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INTRODUCTION

It is conjectured in [Pe2] that a so-called good algebra A is of tame
representation type if and only if its Tits form ¢, is weakly non-negative.
In [Ke, MP, Pel, PT] the validity of this conjecture is proved for several
classes of algebras. The problem arises naturally, since for good algebras 4
weak positivity of g, is equivalent to A being of finite representation type
by [Bol].

Another criterion for checking finiteness of type in a combinatorial way
was given in [D2]. It was shown that algebras corresponding to simply
connected ray-categories without infinite chains are of finite representation
type if and only if the finite partially ordered sets of thin start modules are
representation finite for every point of the algebra. The interest in these
ray-categories comes from the fundamental paper [BGRS] on representa-
tion finite algebras.

Good algebras are introduced in [Pe2] as schurian A-free algebras
satisfying the (s)-condition (see [BL]). It is known (see [Bo3]) that
algebras corresponding to simply connected ray-categories without infinite
chains are good. Being interested in extending our criterion via thin start
modules to the tame situation, it seemed to be natural to consider also the
class of good algebras. On the other hand our criterion obviously works
well for hereditary tree algebras which are not always A-free (see Section 3
for an example). Analyzing the proofs about good algebras, we realized
that the property really needed was that every convex subalgebra also
satisfies the (s)-condition. So we decided to work rather with algebras
having this property which we now call completely separating algebras.
The aim of this paper is to present the basic properties and characteriza-
tions of completely separating algebras. We briefly sketch the content of
each of the sections.

The first two sections lead to the theorem that a completely separating
algebra A can be written as a factor algebra of the incidence algebra [ S]
of a finite partially ordered set S by an admissible ideal 7 of k[.S]. This is
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proved by applying topological techniques for schurian algebras introduced
in [BrG] which also are applied to obtain a useful characterization of
indecomposable thin (i.e., locally one-dimensional) 4-modules. Moreover it
turns out that for a completely separating algebra the opposite algebra has
this property as well.

The third section discusses the question of how to check in practice
whether a given algebra is completely separating. It is shown that certain
subalgebras which are themselves of the form A[S] play an important role.
Therefore a handy criterion for these algebras to be completely separating
is presented.

The last section is devoted to adapting the results about critical (see
[Bol, Bo2, HV]) and hypercritical (see [Pe2]) good algebras to the
completely separating case. The results of this section will be used heavily
in the subsequent paper [DN] for clarifying the relations between the
representation type of an algebra and its posets of thin start modules.
Nevertheless they seemed to be interesting also for other questions, so that
we decided to present them here.

As the expression partially ordered set occurs frequently in this paper, we
abbreviate it to poset.

1. DEFINITIONS AND PRELIMINARIES

Let us fix an aigebraically closed field k. Suppose A is a finite dimen-
sional basic algebra over k. We choose a decomposition 1 ,=3" _ , e(x) of
the unit element 1, of 4 into primitive orthogonal idempotents e(x). The
notations introduced in this section will formally depend on this decom-
position. However, it will always be evident that these properties of 4 hold
for every such decomposition if and only if they hold for the chosen one.

1.1. Let us define a relation <, on A, by setting y<, x if there
Is a sequence y=Xxg,.., X,=x in A, such that e(x;_,)de(x;)#0 for
all i=1,..,n This relation is clearly reflexive and transitive. We will
frequently use the intervals [y, x],, 1y, x[4 [y, x[4, 1y, x], with
respect to < ,. Moreover we set Joo, x],:={yedy: y<,x} and define
Joo, xL4, [x, 0l 4, 1x, o0l in the analogous way. If no confusion is
possible we sometimes omit the index A4 in the just introduced notations.

A is called schurian if dim, e(y) Ae(x)< 1 for all x, ye A,. A4 is said to
be directed provided dim, e(x) Ae(x)=1 for all xe A, and the relation <,
is antisymmetric (i.c., a partial order on A,).

A basic algebra over an algebraically closed field k is often written as a
factor algebra 4 =k[47/I of the path algebra k[ 4] of a finite quiver 4 by
an admissible ideal 7 of k[A4] (see [Ga]). We may assume that 4,=4,
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and that the idempotents induced by the points of 4 coincide with the e(x).
In this case there exists an oriented path from x to y in 4 if and only if
y <4 x. This shows in particular that A4 is directed if and only if the quiver
4 is directed (i.e. has no oriented cycles) which is the common definition
of directedness.

1.2. Suppose A is schurian and directed. For s€ 4, we define another
partial order <, on 14, s]:={xedy:e(x) Ae(s)#0} by setting y <, x
provided e(y) Ae(x) Ae(s) #0 (compare [BrG]). Furthermore we use the
notation ]A4, s[ := JA4, s]\s. The sets [s, A[, ]s, A[ and the partial order
<* are defined dually. Obviously 14, s[ € A,\[s, ol , holds and the
relation <, is stronger than <,.

The point se A, is called separating if any two different connected
components of (]4, s[, <,) lie in different connected components of
(A\[s, o[ 4, <,4) We call A separating if all points s of 4, are separating.

Of course the connected components of (]4, s[, <,) are exactly the
supports supp M = {xe dy:e(x)M#0} of the indecomposable direct
summands M of the radical of the indecomposable projective module
P, = Ae(s). Hence s is separating if and only if P, has separated radical,
and A is separating if and only if A4 satisfies the (s)-condition in the
notations introduced in {BL].

Let us recall from [Bo3] that the Auslander-Reiten quiver I", of a
separating algebra 4 has a preprojective component £ such that its orbit
quiver ()(2) is a tree. Conversely it is remarked in [Bo4] that, if I", has
a complete (i.e., contains all indecomposable projective 4-modules) prepro-
jective component & such that its orbit quiver ()(2) is a tree, then 4 is
separating. It is easy to see that the proof of [BLS, 2.27] works also in this
more general situation.

1.3. For a subset T< A, we define e(T):=Y,.,e(t) and
A(T):=e(T) Ae(T). A(T) is a k-algebra with decomposition 3. re(t) of
its unit element e(7) into primitive orthogonal idempotents. For x, ye T
we have y <, x provided y < 41 x.

T< A, is called a convex subset of A4 if it is convex with respect to the
partial order <, on A4,. For convex T the relations <, and <, coincide
on this set. Moreover the canonical map A(T)— A/4e(A\T)A is a
k-algebra isomorphism. This allows to consider A(T) as factor algebra of
A. An algebra of the form A(T) for some convex subset T of A4 is called a
convex subalgebra of A.

We say that the algebra A4 is completely separating if A(T) is separating
for every convex subset T of A,. Obvious examples of completely
separating algebras are algebras of the form k[ 4]/7 such that the quiver 4
is a tree. We will meet further well-known examples of completely separating
algebras in Section 2.
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1.4, We call a schurian and directed algebra A weakly transitive if
for all x, y,zeA, satisfying z<,y<,x and e(z)Ade(x)#0 also
e(z) Ae(y) Ae(x)#0 (hence e(z) Ae(y) Ae(x)=e(z) Ae(x)) holds. We use
the term weakly transitive rather than semicommutative, since these
algebras are the natural generalization of the transitive square-free algebras
introduced in [An] (transitive square-free algebras are exactly the schurian
directed algebras A satisfying e(z) Ae(y) Ae(x)#0 for all z<, y< x
in Ag).

It is easily checked that for a weakly transitive algebra A the sets ]A4, s]
are convex subsets of 4. Moreover the relations <, and <, coincide on
these sets.

The following lemma was proved in [D2, 2.1] for the algebras corre-
sponding to simply connected ray-categories without infinite chains.
Nevertheless the proof only used that these algebras are completely
separating. So we simply restate this result.

LemMma.  Completely separating algebras are weakly transitive.

1.5.  Let us present our favourite class of examples for weakly transitive
algebras. If S=(S§,, <) is a finite poset we denote by k[S] the
k-vectorspace which has as basis all pairs (y, x) € S2 such that y < x. Recall
that with the multiplication

v Oy x) if x'=y

(X0 ={; L

the space k[ S] becomes a finite dimensional k-algebra which we call the
poset algebra of S. The sum Y g (x, x) is a decomposition of the unit
element of X[ S] into primitive orthogonal idempotents. The radical of
k[S] 1s generated as k-space by the pairs (y, x) satisfying y < x.

We say that an ideal 7 of k[ S] is admissible if I < (Rad k[.S])% Consider
the algebra A :=k[S]/I for an admissible ideal 7 of k[S]. Obviously
Y ces, ((x, x)+ 1) is a decomposition of the unit element of 4 into primitive
orthogonal idempotents. Hence A4 is a schurian, directed, weakly transitive
algebra. Moreover the relations <, and < coincide.

1.6. Let us examine in more detail the admissible ideals of k[ S for a
given poset S. A subset R< S] consisting of pairs (y, x) such that [y, x]
contains at least three elements is called a set of relation pairs. Clearly
every set of relation pairs generates an admissible ideal of k[ S]. It is also
not hard to see that conversely every admissible ideal of X[.S] is generated
by a set of relation pairs. Among all sets of relation pairs generating a
given admissible ideal / there is a unique minimal set R characterized by
the fact that for all (y,x), (¥, x')eR the inclusion {x’, y'} <[y, x]
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implies x"=x and y’ = . This set is called the minimal set of relation pairs
for I

Given an admissible ideal I of k[ S] the elements induced by the pairs
(x, x) are the unique primitive idempotents of the radical factor algebra of
k{S1/I From this we easily obtain the following lemma which is helpful for
checking whether two given algebras of the form k[ S/ are isomorphic.

Remark. Let S, S’ be two posets and I, I' be admissible ideals of k[ S],
resp. k[ S’] with minimal sets of relation pairs R, resp. R'. The algebras
k[S]1/I and k[S']/I’ are isomorphic if and only if there is an isomorphism
of partially ordered set ¢: S — S8 such that R = {(p(»), ¢(x)): (3, x)e R}.

1.7. For a given schurian, directed, weakly transitive algebra 4 we
consider the algebra k[S7] induced by the poset S:=(4,, <,) and the
admissible ideal 7 of k[ S] generated by the pairs (y, x) such that y <, x
but e(y) Ae(x)=0. The algebra 4’ :=k[S]/I behaves very much like 4 in
the sense that for y<, x in 4, we have e(y) Ae(x)=0 if and only if
(3, M+ A((x,x)+1)=0.

An even stronger relation holds in the following special case. The proof
can be adapted easily from [D1, 2.3].

LEMMA. Suppose A is a schurian, directed, weakly transitive k-algebra
and s is an element of A, satisfying e(x) Ae(s)#0 for all xe Ay. Then s is
the unique maximal element of the poset S :=(Ay, <,) and A=k[S].

1.8. We close the introductory section by giving a necessary condition
for an algebra to be completely separating which will be helpful later.
Suppose A is a schurian, directed algebra and (x,, .., x,,) is a sequence in
Aq. For all ie Z we write i for the coset of i in Z/(n+ 1)Z. The sequence
(Xg5 - X,) 18 called cyclic path sequence if the following conditions are
satisfied:

(i) nis odd and n>3.
(i) x;
and 7 odd.

<, x; for all i, je N, satisfying 0<i, j<n, i—je{0,1, —1}

LEMMA. Suppose A is a schurian, directed, weakly transitive k-algebra. A
is not completely separating provided there exists a cyclic path sequence
(X0s s X,) i Ao satisfying the following three conditions:

(Cx) [xn—l’xn]Am[XO’ xn]A= {xn}‘

(ﬁ) xn—l¢xn¢x0'

(y) For alli=1,.,n—2 the points x; and x, are incomparable with
respect 10 < 4.

Proof. We show that x, is not separating in A(7T) with T defined as the
convex hull of the set {x,, .., x,}. From (y) follows that x, is maximal in
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Tand Joo, x,J4my= [Xn_ 1> Xs]4 v [Xg, X, ] 4. Consequently JA(T), x,[ =
Joo, X, a0 JA(T), x,[ =Dou D, _ | setting D;:=[x;, x,],,0 JA(T), x,[.
From (x) we obtain that the D; are closed subsets of JA(T), x,[ with
respect to <,. Hence there exist connected components D;=D; of
QA(T), x,[, <4} with D, ,#D;,. On the other hand the set
(T\[x,, [ 4rp €4)=(T\x,, <,) is apparently connected. Thus x,, is not
separating in A(T).

2. Some HoMoLoGy GROUPS

In this section we will use extensively the topological notations and
methods introduced in [BrG, 2] to study schurian algebras. Let us
suppose that 4 is a schurian, directed, basic k-algebra with decomposition
3 e 4o €(x) of its unit element into primitive orthogonal idempotents.

2.1. For every neN, the free Z-module with basis S,4:=
[(xgy s X, )€ AR ' e(xg) Ae(x,) - e(x,,_ ) Ae(x,)#0} is denoted by
C,A. Given neN we have a Z-homomorphism d,: C,4—>C,_ A, x=
(X0s s X)) 1 o (=1)' %, where X,:=(Xg, ., X; 1, Xiy1, .0 X,) for all
i=0, .., n. The complex

L NP R N o DU I R LN

is denoted by C, A. Its homology groups H,A4 :=Ker d,/Imd, , , are called
the simplicial homology groups of A. For an arbitrary abelian group Z
the simplicial cohomology groups of A with values in Z are given by
H"(A,Z):=Ker Hom,(d, , ,, Z)/Im Hom,{d,, Z).

If C(A} is the set of all connected components C of (4,, <,), then the
Z-homomorphism HyA4 — Z“'*) mapping the coset of xe€ 4, in Hy A4 to the
component C of (4,4, <,) containing x is bijective.

We observe that for weakly transitive 4 the sets S, 4 can be written as
{(Xgy v Xn)EART i xo < 4o €y X, €(xp)Ae(x,) #0}.

2.2. Let se A,. We define the k-subspace B*(A4} of A4 as the sum of all
e(y) Ae(x) such that x, ye 14, s] and y <, x. For x, ye ]4, s] therefore
e(y) B*(4) e(x) #0 is equivalent to y <, x. Hence B*(4) is a subalgebra of
A. The unit element of this subalgebra is e( ]A4, s1) which has the decom-
position . 4 ,7€(x) into primitive orthogonal idempotents. Moreover
the <-relation with respect to B°(4) is just <, and B°(A) is weakly
transitive, As B(A4) is a direct complement of the annihilator of the module
P, in A, we may consider B*(A4) as factor algebra of 4 by this ideal.

We set B°(A) :=e(]A, s[ ) BS(A4) e(]A4, s[) and define B(A4), B(A) in the
analogous way. From 1.7 follows B (4)~k(]A4,s], <,) and B(4)=
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k(]A, s[, <,). If 4 is in addition weakly transitive, then B(4)= A(]A4, s])
by 1.4.

Let T be a convex subset of 4, with respect to <, and suppose se T. It
is easy to verify that T'n ]A4, s] is a convex subset of ]A4, s] with respect
to <, and B*(A(T)) coincides with B*(A) (T ]A4, s]).

2.3. Letse A4, Weintroduce A° := A{A\ 15, 00[ 4), 47 := A(A N[5, o[ ,)
and define 4,, A, in the analogous way. The canonical inclusions induce
morphisms of complexes u, v, i, j such that the sequence

0 C.B(4) == C.B(A)®C 42 €. 0

is exact (see [BrG, p. 31]). This short exact sequence yields the following
long exact sequence of homology groups:

o > H,B(A) > H,B(A)®H, A’ > H,A*-5 H, ,B(A)— ---

The occurring homomorphism 1: HyB(A4) » H,B*(4)® H,A® is injec-
tive if and only if s is separating (see [BrG, p. 34]).

THEOREM. A is completely separating if and only if H, A(T)=0 for ail
convex subsets T of A, with respect to <.

Proof. We start by assuming H, A(T)=0 for all convex subsets T and
consider such a set 7. The homology sequence in 2.3 furnishes an exact
sequence:

H A(T) = Ho B (A(T)) = HyB(A(T))® Ho A(T)'

A(T); is a convex subset of T and hence also of 4,. Thus H, A(T)*=0 by
assumption. Consequently 1 is injective and s is separating in A(7T) by 2.3.

For the converse we apply induction on the cardinality of 7. If T has
only one element, nothing has to be proved. If T has more than one
element, we choose a maximal element s of T with respect to <, and
obtain A(T)* = A(T). 2.3 yields the exact sequence:

H B (A(T))® H, A(T)’ > H, A(T) » Hy B*(A(T))
> HoB(A(T)) @ HoA(T)

Observing that A(T) = A(T\s) and T\s is a convex subset of 4, with one
element less than T, we derive H, A(T)* =0 from the induction hypothesis.
2.2 shows B*(A(T))=k[S] for some poset S with an unique maximal ele-
ment. Hence H, B*(A(T)) =0 follows from [BrG, p. 31]. Finally we recall
that s lies separating in A(7T). Thus by 2.3 the homomorphism : is injective.
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2.5. COROLLARY. A is completely separating if and only if A is
completely separating.

As illustration for 2.4 let us present an example of an algebra 4 which
is not completely separating but 4 and A°" are separating. Namely
consider the poset algebra of the poset given by the following diagram:

2.6. COROLLARY. If A is completely separating, the following assertions
hold:

(a) H,A=0 for all neN.
(b} H"(A,Z)=0 for all neN and all abelian groups Z.

Proof. {(a) We apply induction on the cardinality of A,. The case
that 4, has only one element is obvious. Otherwise we choose a maximal
element s of 4, with respect to < ,. We obtain 4° = A4 and hence by 2.3 an
exact sequence

HnBA(A)®H:1A‘_’H11A —)Hn - lB;(A)

for all n=2. H, A=0 follows immediately from 2.4. For n>2 we first
observe that with A4 also A4' is completely separating and therefore
H,A4*=0 by induction. As in the proof of 2.4 we apply the fact that
B*(A) = k[S] for some poset S with an unique maximal element. [BrG,
p. 31] shows also H,B*(A4)=0 for all n>2.

Once again we use that 4 is completely separating in order to derive
from 1.4 the weakly transitivity of 4. By 1.4 JA4, s[ is a convex subset of
Ap and B*(A)= A(]A, s[). Because ]A, s[ has certainly less elements than
Aq, by induction we obtain H, | B*(4)=0.

(b) follows from (a) as
. ‘—’C3A—"C2A—’C|A—"C0A_’H0A —’0

is a split exact sequence (see [BrG, p. 36]).

2.7. COROLLARY. If A is completely separating, S :=(A,, <,), and I is
the admissible ideal of k[ S] introduced in 1.7, then A=k{S7]/I.
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Proof. A is weakly transitive by 14. Using 1.7, S, A=S(k[SV/])
follows. We apply [BrG, Lemma 2.2] and obtain 4 = k[S]/] because of
H*(A4, k*)=0.

2.8. The end of this section is devoted to adapting the description of
indecomposable thin modules over simply connected ray-categories
without infinite chains given in [D2, 3.1] to completely separating
algebras.

We start with a k-algebra 4 =k[S]/7 where S=(S,, <) is a finite poset
and 7 is an admissible ideal of £[.S] generated by a set R of relation pairs
(see 1.6). Of course a k[ S]-module M is given by a k-vectorspace M(x) for
each xe S, and a k-linear map M(y, x): M(x)— M(y) for all y<x in S,
satisfying the conditions M(x, x) =id,,,, for all xe S,, M(z, y) M(y, x)=
M(z, x) for all z< y<x, and M(y, x)=0 for all (y, x)eR.

An A-module M is called thin if dim, M(x)<1 for all xe §,. Let us pre-
sent our favourite example for thin modules. We say that a subset T of S,
is strictly convex if it is convex and for all (y, x)e R the set {x, y} is not
contained in 7. For a strictly convex subset 7 the A-module M, is defined
by M, (x):=k for all xe T and M ,(x) :=0 else. Moreover M ,(y, x) :=1d,
for all y<x such that {x, vy} =7 and M,(y, x):=0 in all other cases.
Clearly M ; is indecomposable if and only if 7 is connected.

29. THEOREM. [f A=k[SY/I is completely separating and M is an
indecomposable, thin A-module with support T, then M = M .

Proof. Recalling H'(A(T), k*}=0 from 2.6, we may use the proof of
[D2, 3.1].

3. CHARACTERIZATIONS OF COMPLETELY SEPARATING ALGEBRAS

Let us suppose again that 4 is a schurian, directed, basic k-algebra with
decomposition ¥ .. 4 e(x) of its unit element into primitive orthogonal
idempotents.

3.1. THEOREM. The following three assertions about A are equivalent.
(a) A is completely separating.
(b) A is separating and the algebras B*(A) and B,(A) are completely
separating for all s€ Ay.
(c) H,A=0 and the algebras B(4) and B(A) are completely
separating for all se A,.
Proof. (a)=(b). A is weakly transitive by 1.4. Using 2.2 the algebras
Bf(A)= A(]A, 5]) are also completely separating. For B,(4) we may use
the same argument.
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(b)=>(c): Let us apply induction on the cardinality of A,. If A, has
only one element, of course nothing has to be proved. If A, has more than
one element, we choose a maximal element s with respect to <, and obtain
A= A°. 2.3 furnishes the following exact sequence:

H B(A)@ H, A > H A - H,B(4)—> H,B(4)® H, A"

A is separating and thus i injective. For the completely separating algebra
B(A) by 2.4 the equation H, B*(A4)=0 holds.

To finish this part of the proof, we want to show H, A°=0. As T:= Ay\s
has one element less than 4,, we may apply the induction hypothesis, as
soon as we proved the following: 4*= A(T} is separating and for all re T
the algebras B'(A(T)) and B,(A(T)) are completely separating.

That A4° is separating, can be derived directly from this property for A.
For all te T the algebras B'(A(T))= B'(4) are completely separating by
assumption. T [, A[ by 2.2 is a convex subset of ([t, A[, <') satisfying
B,(A(T))=B,(A}(Tn[t, A[). Thus also B,(A(T)) is completely separating,

(c)=(a): Using 24 it is enough to show H,A(7T)=0 for every
convex subset T of A,. For T'= A4, this is obvious by assumption. If T is
a proper subset of 4, then there exists a convex subset 7’ of 4, and an
extremal element s of T’ such that T=T"\s. By induction we may assume
H, A(T’)=0. 2.2 shows again that the algebras B*(4(T’)) and B, (A(T"))
are also completely separating. We assume without loss of generality that
s is maximal in 7'. Consequently A(7')*= A(T) and we obtain the exact
sequence:

H BAT)> H B(AT)®H,AT)~> H AT)

Thus H, A(T)=0 follows from H, B*A(T')=0 which is true by 2.4.

3.2, (a) A cyclic path sequence (xg, ..., X,,) in A, is called a cyclic chain
sequence if the following conditions are satisfied:

(i) e(x;) de(x;)#0 for all 0<i, j<n such that i—je{0,1, —1}
and / odd.

(i) e(x;) Ae(x)) Ae(x;) #e(x;) de(x;) and  e(x,) Ae(x;) Ae(x,) #
e(x,;) Ae(x,) for all 0<, j,/<nsuch that j=i—1, /=7+1 and i odd.

(i) e(x;) Ae(x,) Ae(x;) #e(x,) Ae(x;) and  e(x,) Ae(x;) Ae(x,) #

e(x;) Ae(x,) for all 0< i, j, I<n such that j=i—1, /=741 and i even.

It is clear that A admits no infinite chains (see [F1]) if and only if there
is no cyclic chain sequence in A4,. If 4 has no cyclic chain sequence, then
this is true for the algebras B°(4) and B,(A) as well. In particular in this
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case the posets (]4, 5], <,) and ([s, A[, <*) are A-free, i.e. do not contain
a subposet with diagram of type A,. In [Bol, 2.3] it is proved that for a
finite, A-free posets the algebra k[ S] is completely separating.

Using 3.1, we see that the class of completely separating algebras con-
tains the class of algebras for which each of the posets (]4, s], <,) and
([s, A[. <") is A-free. This class in turn contains the class of separating
algebras without infinite chains which seems to be the class of good
algebras. That both inclusions are proper, can be seen using the poset
algebras to the two posets given by the following diagrams:

3.3, As the algebras B*(4) and B,(A4) are poset algebras, a practicable
characterization of completely separating poset algebras together with
Theorem 3.1 would furnish a practicable criterion for a given algebra to be
completely separating. The rest of the section is devoted to this aim.

Let S=(S,, <) be a finite poset and 4 :=k[S]. A cyclic chain sequence
(X, s X,) In Sy is called a crown if the following conditions are satisfied:

(i) For all 0<i, j<n the elements x, x, are only comparable,
provided r—je {0, 1, —1}.

(i) For all 0<i, j,/<n such that j=i—1 and /=741 the inter-
section of the convex hull of {x,, x;} and the convex hull of {x, x,} is
exactly {x;}.

THEOREM. A poset algebra A =k[S] is completely separating if and only
if A has no crowns.

Proof. Using 1.8, we see that a completely separating poset algebra
does not admit a crown. To prove the converse, we assume that 4 is not
completely separating and construct a crown in S. As first step we see that
there is a convex subset T of § and an element se T such that s is not
separating in 7. Hence s is not separating in 7T\]Js, oo[ , as well. As
T\ ]s, o[ again is a convex subset of S, without loss of generality we may
assume So=T\]s, oc[.

The fact that s is not separating yields the existence of two distinct
connected components-D,, D, of Joc, s[ lying in the same component
C of S,\s. Hence there 1s a cyclic path sequence (xy, ..., x,,) in S with the
properties:
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(1) x,=s.
(1)  Xgy ey X, 1 € SO\S.
(iv') xoeD,, x,_,eD,.
Choosing D, D,, (x,, .., x,) with # minimal, we may assume furthermore:
(i) xy, ., x,_o¢ Joo, s[.
From (iv’) we obtain:

(IV) [xnfl’xn]n[xo’ xn]= {xn}'

Now we choose a cyclic path sequence (xq, ..., X,,) satisfying the properties
(i) to (iv) for which the pair (n, /+ /') is lexicographically minimal where
[ denotes the sum of the cardinalities of the convex hulls of {x,_,, x;} for
i=1,..,n and !' denotes the cardinality of the convex hull of {x,, x,}.
A simple, but tedious case by case inspection shows that (xg, .., x,) is
a crown.

34. CorROLLARY. If A is a separating algebra such that A/AeA is
representation finite for every idempotent e# 1, of A, then A is completely
separating.

Proof. 1In order to apply 3.1 and 3.3, we want to show that none of the
algebras B*(4) and B,(A4) admits a crown. By symmetry we only consider
B*(A). If we assume that B°(A4) contains a crown, then this algebra is of
infinite representation type. On the other hand, we observed in 2.2 that
B*(A) is a factor algebra of 4. Hence B°(A) is a factor algebra of 4/4e(s) A
which furnishes the contradiction.

3.5. COROLLARY. Suppose A is a separating algebra. Then A is
completely separating if and only if there are only finitely many isomorphism
classes of indecomposable thin A-modules.

Proof. By 29 it is clear that a completely separating algebra has only
finitely many isomorphism classes of indecomposable thin modules. If
conversely A4 is not completely separating, then by 3.1 there is s€ 4, such
that B°(A4) or B,(A) contains a crown. But obviously a crown gives rise to
an infinite family of pairwise non-isomorphic indecomposable thin modules
over these algebras. Using extension by zero we can lift this family to a
family of 4-modules.

4. CRITICAL AND HYPERCRITICAL ALGEBRAS

In the following section we want to discuss the problem of determining
the representation type of a given completely separating algebra A.
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4.1. Of course A is representation infinite if and only if it contains a
convex subalgebra B which is convex minimal representation infinite. This
means that B is representation infinite, but every proper convex subalgebra
is representation finite. Analogously A4 is wild if and only if it contains a
convex subalgebra B which is convex minimal wild. This means that B is
wild, but every proper convex subalgebra is tame. Convex minimality is
adapted to the definition of completely separating algebras. In general 4
is said to be minimal representation infinite resp. minimal wild if 4 is
representation infinite resp. wild but the factor algebra 4/4eA is represen-
tation finite resp. tame for every idempotent ¢ # 1 , of A.

Another popular way to get information about the representation type
of a given algebra is to consider its Tits form ¢,. Assuming again
that our given algebra is basic and has a decomposition } .. 4 e(x)
of its unit element into primitive orthogonal idempotents, we recall
that the quadratic form g¢,:Z%—-7 is defined by g¢4(d):=
S veny (T (= 1) dim, Ext/,(E,, E,) d,d, for all d=(d,),c.€2"
where the E, are the simple modules P./Rad P.. Every subset I of 4, gives
rise to a restricted quadratic form ¢/,:Z’— 7. The algebra A4 is called
critical resp. hypercritical if ¢ , is not weakly positive resp. weakly indefinite
but for every proper subset 7 of 4, the form g, is weakly positive resp.
non-negative.

42. The following theorem shows that, considering completely
separating algebras and the step from representation finite to infinite, all
the notions considered above coincide. The result is well-known (see
[Bol, Bo2, HV]) with the exception that all schurian algebras which are
concealments of a tame hereditary tree algebra are actually completely
separating. In contrast not all these algebras are good. This seems to be
another indication that completely separating is a more satisfactory notion
than good. Let us also remark that the list of all algebras which are
concealed of tame hereditary algebras can be found in [HV].

THEOREM. For a given algebra A the following assertions are equivalent:
(@) A is completely separating and convex minimal representation
infinite.
(b) A is schurian concealment of a connected tame hereditary tree
algebra.
(c) A is completely separating and minimal representation infinite.
(d) A is completely separating and critical.
Proof. (a)=>(b): It is easy to see that the Auslander-Reiten quiver of

A has a complete preprojective component & without injectives whose
orbit quiver (/(#) is a tree with underlying graph 7. Analogously there is
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a complete preinjective component without projectives. By [Ha, 7.2] 4 is
a concealment of a hereditary tree algebra of type T which is clearly
connected. Using the notations introduced in [BoG], we know 4 = A, for
some admissible grading g of 7. That A is convex minimal representation
infinite means exactly that the grading g is critical. Hence by [Bo2,
Theorem 1] T is a Euclidean tree.

(b)=(c): As A is a concealment of a hereditary tree algebra, there
is a complete preprojective component whose orbit quiver is a tree. By 1.2
A is separating. In [HV, Theorem 2] it is shown that 4 is minimal
representation infinite. Thus by 3.4 A is actually completely separating.

(c)=(d): First we apply [Bol, Theorem 3.3] to derive that g, is not
weakly positive from the assumption that A is representation infinite. We
use [Bol, Theorem 3.3] again to see that the Tits forms g4, 4.4 Of the
representation finite algebras A/A4e(s)A are weakly positive for all se 4,.
Hence for a vector deZ“°° with non-negative coefficients we obtain
0< G gnesald) < g3 (d).

(d)=(a): As g, is not weakly positive, we know by [Bol,
Theorem 3.3] that A4 is representation infinite. On the other hand for every
proper convex subset T of A, the quadratic form g, =g is weakly
positive and thus A(T) is representation finite.

43. The following result shows that the hypercritical algebras for
completely separating algebras with weakly indefinite Tits form play the
same role as the convex minimal wild algebras do for wild completely
separating algebras. It is proved in [Pe2, 2.27] for good algebras, but the
proof carries over easily to the completely separating case.

THEOREM. Let A be a completely separating algebra. The Tits form of A
is weakly indefinite if and only if A has a hypercritical convex subalgebra.

We want to state another lemma which is presented in [Pe2, 2.6] for the
good case, but the proof can be used verbatim.

LEMMA. If A is a hypercritical completely separating algebra then there
is an algebra B which is a concealment of a tame hereditary tree algebra and
has the following property: A is a one point extension of B by an indecom-
posable preprojective B-module or A is a one point coextension of B by an
indecomposable preinjective B-module.

44. Now we come to the analogous result to 4.2 for the wild case
which is proved in [Pe2, 3.6] for good algebras. As it is open whether the
assumption that a completely separating algebra 4 has a weakly non-
negative Tits form implies that 4 is tame, the analogy is not complete. Let

481:165/3-9
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us remark here that the list of all algebras which are concealments of
minimal wild hereditary algebras is given in [U].

THEOREM. Let A be a basic k-algebra with decomposition Y, . 4, e(x) of
its unit element into primitive orthogonal idempotents. If A is completely
separating and hypercritical, then A is convex minimal wild.

Moreover the following assertions about A are equivalent:

(a) A is a schurian concealment of a minimal wild hereditary tree
algebra.

(b) A is completely separating and minimal wild. If xe A, and
AjAe(x)A is representation infinite, then x is an extremal element of
(Ao, <4) and A/Ae(x)A is a concealment of a connected tame hereditary
algebra.

(c) A is completely separating and hypercritical.

Proof. 1t is obvious that minimal wild algebras are convex minimal
wild. So only the equivalences have to be proved. In view of 4.3 for
(b)=(c) and (c)=-(a) the arguments in [Pe2, 3.6] can be used. This
applies also for (a) = (b) with the exception that we still have to show that
schurian algebras which are concealments of a minimal wild hereditary tree
algebra are completely separating.

In order to use 3.1, our first observation is that the Auslander-Reiten
quiver of 4 has a complete preprojective component 2 whose orbit quiver
is a tree. We denote the underlying graph of this tree by 7. From 1.2
follows that the A is separating. So it remains to show that the algebras
B'(A) and B (A) are completely separating. By symmetry we only consider
B(A).

Let us choose u e A, such that P, is not a predecessor in £ of P, for any
t#u. By [Ri, 4.3(6)] (see also [Pe2, 3.3]) A% is a concealed algebra whose
orbit graph is just the subgraph of T induced by all points different from
u. Thus A" is also a separating algebra. Because we already know that A
is minimal wild, we obtain that A4* is a product of indecomposable tame
concealed or representation finite algebras C,, ..., C,. By 4.2 and 3.4 the
algebras C; are completely separating.

For se A, with s# u we have B*(A4)= B*(C,) for some i=1, ..., r which
is completely separating. As A is separating, the radical R of P, has a
decomposition R= @ _, R, into indecomposable thin 4-modules R; which
are actually C-modules. By 29 R is of the form M, for some strictly
convex subset ¥V of A} and therefore 4 is weakly transitive. Thus B*(4)
is a convex subalgebra of A* and consequently completely separating. As
B“(A4) is the poset algebra of a poset with a unique maximal element, we
derive from 3.4 that B*(A4) is also completely separating.
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