, we derive motility
diagrams for the cooperative transport behavior as a function
of the fraction of fast motors adsorbed onto the substrate
surface and of single motor parameters such as the ratio of
detachment forces of fast and slow motors. The mean field
approach allows us to predict where bistable transport
occurs as a function of these parameters. On the one hand,
these predictions can be tested experimentally; on the other
hand, new experimental results about the three motility
regimes will enable us to deduce refined values for single
motor parameters based on these motility diagrams.
RESULTS

Velocity as a function of the fraction of fast
motors

In the three gliding assay experiments in Pan et al. (16),
Bieling et al. (17), and Larson et al. (18), the velocity of
microtubules was measured as a function of the fraction
of fast motors adsorbed onto the gliding surface; for surface
densities sf and ss of fast and slow motors, respectively, this
fraction is given by sf/(sf þ ss). For increasing fractions of
fast motors, large velocity fluctuations and an abrupt transi-
tion from slow to fast transport have been observed in
Larson et al. (18) for wild-type and mutant kinesin-1
motors, whereas a smooth crossover from slow to fast fila-
ment transport was observed in Pan et al. (16) for kinesin-
II and OSM-3 and in Bieling et al. (17) for Xkid and Xklp1.

To understand these different behaviors, we consider fila-
ment transport by a fixed number of Nf fast and Ns slow
motors, which can attach to or detach from the filament.
For the total number N h Nf þ Ns of transporting motors,
we will use a typical value N x 10, which was estimated
in Larson et al. (18), for all three experiments. In a gliding
assay, Nf and Ns are actually fluctuating in time because
the filament moves, whereas the motors are anchored to
the substrate such that there is a constant exchange in the
pool of motors available for binding. The numbers Nf and
Ns of available motors are Poisson-distributed (21), which
implies that fluctuations around the average values can be
neglected for sufficiently large Nf and Ns. The numbers Nf

and Ns of available motors are proportional to the corre-
sponding surface motor densities sf and ss, the motor attach-
ment lengths ‘f and ‘s (which depend on the length and the
elastic properties of the respective motor stalks), and the
filament length L (20). Assuming identical motor attach-
ment lengths ‘f ¼ ‘s for fast and slow motors, the fraction
of fast motors on the gliding surface equals the fraction of
fast motors available for binding, i.e., Nf/N ¼ sf /(ss þ sf),
which is henceforth used as a control parameter.

Our theory can also be applied, with small modifications,
to the complementary situation of cargo transport by slow
and fast motor along a microtubule, where Nf and Ns are
fixed numbers of fast and slow motors whose stalks are
firmly bound to the cargo, in analogy to the situation consid-
ered in Klumpp and Lipowsky (4) and Müller et al. (15).

In our model, we characterize each motor species by six
microscopic motor parameters (see Table 1; note subscripts
f for fast motors, s for slow motors): motors bind to
Biophysical Journal 104(3) 666–676



TABLE 1 Motor parameter values used in the theoretical

calculations and simulations and derived dimensionless

parameters according to Eq. 4

Parameter

Larson

et al. (18)

Pan

et al. (16)

Bieling

et al. (17)

Fast motor

Wild

kinesin-I OSM-3 Xklp1

Slow motor

Mutant

kinesin-1 Kinesin-II Xkid

Binding rate, fast p0f 5/s (32) 5/s (32) 5/s (32)

Binding rate, slow p0s 5/s (18,32) 5/s (32) 5/s (32)

Unbinding rate,

fast e0f

1/s (33,34) 1/s (33,34) 1/s (33,34)

Unbinding rate,

slow e0s

1/s (18,33,34) 1/s (33,34) 1/s (33,34)

Detachment force,

fast Fdf

3 pN (34) 6 pN

(this work)

6 pN

(this work)

Detachment force

ratio h h Fds/Fdf

0.45(23) 3.3

(this work)

1.9

(this work)

Stall force, fast Fsf 6 pN (34) 6 pN (34) 6 pN (34)

Stall force, slow Fss 6 pN (18,34) 6 pN (34) 6 pN (34)

Zero load velocity,

fast vf

0.522 mm/s (18) 1.09 mm/s (16) 1.0 mm/s (17)

Zero load velocity,

slow vs

0.034 mm/s (18) 0.34 mm/s (16) 0.1 mm/s (17)

bphp0f =e0f ¼ p0s=e0s 5 5 5bFhFs=Fdf 2 1 1bvhvs=vf 0.065 0.31 0.1
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a microtubule with binding rates p0f and p0s; they unbind
with an unbinding rate e0f and e0s. The unbinding rate
increases exponentially under a load force, and the associ-
ated force scales are given by the detachment forces Fdf

and Fds. When bound to a microtubule, unloaded motors
walk with velocities vf and vs. Fast motors are always under
resisting load forces from slow motors, and their velocities
decrease linearly and reach zero at the stall force Fsf.
A B

FIGURE 1 Comparison of experimental data (points) and corresponding the

a function of the fraction of fast motors Nf/N for three different types of gliding

kinesin-1 motors (18), (B) for fast OSM-3 and slow kinesin-II motors (16), (C

sets are well described by our theory based on the master equation approach an
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Slow motors, on the other hand, are always subject to assist-
ing forces. Also for assisting forces, we assume a linear
force-velocity relation, which is characterized by a force
Fss. In principle, the force Fss could be different from the
stall force for the slow motors. For simplicity, we assume
Fs h Fss ¼ Fsf in the following.

During filament transport, fast and slow motors bind and
unbind from the filament. The dynamic state of the system is
described by the numbers nf of fast and ns of slow active
motors which are attached to the filament. These numbers
are stochastic variables fluctuating between 0 % nf % Nf

and 0 % ns % Ns during filament transport. In the Sup-
porting Material, we obtain the master equation for the
probability p(nf, ns, t) that the filament is transported by nf
fast and ns slow motors at a given time t. To describe the
steady-state transport properties such as the average fila-
ment velocity, we solve the master equation in the stationary
state for given numbers Nf and Ns numerically, to obtain the
stationary probability distribution p(nf, ns).

The average velocity of microtubules has been measured
by all three experimental groups in Pan et al. (16), Bieling
et al. (17), and Larson et al. (18) for increasing fractions
of fast motors Nf/N. Within our master equation approach,
the average velocity of microtubules in a stationary state
can be calculated from the probability p(nf, ns) by

hvmi ¼
XNf

nf ¼ 0

XNs

ns ¼ 0

vm
�
nf ; ns

�
p
�
nf ; ns

�
; (1)

where vm(nf, ns) is the stationary state velocity of the
microtubule for given numbers nf and ns of fast and slow
active motors. As shown in Eq. 1, the microtubule velocity
vm(nf, ns) is uniquely determined as a function of the motor
numbers nf and ns by the two conditions referenced in
Models and Methods.

In Fig. 1, we compare the average velocities of microtu-
bules, which we calculate using numerical solutions of the
C

oretical calculations (solid lines) for the microtubule transport velocity as

assays with fast and slow motors: (A) for fast wild-type and slow mutant

) for fast Xklp1 and slow Xkid motors (17). All three experimental data

d Eq. 1 with parameter values as given in Table 1.
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stationary state master equation for the probability distribu-
tion p(nf, ns) and Eq. 1, for different fractions Nf /N of fast
motors with the available experimental data from (A) Larson
et al. (18), (B) Pan et al. (16), and (C) Bieling et al. (17).
Data points are experimental results; the solid curves are
our theoretical calculations using the motor parameter
values from Table 1 and a value of N ¼ 10 for the total
number of available motors. The theoretical calculations
agree very well with the experimental data. There are no
fitting parameters in Fig. 1 A for the assays with wild-type
and mutant kinesin-1 motors by Larson et al. (18) as all
single motor parameters are known.

For wild-type kinesin-1, all parameters are known from
single-molecule experiments (see Table 1). For the mutant
kinesin-1 motor used in Larson et al. (18), it is believed
that only the velocity of the motor is reduced by a factor
of 15 because of the five point mutations while the other
motor parameters remain unchanged (see Table 1). In
Uemura et al. (23), an asymmetry for detachment forces
Fd under resisting and assisting forces has been measured
for kinesin-1. Because slow mutant kinesin-1 motors are
only subject to assisting forces from fast kinesin-1 motors,
whereas fast wild-type kinesin-1 motors are only subject
to resisting forces from slow mutant kinesin-1 motors, this
asymmetry gives rise to different detachment forces Fdf

and Fds for fast and slow motors.
Only a few parameters are known for kinesin-II and

OSM-3 used in the experiments by Pan et al. (16), as well
as for Xkid and Xklp1 used in the experiments by Bieling
et al. (17). We assume the same values for binding and
unbinding rates and for the stall force as for kinesin-1 and
the other motors. Given the experimental data on gliding
velocities, we then use the detachment forces of fast and
slow motors as fit parameters, which give the solid curves
in Fig. 1, B and C. The fits are very sensitive to the detach-
ment force ratio,

hh
Fds

Fdf

; (2)

of slow and fast motors. Using this procedure, we find
Fdf x 6 pN for OSM-3 and h x 3.3 (i.e., Fds x 20 pN
for kinesin-II) for the experimental data by Pan et al. in
Fig. 1 B and Fdf x 6 pN for Xklp1 and h x 1.9 (i.e.,
Fds x 12 pN for Xkid) for the experimental data by Bieling
et al. in Fig. 1 C. This demonstrates that we can derive
predictions for microscopic motor parameters from the
comparison between our theory and experimental gliding
assay data.
Three motility states, bikinetic transport

The further characterization of the dynamic behavior during
filament transport is based on an analysis of the stationary
probability distribution p(nf, ns), as obtained from numerical
solution of the stationary master equation. We find three
types of probability distributions representing three dif-
ferent motility states:

1. Fast transport characterized by a single maximum at
motor numbers nf > ns corresponding to filament trans-
port dominated by fast motors and with a large velocity.

2. Slow transport characterized by a single maximum at
motor numbers ns > nf corresponding to filament trans-
port dominated by slow motors with a small velocity.

3. Bistable transport characterized by a distribution with
two maxima at nf > ns and ns > nf, corresponding to
a bistable transport switching stochastically between
a fast and slow transport velocity. This last motility
regime could therefore be called bikinetic transport.

Three examples for the corresponding stationary distribu-
tions p(nf, ns) are shown in Fig. 2, A–C. For the motility
regimes of fast and bistable transport shown (Fig. 2, A
and C), we used parameters as in the experiments by Larson
et al. (18) (see Table 1, left column, with detachment forces
satisfying h ¼ 0.45 and fractions of fast motors of Nf /N ¼
0.4 in Fig. 2 A and Nf/N ¼ 0.2 in Fig. 2 C). For the motility
regime of slow transport in Fig. 2 B, we also used a small
fraction of fast motors, i.e., Nf/N ¼ 0.2, but an increased
detachment force for slow motors corresponding to h ¼ 4.

From the probability distribution p(nf, ns) in the space of
motor numbers nf and ns, we can directly obtain the proba-
bility distribution p(v) for the transport velocity of the fila-
ment because vm ¼ vm (nf, ns) is uniquely determined by
the motor numbers nf and ns (see Models and Materials
and Eq. 7). This distribution is given by

pðvÞ ¼
XNf

nf ¼ 0

XNs

ns ¼ 0

d
�
v� vm

�
nf ; ns

��
p
�
nf ; ns

�
: (3)

Typical results for the velocity distribution in the three
motility regimes are shown in Fig. 2, G–I. For fast and
slow transport, the single maximum in the probability distri-
bution p(nf, ns) also leads to a unimodal velocity distribution
(see Fig. 2, A and G, for fast and Fig. 2, B and H, for slow
transport). For bistable transport, on the other hand, two
maxima in the probability distribution p(nf, ns) give rise to
a bimodal velocity distribution as shown in Fig. 2, C and I.

The different dynamic behavior is also seen in micro-
scopic Brownian dynamics simulations, where we solve
the coupled motor and filament equations of motion (see
Models and Methods). The trajectories of the microtubule
center of mass are recorded to determine the walked
distances of the microtubule center of mass along its trajec-
tory as a function of time. The resulting trajectories are
shown in Fig. 2, D–F. For fast and slow transport, the trajec-
tories exhibit a unique slope corresponding to a single
velocity (see Fig. 2, D and E). For bistable transport,
the trajectories switch stochastically between two slopes
Biophysical Journal 104(3) 666–676
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G H I

FIGURE 2 Comparison of microtubule trans-

port in the three different motility regimes for

wild- and mutant types of kinesin-1 corresponding

to the experiments in Larson et al. (18) (with single

motor parameters as given in Table 1, left column):

(A, D, and G) fast transport in motility regime 1 for

Nf /N ¼ 0.4 and h ¼ 0.45; (B, E, and H) slow trans-

port in motility regime 2 for Nf /N ¼ 0.2 and h ¼ 4

(corresponding to a larger detachment force of

slow motors); and (C, F, and I) bistable transport

in motility regime 3 for Nf /N ¼ 0.2 and h ¼
0.45. (A–C) Stationary probability distribution

p(nf, ns) to find nf fast motors and ns slow motors

attached to the microtubule from the master equa-

tion approach (blue corresponding to low probabil-

ities, yellow and orange to high probabilities). For

bistable transport (C), the distribution p(nf, ns) is

bimodal. (D–F) Center-of-mass displacements (in

nm) of the microtubules as a function of time

from microscopic Brownian dynamics simulations

(in simulation steps Dt ¼ 0.1 ms) as described

in Models and Methods (see main text). (Insets)

Corresponding trajectories of fractions nf (t)/n(t)

(red) of fast and ns(t)/n(t) (gray) of slow motors

attached to the microtubule (n(t) ¼ nf (t) þ ns(t)).

In fast transport (D) the fraction of fast motors

is high, in slow transport (E) the fraction of

slow motors is high, whereas in the bistable trans-

port regime (F) both microtubule velocity and motor fractions exhibit bistable stochastic switching. (G–I) Microtubule velocity distributions both from

the master equation approach (green) and from microscopic Brownian dynamics simulations (red). For bistable transport (I), the velocity distribution

is bimodal.
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corresponding to a bimodal velocity distribution as shown in
Fig. 2 F.

In Fig. 2, G–I, we also compare the velocity distributions
from the master equation approach to the velocity distribu-
tions from Brownian dynamics simulation trajectories. We
find good agreement for the most probable velocities in all
three motility regimes. The peak width of the velocity distri-
butions from microscopic simulation trajectories is larger
because of additional fluctuations in the numbers Nf and
Ns of available motors, which we neglected in the master
equation approach.

The existence of three motility regimes also explains the
different experimental results (16–18) for the evolution of
the microtubule velocity with increasing fraction Nf/N of
fast motors. In all three experiments, the system starts at
small fractions of fast motors in the motility regime of
slow transport with a unimodal velocity distribution with
a single peak at small velocities and eventually reaches
the motility regime of fast transport with a unimodal
velocity distribution having a single peak at high velocities.
For the smooth increase of the average microtubule trans-
port velocity as observed in Pan et al. (16) and Bieling
et al. (17), the single peak of the unimodal velocity distribu-
tion shifts to higher velocities while the velocity distribution
remains unimodal all the time. For the abrupt transition as
observed in Larson et al. (18), on the other hand, the transi-
tion proceeds via an intermediate bistable motility regime
where the velocity distribution develops a second peak at
Biophysical Journal 104(3) 666–676
high velocities, which coexists with the low-velocity peak,
before the low-velocity peak vanishes. The bistability and
coexistence of two velocities in the transition regime
explains the pronounced velocity fluctuations that have
been found in Larson et al. (18) (see large error bars in
Fig. 1 A in the transition region).
Motility diagrams

To understand the mechanism responsible for bistable trans-
port in more detail, we have to compare the properties of the
different molecular motors involved in the three experi-
ments. The system with wild-type and mutant kinesin-1
motors from Larson et al. (18), which exhibits the abrupt
velocity transition, is characterized by a rather small ratio
Fdf /Fs ¼ 0.5 of detachment to stall force for wild-type kine-
sin-1 and an even smaller ratio Fds /Fs ¼ 0.225 for the
mutant kinesin-1 motors (see Table 1, left column). These
small values indicate that motors easily unbind from the
microtubule at typical stall forces, which also represent
typical load forces. Therefore, an unbinding cascade can
be triggered. During transport, force balance is established
between the group of fast and slow motors, where the load
force is equally shared among motors of the same type.
Once a fast or slow motor unbinds from the microtubule,
the remaining fast or slow motors must sustain a higher
load force, which leads to further unbinding events, until
all fast or slow motors are unbound from the microtubule.



FIGURE 3 Bifurcation diagram for the gliding assaywithwild andmutant

types of kinesin-1 motors (18). It shows all solutions of the mean field equa-

tion for hnfi/(hnfi þ hnsi) as a function of the detachment force ratio h for

a fixed fraction of fast motorsNf/N¼ 0.5. (Solid diamonds) Stable solutions.

(Open circles) Unstable solutions. The bifurcation at the lower critical hl and

the upper critical hu is of the saddle node type. For h < hl, there is a single

stable mean field solution at a high fraction of fast motors corresponding

to the motility regime 1 of fast transport. For h > hu, there is a single stable

mean field solution at a low fraction of fast motors corresponding to the

motility regime 2 of slow transport. For hl <h< hu, we find two metastable

and one unstable solution corresponding to the bistable transport regime 3.
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Such unbinding cascades give rise to a bistable switching of
the microtubule transport velocity: if the slow motors
unbind, the microtubule velocity switches to the velocity
vm z vf of fast motors; if fast motors unbind, it switches
to vm z vs. Indeed, we observe such unbinding cascades
in our microscopic Brownian dynamics simulations for the
bistable motility regime, as can be seen in the inset in
Fig. 2 F for Nf/N ¼ 0.2.

In the other two assays in Pan et al. (16) and Bieling et al.
(17), where the microtubule velocity changes smoothly, we
obtain larger values Fdf /Fs ¼ 1 and Fds /Fs > 1 from our fits
to the experimental data (see Table 1, middle and right
columns). This means that, in these cases, slow motors
have a detachment force that is even larger than the stall
force. Therefore, slow motors remain bound to the microtu-
bule if fast motors exert more load force for increasing Nf /N,
which suppresses unbinding cascades. Then the numbers of
slow and fast motors participating in microtubule transport
is only gradually changing and the velocity changes
smoothly if the fraction of fast motors is increased.

This suggests that small detachment forces of slow and
fast motors, as compared to stall forces, are a necessary
condition for an abrupt velocity transition upon increasing
the fraction of fast motors. To discuss this issue more
systematically, we derive motility diagrams for all three
assays, where the extents of the three motility regimes can
be read off as a function of microscopic motor parameters.
These motility diagrams are based on a mean field equation
for the ratio hnfi/hnsi of the average numbers of bound fast to
bound slow motors (see Eqs. 17 and 18). In this mean field
equation, we identify the following set of five dimensionless
control parameters,

hh
Fds

Fdf

; bFhFs

Fdf

; bvhvs
vf
; bphp0

e0
; and bNh

Ns

Nf

; (4)

which determine the behavior of the system. In the
following, we mainly focus on the ratio h of detachment
forces and the most important experimental control param-
eter, which is the fraction Nf =N ¼ 1=ð1þ bNÞ of available
fast motors.

In Fig. 3 we show solutions of the mean field equation for
the average fraction of bound fast motors hnfi/(hnfi þ hnsi)
as a function of the ratio of detachment forces h for motor
parameters appropriate for wild-type and mutant kinesin-1
as used in the experiments in Larson et al. (18) (see Table 1,
left column). The fraction of available fast motors is fixed at
Nf/N ¼ 0.5. Fig. 3 clearly shows that solutions of the mean
field equation can bifurcate, and the mean field equation can
have one, two, or three different solutions. Bifurcations take
place both at a lower critical value hl and at an upper critical
value hu. In the parameter range hl < h < hu between these
critical values, we find three solutions; below hl and above
hu only a single stationary state exists. From a stability anal-
ysis, we find that the system is bistable, i.e., the upper and
lower solutions are stable, while the middle branch is
unstable; thus, the system undergoes saddle-node bifurca-
tions at hl or hu.

The existence of a single stationary state corresponds to
a single solution for the average microtubule velocity and,
thus, to a unimodal velocity distribution in the master equa-
tion approach. For h < hl, i.e., small detachment forces of
slow motors, slow motors detach easily, and we find trans-
port with hnfi/(hnfi þ hnsi) z 1, i.e., essentially by fast
motors only. Correspondingly, we can identify the param-
eter regime h < hl as the motility regime of fast transport.
For h > hu, on the other hand, detachment forces of slow
motors are large, and slow motors remain bound to the
microtubule, and we find transport with hnfi/(hnfi þ hnsi) <
0.5, i.e., predominantly by slow motors. Correspondingly,
we can identify the parameter regime h > hu as the motility
regime of slow transport.

In the intermediate regime hl < h < hu, there are two
metastable solutions of the mean field equations corre-
sponding to fast and slow transport. Bistability of the
mean field solutions therefore corresponds to a bimodal
velocity distribution in the master equation approach such
that the intermediate parameter regime hl < h < hu is the
motility regime of bistable transport.

The bifurcation values hl and hu depend on the fraction
Nf/N of fast motors and the remaining control parameters
from Eq. 4, and we characterize the parameter regimes for
the three different motility states by calculating the critical
values hl and hu as a function of Nf/N. The results for
wild-type and mutant kinesin-1 motors as in the assays by
Larson et al. (18) (motor parameters from Table 1, left
column) are shown in the motility diagram in Fig. 4 A in
Biophysical Journal 104(3) 666–676
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FIGURE 4 Motility diagrams for the three different microtubule gliding assays studied experimentally in Refs. (16–18) as a function of the parameters h

and Nf /N: (A) For wild-type and mutant kinesin-1 motors (18), (B) for OSM-3 and kinesin-II motors (16), and (C) for Xklp1 and Xkid motors (17). (Open red

circles) Numerical results for the lower and upper critical values hl and hu. (Solid blue and green curves) Obtained from analytical approximations of Eqs. 5

and 6, respectively (see also the Supporting Material). (Stars) Critical points. The region enclosed by red open circles represents the bistable motility regime.

This is further illustrated by the insets in (A), which show velocity distributions from the master equation approach for values (a) h¼ 5.0, (b) h¼ 1.5, and (c)

h ¼ 0.5 at Nf /N ¼ 0.5. In the bistable motility regime, the velocity distribution is bimodal (inset b), while there is only one stationary state with a unimodal

velocity distribution outside of this region, corresponding to slow transport (inset a), or fast transport (inset c). The bifurcation diagram in Fig. 3 shows the

detailed bifurcation behavior (vertical dashed black line) in diagram A. (Horizontal dashed green lines) Parameters explored experimentally in (A) Larson

et al. (18) and (C) Bieling et al. (17). In Pan et al. (16), a value h ¼ 3.3 outside the diagram B was realized experimentally.
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the (Nf/N, h) parameter plane. The open red circles represent
numerical results for the upper and lower critical values hl
and hu. The motility regime of bistable transport is enclosed
by the red open circles. Outside this regime, there is just
a single stable stationary state corresponding to the motility
regimes of fast or slow transport. This is also demonstrated
by three different velocity distributions, which have been
calculated from the master equation approach. In Fig. 4 A,
the vertical dashed black line for fixed Nf/N ¼ 0.5 corre-
sponds to the parameter regime, for which the detailed bifur-
cation behavior of the fraction hnfi/(hnfi þ hnsi) of fast
motors is shown in the bifurcation diagram Fig. 3.

Fig. 4 A also shows that there is a critical point, which
limits the bistable motility regime, and which is located
at (Nf,c/N, hc) ¼ (0.883, 6.13). Motility regimes of fast
and slow transport are connected by a smooth crossover
whenever we move along a trajectory in parameter space
that runs around the bistable motility regime, which termi-
nates at the critical point. The dashed green line in Fig. 4 A
is given by h ¼ 0.45 and represents the experimental
parameters from Larson et al. (18). This line clearly enters
the bistable motility regime resulting in an abrupt transi-
tion, because h ¼ 0.45 is far below the critical point value
hc ¼ 6.13. The motility diagram in Fig. 4 A then allows
us to read off critical fractions of fast motors for the
transitions between the bistable and slow or fast motility
regimes.

We find a transition from bistable to fast transport for
Nf /N x 0.31, whereas the other transition from slow
to bistable transport is close to vanishing for Nf/N (see
Fig. 4 A). These results are in agreement with the master
equation result for the location of the abrupt velocity transi-
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tion (see Fig. 1 A). Because the ratio Nf/N of fast to total
motors can be changed easily in experiments, the prediction
of a transition from a bistable state with bimodal velocity
distribution to a state with unimodal velocity distribution
at Nf/Nx 0.31 can be tested experimentally for this system.
The horizontal green dashed line in Fig. 4 A corresponds to
the parameter range explored experimentally in Larson et al.
(18), which implies that the observed abrupt increase of the
filament velocity is a consequence of bistability.

We obtain analogous motility diagrams for the other two
experimentally studied assays as shown in Fig. 4 B for
kinesin-II and OSM-3 motors and in Fig. 4 C for Xkid
and Xklp1 motors with parameters as given in Table 1
(middle and right columns). The critical points obtained
for these assays are (Nf,c/N, hc) ¼ (0.55, 0.44) and (Nf,c/
N, hc) ¼ (0.80, 1.81), respectively. However, the values
h x 3.3 we obtained for kinesin-II and OSM-3 motors
from fitting the average velocity data is larger than the crit-
ical value hc ¼ 0.44 and, similarly, the value h x 1.9 for
Xkid and Xklp1 motors is larger than the critical value
hc ¼ 1.81 (see green dashed line in Fig. 4 C). Therefore, ac-
cording to the motility diagrams shown in Fig. 4, B and C,
we predict that only unimodal velocity distributions should
be observable in these gliding assays with a smooth cross-
over from slow to fast transport in accordance with the
experimental observations.

Finally, we can derive analytical estimates for the two
branches of critical values. The lower branch hl is obtained
in the limit of small hnfi/hnsi � 1=bv, the upper branch in the
limit of large hnfi/hnsi [ 1=bv. Details of the calculations
are contained in the Supporting Material. For the lower
branch, we find a dependence
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hlf
1bN ¼ Nf =N

1� Nf =N
(5)

on the fraction of fast motors (solid blue curve in Fig. 4 A).

For the upper branch, we obtain a logarithmic dependence

huf
1

ln bN (6)

(solid green curve in Fig. 4 A). Both results show good
FIGURE 5 Filament gliding assay with fast (blue) and slow (red) molec-

ular motors. (A) One microtubule is transported by two types of kinesin

motors with velocity vm. The two types of motors walk along the microtu-

bule to the plus-end with different velocities vs and vf for slow and fast

motors, respectively. (B) Force-velocity relations for fast and slow motors.
agreement with the numerical calculations.
In the Supporting Material we also discuss motility

diagrams in the (Nf /N, bF) and (Nf /N, bv) parameter planes,
which exhibit a similar topology with a bounded parameter
region for the bistable motility regime 3 with bimodal
velocity distribution. These parameter regions always termi-
nate in critical points.
A piecewise linear relation is taken for both types of motors. Fast motors are

always pulled backward by resisting force F > 0 while slow motors are

always pulled forward by assisting forces F < 0.

MODELS AND METHODS

Brownian dynamics simulations

We have introduced a microscopic Brownian (or Langevin) dynamics simu-

lation model for gliding assays in the literature (20–22). Here we use these

Brownian dynamics simulations to study the motion of a single microtubule

transported by two types of kinesin motors in the two-dimensional gliding

plane. The stochastic discrete motor stepping and stochastic binding and

unbinding of motors from the microtubule are included in the model.

The microscopic simulation model contains the microtubule, motor

heads, and polymeric motor stalks as three types of degrees of freedom.

Two types of kinesin motors are distributed randomly in the two-

dimensional substrate plane. To simulate the microtubule motion, we use

Brownian (or Langevin) dynamics and solve the overdamped equation of

motion for a rigid microtubule under forces and torques from attached

motors, thermal forces and torques, and frictional forces and torques numer-

ically. During each simulation time step, we update the microtubule position

and orientation according to the equation of motion and the positions of the

attached motor heads according to the force-velocity relation of motors. The

forces from the stretched motor stalks, which are built, from the stepping of

motor heads along the microtubule are transmitted on both the microtubule

and the attached motor heads. Motor stalks equilibrate fast for given posi-

tions of the motor head and motor tail anchored on the substrate. Therefore,

the forces for the stretched motor stalks can be recalculated after updating

the motor head or the microtubule positions by applying the equilibrium

force-extension relation of the motor stalk spring. The simulations are per-

formed by advancing motor head positions and the microtubule position and

orientation in discrete time steps. The discrete time step Dt is taken to be

0.1 ms if not mentioned otherwise. Details of the simulation are described

in Kraikivski et al. (20), Kierfeld et al. (21), and Li et al. (22).
Master equation approach

The numbers of nf fast and ns slow motors that actually bind and transport

the microtubule vary stochastically within the intervals 0 % nf % Nf

and 0 % ns % Ns because of stochastic binding and unbinding of motors

(Fig. 5 A). The state of the filament can then be described by the pair

(nf, ns). The probability p(nf, ns, t) to find the filament with nf fast and ns
slow motors attached at time t describes the stochastic properties of the

system and satisfies a master equation, which is given in the Supporting

Material.

The master equation contains rates pf and ef for binding and unbinding of

a fast motor as well as ps and es for binding and unbinding of a slow motor,
which are functions of the state (nf, ns) of the system. These rates are force-

dependent.

We can derive these rates under the assumption of:

Condition 1. Force balance and equal force sharing.

Condition 2. Equal velocities of all motors.

Then, by assuming that motor stepping happens much faster than binding

and unbinding of motors, we can use Conditions 1 and 2 with fixed motor

numbers ns and nf.

We take the binding rates p ¼ p0 of a single motor to be independent of

load force because unbound motors can always bind to filaments from their

relaxed state (4,15). The unbinding rate of a motor depends on its load force

F and is given by Bell (24) and Svoboda and Block (25) e(F) ¼ e0exp(jFj/
Fd), where e0 is the unbinding rate at zero load force and Fd defines the

detachment force.

Fast motors will experience resisting forces F R 0 because they move

faster, while slow motors will be pulled forward and subject to assisting

forces F % 0. As shown in Fig. 5 B, we assume for both motors types line-

arly decreasing force-velocity relations (25–29) with vf and vs as velocities

of unloaded motors and stall forces Fsf and Fss. As pointed out above, we

assume Fs h Fss ¼ Fsf for simplicity.

With the load force F� < 0 acting on each slow motor and the resisting

load force Fþ> 0 acting on each fast motor, Condition 1 (force balance and

equal force sharing between all attached nf fast and ns slow motors) leads to

nfFþ ¼ �nsF� h F(nf, ns), where F(nf, ns) > 0 is the absolute value of the

total force acting on each motor group. We neglect a small frictional force

on the microtubule, as discussed in the Supporting Material.

Using Condition 2 (equal velocities of all motors and the microtubule)

then leads to a microtubule velocity of

vm
�
nf ; ns

� ¼ vsvf�
1� nf

n

�
vf þ nf

n
vs
; (7)

where n h nf þ ns is the total number of bound motors and the total force

F(nf, ns) acting on each motor group,
F
�
nf ; ns

� ¼
1� vs

vf

1þ nf
ns

vs
vf

nf Fs: (8)
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Using this force, we can calculate the effective unbinding rates in a state

(nf, ns) characterized by the numbers of bound fast and slow motors. The

effective unbinding rates ef and es of fast and slow motors from the micro-

tubule in the state (nf, ns) are

ef
�
nf ; ns

� ¼ nf e0f exp

�
F
�
nf ; ns

�
nf Fdf

	
; (9)

es
�
nf ; ns

� ¼ nse0s exp

�
F
�
nf ; ns

�
nsFds

	
: (10)

The parameters e0f and e0s denote the unbinding rates of a single fast and

slow motor at zero load force, and Fdf and Fds denote the detachment forces

for fast and slow motors, respectively. The effective binding rates pf and ps

of fast and slow motors in state (nf, ns) are

pf

�
nf ; ns

� ¼ �
Nf � nf

�
p0f ; (11)

ps

�
nf ; ns

� ¼ ðNs � nsÞp0s: (12)
The parameters p0f and p0s denote the corresponding binding rates of

fast and slow motors. Analogous expressions have also been obtained in

Larson et al. (18), based on the theoretical framework as developed in

Müller et al. (15). Using these unbinding and binding rates in the

master equation, we can calculate the stationary probability distributions

p(nf, ns) that the filament is transported by nf fast and ns slow motors

numerically.
Mean field approach

It is difficult to solve the full master equation analytically or to identify the

relevant control parameters governing transitions between different types of

solutions corresponding to different motility states. Therefore, we also

introduce an approximative mean field theory that can be used to derive

and analyze dynamic equations for the mean numbers

nf
� ¼

X
nf ;ns

nf p
�
nf ; ns

�
and hnsi ¼

X
nf ;ns

nsp
�
nf ; ns

�

of bound fast and slow motors analytically (30,31). We rescale these

average numbers using the total numbers of available motors Nf and Ns,

respectively, and define

bnfh



nf
�

Nf

and bnsh
hnsi
Ns

; (13)

which become continuous variables for large Nf and Ns. From the master

equation, we obtain equations for these two rescaled mean motor numbers,

v

vt
bnf ¼ �e0bnf exp

�
F
�

nf
�
; hnsi

�

nf
�
Fdf

	
þ p0

�
1� bnf

�
; (14)

v
�
F
�

nf
�
; hnsi

�	

vt
bns ¼ �e0bns exp hnsiFds

þ p0ð1� bnsÞ; (15)

where we assumed equal binding and unbinding rates for fast and slow

motors for simplicity, i.e., p0 h p0f ¼ p0s and e0 h e0f ¼ e0s. In deriving
Biophysical Journal 104(3) 666–676
the mean field equations (Eqs. 14 and 15), we used mean field approxima-

tions of the type�
nf exp

�
F
�
nf ; ns

�
nf Fdf

	
z



nf
�
exp

�
F
�

nf
�
; hnsi

�

nf
�
Fdf

	
; (16)

which become exact only for sharply peaked distributions p(nf, ns).

Using the result from Eq. 8 for the force F(nf, ns) on each motor group,

we can obtain a closed set of dynamical mean field equations for bnf and bns.
In a stationary state vtbnf ¼ vtbns ¼ 0, we can divide both equations to

obtain a single stationary mean field equation for the ratio

bnh

nf
�

hnsi
vs
vf
; (17)

which takes the form

fMFðbnÞhbvbN
exp

�bFð1� bvÞ
hbv bn

1þ bn
	
þ bp

exp

�bFð1� bvÞ
1þ bn

	
þ bp ¼ bn: (18)

Here we used the set of expressions from Eq. 4 of five dimensionless control

parameters, which determine the behavior of the system within mean field

theory. The mean field equation, Eq. 18, shows that h, bF, and bv are likely to
be the most important microscopic motor parameters because they enter the

exponential factors of the equation, whereas the parameter bp plays only

a minor role. Therefore, we focused on the parameter h and consider the

dependence on bF and bv in the Supporting Material.

At hl and hu, the solution of the mean field equation (Eq. 18),

fMFðbnÞ ¼ bn, bifurcates into three solutions, as shown in Fig. 3 for wild-type
and mutant kinesin-1. The additional bifurcation condition is f 0MFðbnÞ ¼ 1.

Solving fMFðbnÞ ¼ bn and f 0MFðbnÞ ¼ 1 simultaneously, we can efficiently

calculate hl and hu numerically as a function of the fraction of fast motors

Nf/N. At the critical point, hu and hl merge. The critical point can be calcu-

lated using the additional third condition f 00MFðbnÞ ¼ 0.
DISCUSSION

We have developed a unified theoretical description for
filament transport by slow and fast kinesin motors in
gliding assays, which explains the results of three indepen-
dent experiments (16–18). In these experiments, the
velocities of the microtubules have been measured as a func-
tion of the surface fraction of fast motors for different types
of kinesin motors. Whereas the microtubule velocity
exhibits an abrupt transition in the assays by Larson et al.
(18) using wild-type and mutant kinesin-1 motors, the
velocity increases smoothly in the assays by Pan et al.
(16) with kinesin-II and OSM-3 motors and by Bieling
et al. (17) with Xkid and Xklp1 motors. We were able to
explain this surprisingly different behavior in a quantitative
manner (Fig. 1) using a theory based on single motor
parameters.

Using a master equation approach, the different experi-
mental results can be explained quantitatively by using
different detachment forces for molecular motors. As shown
in Fig. 1, we are able to describe all three experimental
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results for the filament velocities as a function of the surface
fraction of fast motors by using the same master equation
approach but different motor parameters as given in Table 1.
No fitting parameter has been used for the assay by Larson
et al. with wild-type and mutant kinesin-1 motors, while
the motor detachment forces were viewed as fit parameters
for the other two assays. This allows us to determine these
microscopic motor parameters from the comparison of
experimental data and theory.

Solving the master equation, we obtained the stationary
velocity distributions of the microtubule. Based on these
velocity distributions, we can identify three distinct motility
regimes: 1), fast and 2), slow transport with a unimodal
velocity distribution; and 3), bistable (or bikinetic) transport
where the microtubules stochastically switch between fast
and slow transport. All three motility regimes were con-
firmed by Brownian dynamics simulations.

We find that the abrupt transition in the velocity as
observed in one experiment (18) is a result of relatively
small detachment forces. Such forces give rise to motor
unbinding cascades, which we identified as the main mech-
anism for bistability and velocity switching.

To characterize the influence of single motor properties in
detail, we used a mean field approach and identified the rele-
vant single motor control parameters, such as the ratio of
detachment forces h, the ratio of stall to detachment
force bF, the velocity mismatch between slow and fast
motors bv (see Eq. 4). The fraction of available fast motors
Nf /N is the most important experimental control parameter.
Based on the mean field equation (see Eq. 18), we calculated
motility diagrams in the (Nf /N, h) parameter plane for the
assay by Larson et al. (see Fig. 4 A), and for the other two
assays (see Fig. 4, B and C).These motility diagrams exhibit
a bounded parameter region, where we find two stable solu-
tions to the mean field equation, which corresponds to the
bistable transport regime with a bimodal velocity distribu-
tion. Outside this bounded parameter region, we find a single
mean field solution corresponding to the motility regimes of
fast or slow transport.

We also obtained approximative analytical expressions
for the boundaries of the bistable motility regime. The
boundaries terminate in a critical point. If the single motor
parameters are known as they are known for wild-type
and mutant kinesin-1 motors, then the motility diagram
allows us to predict the fractions Nf/N of fast motors biki-
netic transport (with bistable switching between fast and
slow transport) that should be observable in experiments.
Vice versa, knowing the range of fractions Nf/N of fast
motors, where transport is bistable from experiments, we
can deduce single motor parameters such as the motors’
detachment forces.

Our theory applies not only to microtubule transport in
gliding assays but to cooperative cargo transport by slow
and fast motors along a filament as well. Therefore, cargos
transported by slow and fast motors can exhibit transport
with bistable velocity switching in the parameter regions
quantified in the motility diagrams.
SUPPORTING MATERIAL

Four supplemental sections and three figures are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(12)05123-5.

After submission of our manuscript, we were informed by Yunxin Zhang

that he has derived equations similar to our Eqs. 7 and 8 for the cooperative

transport of filaments by fast and slow motors.
REFERENCES

1. Bray, D. 2001. Cell Movements: From Molecules to Motility. Garland,
New York.

2. Lipowsky, R., J. Beeg, ., M. Müller. 2010. Cooperative behavior of
molecular motors: cargo transport and traffic phenomena. Physica E.
42:649–661.

3. Holzbaur, E. L., and Y. E. Goldman. 2010. Coordination of molecular
motors: from in vitro assays to intracellular dynamics. Curr. Opin. Cell
Biol. 22:4–13.

4. Klumpp, S., and R. Lipowsky. 2005. Cooperative cargo transport by
several molecular motors. Proc. Natl. Acad. Sci. USA. 102:17284–
17289.

5. Beeg, J., S. Klumpp, ., R. Lipowsky. 2008. Transport of beads by
several kinesin motors. Biophys. J. 94:532–541.

6. Driver, J. W., D. K. Jamison, ., M. R. Diehl. 2011. Productive coop-
eration among processive motors depends inversely on their mechano-
chemical efficiency. Biophys. J. 101:386–395.

7. Leibler, S., and D. A. Huse. 1993. Porters versus rowers: a unified
stochastic model of motor proteins. J. Cell Biol. 121:1357–1368.
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