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A mathematical model describing the space and time fractional solidification of fluid ini-
tially at its freezing temperature contained in a finite slab under the constant wall temper-
ature is presented. The approximate analytical solution of this problem is obtained by the
homotopy perturbation method. The results thus obtained are compared with exact solu-
tion of integer order (b = 1,a = 2) and are good agreement. The problem has been studied in
detail by considering different order time and space fractional derivatives. The temperature
distribution and the moving interface position for different fractional order space and time
derivatives are shown graphically. The model and the solution are the generalization of the
previous works and include them as special cases.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Melting and solidification process occur in numerous important areas of science, engineering and industry [1]. For Exam-
ple freezing and thawing foods, production of steel, growing crystal for semiconductors, formation of monotectics, eutectics,
chemical reactions and drug delivery are all involve either a moving freezing, moving melting or moving diffusion unknown
front. The manufacturers are interested in controlling their processes so as to make moving boundary as smooth as possible.
Many important physical processes that occur during melting or solidification have not been adequately studied and are not
understood. Super computations with wrong models of some of the transport processes will yield meaningless results. For
this reason interaction between those engaged in physical phenomena and analysis is much needed, because today many
fundamental physical theories involve through numerical studies. The melting/solidification process is normally governed
by heat conduction equation which is a combination of conservation equation of energy and the conduction law. In many
one dimensional systems with total momentum conservation, the heat conduction equation does not obey the Fourier
law and the heat conductivity depends on the system size [2]. Li and Wang [3,4] have found a simple formula which connects
anomalous heat conductivity with anomalous diffusion. Povstenko [5] discusses a fractional heat conduction equation.
Recently Jiang and Xu [6] obtained a time fractional heat conduction equation in the general orthogonal curvilinear
co-ordinate and in cylindrical coordinate system.

The fractional (space–time) heat conduction equation is obtained from the standard heat conduction equation by replac-
ing the second order space derivative with a Riesz-feller derivative of order a 2 (0,2], and the first order time derivative with
the Jumarie derivative of order b 2 (0,1]. The moving boundary problems of fractional order are a special linear and non
linear problem which is difficult to get the exact solution. A very few attention is occurred to apply fractional calculus
. All rights reserved.

(J. Singh).
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Nomenclature

c specific heat capacity
k thermal conductivity
a thermal diffusivity
R position of fixed boundary
L latent heat of fusion
r position of solidified material
t time
T temperature distribution
T0 reference temperature
Tf freezing temperature
Tw temperature at fixed boundary
S Stefan number
x dimensionless position

Greek symbols
a space fractional
b time fractional
k0(t) position of freezing front
q density
k(s) dimensionless solidification front defined in Eq. (7)
s dimensionless time defined in Eq. (7)
h dimensionless temperature defined in Eq. (7)
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[7,8] with moving boundary condition by the authors due to the high nonlinearity of moving boundary problems. Approx-
imate methods have been used to solve the moving boundary problems of the integer order e.g. the perturbation method [9–
11] combination of variable method [12,13]. Many methods fails in fractional cases due to the fact that many of the useful
properties of ordinary derivative are not known in case of fractional order derivative such as a clear geometric or physical
meaning, product rules, chain rule and so on.

Hristov [14] solved half time fractional heat-diffusion sub-model using integral balance method. During study of a mov-
ing boundary problem, Hill [15] observed that the error in thickness of frozen layer obtained by integral balance method
increases as Stefan number decreases. The Stefan number is strictly positive and signifies the importance of sensible heat
relative to the latent heat. Integral balance method depends on the choice of a suitable approximate profile for the temper-
ature and assumes a finite penetration depth, the temperature distribution away from the boundary remains unchanged un-
til the diffusion front arrives. Therefore, The validity of the Integral balance method for small Stefan number and short time is
restricted. The homotopy perturbation method was firstly presented by He [16–19] and applied to various nonlinear
problem [20–25]. Many authors Odibat and Momani [26,27], Wang [28,29] and Ganji [30,31] also applied the homotopy
perturbation method to nonlinear fractional equations which have nonlinear terms in the equations. Ganji et al. [32] solved
a time-fraction generalized Hirota–Satsuma coupled K dV equation. Analytical study of Navier–Stokes Equation with
Fractional Orders Using He’s Homotopy Perturbation and Variational Iteration Methods done by Ali et al. [33]. Yaldirim
[34] developed an Algorithm for solving the fractional nonlinear schrodinger equation. This Method is successfully applied
to multi-order time fractional differential equations by Golbabai and Sayevand [35]. Li et al. [36] model a moving boundary
problem and solve in terms of the Fox H functions. Li et al. [37] used homotopy perturbation method to solve time fractional
moving boundary problems in case of drug delivery.

The mathematical model describing the space–time fractional solidification of fluid initially at its freezing temperature
contained in a finite slab under the constant wall temperature have been considered and an approximate analytical solution
is obtained by using Homotopy perturbation method. This Paper is a key step to use fractional calculus in freezing and melt-
ing process.

2. Mathematical model of the problem

A molten material initially at its freezing temperature is contained in a finite region slab length R. At the time greater than
zero the boundary is cooled by imposing the boundary at temperature Tw < Tf. The liquid freezes and the solidification shell
grow in a symmetric manner. Finite regions consists of two zones, the first zone 0 < x < k0(t) in which all liquid freeze and
k0(t) < x < R which contain molten. Two zones are separated by the solidification front x = k0(t) which moves inward as time
progresses. The Dynamics of freezing can be described by the space–time fractional heat conduction equation.
@bTðr; tÞ
@tb ¼ a

@aTðr; tÞ
@ra 0 < b 6 1 < a 6 2; t > 0: ð1Þ
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Initial condition
Tðr; tÞ ¼ Tf jt¼0: ð2Þ
The associated boundary conditions are
Tðr; tÞ ¼ Twjr¼0: ð3Þ
The Energy balance at the solid–liquid interface yields
dbk0ðtÞ
dtb ¼ k

qL
@Tðr; tÞ
@r

����
r¼k0ðtÞ

; ð4Þ

Tðr; tÞ ¼ Tf jr¼k0ðtÞ; ð5Þ

k0ðtÞ ¼ 0jt¼0: ð6Þ
Introducing the dimensionless variable and similarity criteria
x ¼ r
R ; kðsÞ ¼ k0ðtÞ

R ; S ¼ cDT
L ; c ¼ k

qa ;

s ¼ kDT
qLRa

� �1
b
t; h ¼ T�T0

DT ;

9>=
>; ð7Þ
where DT = Tf � Tw and T0 = Tw.
The system of Eqs. (1)–(6) reduce to the following form
S
@bh
@sb
¼ @

ah
@xa ð0 < b 6 1 < a 6 2Þ; ð8Þ

hðx; sÞ ¼ 1js¼0; ð9Þ
hðx; sÞ ¼ 0jx¼0: ð10Þ
The Energy balance at the solid–liquid interface yields
0Db
skðsÞ ¼

@h
@x

����
x¼kðsÞ

; ð11Þ

hðx; sÞ ¼ 1jx¼kðsÞ; ð12Þ
kðsÞ ¼ 0js¼0: ð13Þ
3. Basic definition of fractional calculus

Recently, a New modified Riemann–Liouville fractional derivative is proposed by G. Jumarie (1993). Comparing with the
classical caputo derivative, the definition of the fractional derivative is not required to satisfy higher integer-order derivative
than a. Secondly, ath derivative of a constant is zero. For this merits, Jumarie’s modified derivative was successfully applied
in the probability calculus (Jumarie, 2006), Fractional Laplace problems (Jumarie, 2009a). Wu and He [38] use Jumarie frac-
tional derivatives in fractal spacetime.

We give some basic definitions and properties of the fractional calculus theory which are used further in this paper:

Definition 3.1. A real function f : R! R; t ! f ðtÞ denote a continuous (but not necessarily differentiable) function and let
the partition h > 0 in the interval [0,1]. Jumarie derivative is defined through the fractional difference (Jumarie, 2009):
Daf ðtÞ ¼ ðFW � 1Þaf ðtÞ ¼
X1

0

ð�1Þk
a
k

� �
f ½t þ ða� kÞh�; ð14Þ
where FWf (t) = f(t + h). Then the fractional derivative (Jumarie, 2009) is defined as the following limit.
f ðaÞðtÞ ¼ lim
h!0

Da½f ðtÞ � f ð0Þ�
ha : ð15Þ
This definition is close to the standard definition of derivatives, and as a direct result, the ath derivative of a constant,
0 < a < 1; is zero.
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Definition 3.2. The Riemann–Liouville fractional integral operator of order a P 0 is defined (Miller and Ross, 2003, Oldham
and Spanier, 1999, Podlubry,1999) as
0Iat hðtÞ ¼ 1
CðaÞ

Z t

0
ðt � sÞa�1hðsÞds; ða > 0Þ; ð16Þ

0I0
t hðtÞ ¼ hðtÞ; ð17Þ
where C(z) is well-known Gamma function.
Definition 3.3. The modified Riemann–Liouville derivative (Jumarie, 2009) is defined as
0Da
t f ðtÞ ¼ 1

Cðn� aÞ
dn

dtn

Z t

0
ðt � nÞn�aðf ðnÞ � f ð0ÞÞdn; ð18Þ
where t 2 [0,1], n � 1 6 a < n and n P 1.
The proposed modified Riemann–Liouville derivative as shown in Eq. (18) is strictly equivalent to Eq. (15). Mean-while,

we would introduce some properties of the fractional modified Riemann–Liouville derivative in Eqs. (19) and (20).

(a) Fractional Leibniz product law
0DðaÞt ðuvÞ ¼ uðaÞv þ uv ðaÞ: ð19Þ
(b) Fractional Leibniz Formulation
0Iat Da
t f ðtÞ ¼ f ðtÞ � f ð0Þ; 0 < a 6 1: ð20Þ
Therefore, the integration by part can be used during the fractional calculus
0Iaa uðaÞv ¼ ðuvÞja0 � 0Iaa uv ðaÞ: ð21Þ
Definition 3.4. Fractional derivative of compounded functions is defined as
dðaÞf ffi Cð1þ aÞdf ; 0 < a < 1: ð22Þ
Definition 3.5. The integral with respect to (dx)a is defined as the solution of fractional differential equation
dy ffi f ðtÞðdtÞa; t P 0; yð0Þ ¼ 0; 0 < a < 1: ð23Þ
Lemma 3.4. Let f(t) denote a continuous functions then the solution of Eq. (23) is defined as
y ¼
Z t

0
f ðsÞðdsÞa ¼ a

Z t

0
ðt � sÞa�1f ðsÞds; 0 < a 6 1: ð24Þ
For example f(t) = tc in Eq. (21) one obtains
Z t

0
scðdsÞa ¼ Cðaþ 1ÞCðcþ 1Þ

Cðaþ cþ 1Þ taþc; 0 < a 6 1: ð25Þ
Definition 3.6. Assume that the continuous function f : R! R; t ! f ðtÞ has a fractional derivative of order ka, for any posi-
tive integer k and any a, 0 < a 6 1; then the following equality holds, which is
f ðt þ hÞ ¼
X1
k¼0

hak

ak!
f ðakÞðtÞ; 0 6 t 6 1; 0 < a 6 1: ð26Þ
On making the substitution h ? t and t ? 0 We obtain the fractional Mc-Laurin series
f ðtÞ ¼
X1
j¼0

tak

ak!
f akð0Þ; 0 < a 6 1: ð27Þ
4. Solution of the problem by HPM

The essential idea of this method is to introduce a homotopy parameter, say p, which takes the values from 0 to 1. When
p = 0, the system of equation usually reduces to a sufficiently simplified form, which normally has simple solution. As p grad-
ually increases to 1 the system goes through a sequence of deformation’s the solution of each of which is close to that at the
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previous stage of deformation. Eventually at p = 1, the system takes the original form of the equation and the final stage of
deformation gives the desired solution.

According to the homotopy perturbation method, we construct the following simple homotopy
ð1� pÞ @
ah
@xa þ p

@ah
@xa � S0Db

sh

� �
¼ 0: ð28Þ
Or
@ah
@xa � pS0Db

sh ¼ 0; ð29Þ
where p 2 [0,1] is an embedding parameter. In case p = 0 Eq. (29) is an ordinary differential equation, 0Da
x h ¼ 0; which is easy

to solve and when p = 1 Eq. (29) turns out to be the original one. The basic concept behind the homotopy perturbation meth-
od is that the solution can be written as a power series in p for Eqs. (29) and (11).
h ¼
X1
n¼0

pnhn; k ¼
X1
n¼0

pnkn: ð30Þ
The approximate solution of the original equations can be obtained by setting p = 1, i.e.
h ¼
X1
n¼0

hn; k ¼
X1
n¼0

kn: ð31Þ
Substituting h and k from Eq. (30) into Eqs. (29) and (12), we obtain
X1
n¼0

pn @
ahn

@xa ¼ S
X1
n¼0

pnþ1
0Da

shn; ð32Þ

X1
m¼0

pmhm

X1
n¼0

pnkn; s
 !

¼ 1: ð33Þ
The perturbation parameter p is both explicit and implicit parameter. The implicit part connect to the variable k. In order to
compare the coefficients of different powers of p, We need the explicit form of p, To do this, Taylor’s series of hk(x,s) is used in
a suitable neighborhood of a point (k0,s). Thus hk(x,s) has a Taylor’s series representation with respect to x as follow:
hkðx; sÞ ¼
X1
n¼0

1
n!

@nhk

@xn

����
ðk0 ;sÞ
ðx� k0Þn; k ¼ 0;1;2;3 . . . ð34Þ
Applying this result in Eq. (33), we obtain
X1
j¼0

X1
m¼0

pj

m!

X1
n¼1

pnkn

 !m
@mhj

@xm
¼ 1 ðx ¼ k0Þ: ð35Þ
Similarly, moving boundary Eq. (11) becomes
X1
j¼0

X1
m¼0

pj

m!

X1
n¼1

pnkn

 !m
@mþ1hj

@xmþ1 ¼
X1
n¼0

pn
0Db

skn ðx ¼ k0Þ: ð36Þ
Equating the terms with identical powers of p in (32), (35) and (36). We can obtain a series of equations of the form:
p0 : 0Da
x h0 ¼ 0;

h0ð0; sÞ ¼ 0;
h0ðk0; sÞ ¼ 1;
@h0
@x ¼c

0Db
sk0 ðx ¼ k0Þ;

k0ð0Þ ¼ 0;

9>>>>>>=
>>>>>>;

ð37Þ

p1 : 0Da
x ¼ S0Db

sh0;

h1ð0; sÞ ¼ 0;
h1ðk0; sÞ þ k1ðsÞ @h0

@x ¼ 0 ðx ¼ k0Þ;
@h1
@x þ k1ðsÞ @

2h0
@x2 ¼ 0Db

sk1ðsÞ ðx ¼ k0Þ;
k1ð0Þ ¼ 0:

9>>>>>>>=
>>>>>>>;

ð38Þ
According to the first three equations of (37), we have
h0 ¼
x
k0
: ð39Þ
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Substituting it into the fourth equation of Eq. (37) we have
1
k0
¼ 0Db

sk0: ð40Þ
Considering the properties of fractional derivative and the initial condition of k0, we can assume
k0 ¼ a0sc; ð41Þ
where a0 and c are constants to be determined Substituting Eq. (41) into Eq. (40), and a0 and c can be obtained.
h0 ¼
x

a0sc ; ð42Þ
where
c ¼ b
2
; a0 ¼

C 1� b
2

	 

Cð1þ b

2Þ

" #1
2

: ð43Þ
Substituting h0 and k0 into Eq. (38), the equations for h1 and k1 are obtained, Applying the method similar to the above pro-
cess, we have
h1 ¼
Sa1x1þa

s
3b
2

� Sa1aa
0s
ða�3Þb

2 x� a2a�2
0 sðd�bÞx; ð44Þ

k1ðsÞ ¼ a2sd; ð45Þ
where 	 


a1 ¼

a�1
0 C 1� b

2

C 1� 3b
2

	 

Cðaþ 2Þ

; ð46Þ

a2 ¼
Sa1aa

0a
Cð1þdÞ

Cð1þd�bÞ þ a�2
0

h i ; ð47Þ

d ¼ ða� 1Þb
2

: ð48Þ
Sequentially hi, ki, i = 2,3, . . . can be obtained.
Substituting h0, h1, k0 and k1 into Eq. (31) the first order approximate solution can be written as
hðx; sÞ ¼ a�1
0 s�

b
2xþ Sa1s�

3b
2 x1þa � Sa1aa

0s
ðd�3Þb

2 x� a�2
0 a2sðd�bÞx; ð49Þ

kðsÞ ¼ a0s
b
2 þ a2s

ða�1Þb
2 : ð50Þ
5. Numerical computation and discussion

The solution of this space–time fractional solidification problem will be discussed in detail by considering three particular
cases:

Case 1: when a = 2, b = 1 the governing Eqs. (8)–(13) degenerates into the standard heat conduction equation. In this case,
the exact solution occurs in the form
ffiffiq� �

hðx; sÞ ¼

erf x
2

S
s

erf k
2

ffiffi
S
s

q� � : ð51Þ
The whole liquid solidified at s = 0.7 when we consider S = 1. At this stage, the temperature distribution obtained
by exact method and by HPM is approximately the same as shown in Fig. 1.

Case 2: when a = 2, 0 < b 6 1 the governing equation reduces to time fractional heat conduction equation. Fig. 2 shows the
variation on k(s) with s for different values of b. As b increases, the time required for complete freezing increases.
It is clear from Fig. 3, that when complete melts solidified, the temperature of solidified slab is higher for higher
value of b.

Case 3: when 1 < a 6 2, b = 1 the governing equation reduces to space fractional heat conduction equation. Fig. 4 shows
the variation on k(s) with s for different values of a. It is clear from Fig. 4 that as a increases, the time required
for complete freezing decreases and that the temperature of the slab increases with a Fig. 5.
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Fig. 2. k(s) ver. s for different time fractional value (b), S = 1.

Fig. 1. h(x,s) ver. x for (s = 0.7,S = 1 and a = 2,b = 1).

Fig. 3. h(x,s) ver. x for different time fractional value and S = 1.
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Fig. 4. k(s) ver. s for different space fractional value (a) and S = 1.

Fig. 5. h(x,s) ver. x for different space fractional value and S = 1.
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6. Conclusion

In this article, we have studied the effect of different order of fractional time and space derivatives on the freezing process.
Our results includes all possible cases of diffusion occurring in freezing process like sub diffusion, normal diffusion and super
diffusion. A normal diffusion leads to a normal heat conduction obeying the Fourier law. A super diffusion and sub diffusion
leads to anomalous heat conduction equations. It has also been observed that time fractional b is more pronounced than
space fractional a during freezing process. Advantage and Applications of new fractional heat conduction equation is de-
scribed the sub diffusion process in many real physical systems such as highly ramified media in porous systems percolation
clusters exact fractals the motion of the bead in a polymer semiconductors, and freezing of the material. Therefore, the study
of fractional calculus in moving boundary problems would be of great interest to both scientists and engineers.
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