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1. Introduction

Suppose that X is an algebraic variety over a field of characteristic p > 0. If X is Frobenius split with
a Frobenius splittingφ : F e

∗
OX → OX , then X satisfies numerous remarkable properties. The following

varieties possess a Frobenius splitting: toric varieties, Schubert varieties, ordinary Abelian varieties
and, at least when reduced to characteristic p ≫ 0, Fano varieties. In this context, it is very natural to
study the compatibly φ-split subvarieties (Z ⊆ X whose ideal sheaf IZ satisfies φ(F e

∗
IZ ) ⊆ IZ ). These

special subvarieties play a fundamental role whenever Frobenius split varieties are studied (see Brion
and Kumar (2005)). Recent independent work by Kumar andMehta (2009), and independently by the
second author, Schwede (2009), has shown that there are only finitely many such subvarieties; also
see Sharp (2007) and Enescu and Hochster (2008). In this paper, building on the ideas of Kumar and
Mehta (2009), and Schwede (2009), as well as on ideas coming from tight closure theory, we exhibit
an algorithm which computes all the compatibly φ-split subvarieties.
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While Frobenius split varieties need not be affine, in this paper we restrict ourselves to affine
varieties. This is not a terribly restrictive hypothesis since compatibly split subvarieties of a projective
variety X can be studied either on affine charts or by considering the affine cone over X . Our main
result is as follows:

Given a ring R and a surjective map φ : F e
∗
R → R (for example a Frobenius splitting), we exhibit

an algorithm which produces all the φ-compatible ideals.

At each step, the algorithm produces the unique smallest non-zero φ-compatible ideal, the so-
called test ideal.

Finally, we also explore a variant of this algorithm under the hypothesis that φ is not necessarily
a Frobenius splitting (or even surjective). This algorithm, and the original, have been implemented in
Macaulay2 (Katzman and Schwede, 2011).

2. Notation and background

Convention 2.1. Through this paper all rings are commutative and of finite type over a perfect field
k of characteristic p > 0, or they are a localization of such a ring.

The algorithm in this paper indeed also holds on a much larger class of rings: at a basic level, this
algorithm works for any ring of equal characteristic p such that the Frobenius map is a finite map
(this condition is often called being F-finite). We use the notation F∗R (respectively F e

∗
R) to denote

R viewed as an R-module via Frobenius (respectively, via e-iterated Frobenius). More generally, for
any R-module M , F e

∗
M denotes the module M with the induced R-module structure via Frobenius.

Additionally, given an element r ∈ R, we will use F e
∗
r to denote the corresponding element of F e

∗
R.

Finally, if I = ⟨f1, . . . , fm⟩ ⊆ R is an ideal, we use I [p
e
] to denote the ideal ⟨f p

e

1 , . . . , f
pe
n ⟩. This is easily

seen to be independent of the choice of generators of I .

Definition 2.2. We say that an R-linear map φ : F e
∗
R → R is a splitting of (e-iterated) Frobenius, or

simply a F-splitting, if φ sends F e
∗
1 to 1. If R has a Frobenius splitting, then we say that R is F-split

(by φ).

Definition 2.3. Given any R-linear map φ : F e
∗
R → R (not necessarily a splitting), we say that an ideal

J ⊆ R isφ-compatible ifφ(F e
∗
J) ⊆ J , or simply that J is compatible withφ. If theφ is clear, sometimeswe

will only say that J is compatible. If φ is indeed a Frobenius splitting, then we say that J is compatibly
(φ-)split.

Given φ which is compatible with J as above, then there always exists a commutative diagram:

F e
∗
R

��

φ
// R

��

F e
∗
(R/J)

φ/J
// R/J

(1)

where the vertical arrows are the canonical surjections. We will use φ/J to denote the induced map
F e
∗
(R/J) → R/J as pictured above.
The following well-known Lemma, which we will rely on heavily, follows immediately from the

diagram above.

Lemma 2.4. Assuming a commutative diagram (1) as above, the φ-compatible ideals containing J are in
bijective correspondence with the φ/J-compatible ideals of R/J .

The following theorem motivates the main question of this paper. Its proof motivates the method
of the algorithm.

Theorem 2.5 (Kumar and Mehta, 2009; Schwede, 2009). If φ : F e
∗
R → R as above is surjective, then

there are finitely many φ-compatible ideals.
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Proof. Because the proof is motivating, we give a rough sketch of it here. Reduce to the case that R is a
domain. Fix a divisorDφ on the normal locus of X = Spec Rwhich corresponds to φ (in the usual sense
of Frobenius splittings, see Proposition 2.6(b) and Brion andKumar (2005)). Then by Proposition 2.6(b)
below, all of the φ-compatible ideals have support contained within

Supp (D) ∪ Sing (X)

where Sing (X) is the non-regular locus of X . A roughly equivalent statement from the tight-closure
perspective is as follows: all of the non-zero φ-compatible ideals contain the big test ideal τb(R, φ)
(the unique smallest non-zero φ-compatible ideal).

Regardless, take X1 to be the union of the φ-compatible subvarieties (vanishing loci of the φ-
compatible ideals). Either of the previous observations imply that the closure of X1 is a proper closed
subset of X = Spec R. Then repeat the process replacing X = Spec R by X1 and apply Noetherian
induction. �

Therefore, in order to turn this theorem into an algorithm, one needs a way to identify the union
of all subvarieties compatible with a given splitting φ. Equivalently andmore algebraically, one needs
to identify the smallest φ-compatible ideal (that ideal is called a ‘‘test ideal’’).

We list some basic properties of Frobenius splittings that we will need in what follows.

Proposition 2.6. Suppose that R is as in Convention 2.1 and that X = Spec R. We will assume that
φ ∈ HomR(F e

∗
R, R) is a non-zero element. Then:

(a) We have an isomorphism HomR(F e
∗
R, R) ∼= F e

∗
ω
(1−pe)
R

∼= F e
∗
Γ (X,OX ((1− pe)KX )) of F e

∗
R-modules. In

particular, if R is Gorenstein thenHomR(F e
∗
R, R) is a locally free rank-one F e

∗
R-module. IfHomR(F e

∗
R, R)

is free as an F e
∗
R-module, we label a generator of this F e

∗
R-module byΦR.

(b) By (a), φ corresponds to an effective divisor Dφ linearly equivalent to (1 − pe)KX . Furthermore, for
every φ-compatible ideal J , V (J) ⊆ X is contained within the set (SuppDφ) ∪ (Sing X).

(c) If φ is surjective, then the set of φ-compatible ideals is a finite set of radical ideals closed under sum
and primary decomposition.

(d) Let φt denote the composition

F te
∗
R

F (t−1)
∗ φ

−−−−→ F (t−1)e
∗

R
F (t−2)
∗ φ

−−−−→ . . .
F∗φ
−→ F e

∗
R

φ
−→ R.

Then if J is φ-compatible, it is also φt-compatible for any t > 0. If φ is surjective, then every φt-
compatible ideal is also φ-compatible.

(e) If φ is surjective, R is a domain, and a ≠ 0 is any ideal that vanishes on the set (SuppDφ) ∪ (Sing X),
then

φ(F e
∗
a) ⊆ φ2(F 2e

∗
a) ⊆ φ3(F 3e

∗
a) ⊆ · · ·

stabilizes to be the unique smallest φ-compatible ideal.

Proof. Parts (a) and the first part of (b) are in Brion and Kumar (2005, Chapter 1) among many other
places. The last part of (b) can be found in Kumar and Mehta (2009) but also is an immediately
consequence of the theory of (sharp) test elements for pairs, see for example Schwede (2009). The
finiteness of part (c), as mentioned before was independently obtained in Kumar and Mehta (2009)
and Schwede (2009). The other parts of (c) are the same as for compatibly split ideals and can be found
in Brion and Kumar (2005, Chapter 1).

The first statement in (d) is obvious. The second statement can be found in Schwede (2010,
Proposition 4.1) although we also include a short proof for the convenience of the reader. To this
end, suppose that φt(F te

∗
J) ⊆ J for some surjective φ : F e

∗
R → R. It follows that φt is also surjective

fromwhich it follows that J is radical. All of the associated primes of J are alsoφt-compatible and since
an intersection of φ-compatible ideals is again compatible, it is harmless to assume that J is prime.
Finally, a prime ideal is φt or φ-compatible if and only if it remains compatible after localization at
itself, and so we may assume that J = m is a maximal φt-compatible ideal in a local ring (R,m). But
now suppose thatφ(F e

∗
J) * J = m. In otherwords that the idealφ(F e

∗
J) is not contained in themaximal
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ideal of a local ring, (R,m). Thus φ(F e
∗
J) = R which certainly implies that φt(F te

∗
J) = R and completes

the proof of (c).
We also prove (e) in some detail. First notice that a is necessarily contained in every non-zero

φ-compatible ideal (because they are radical). Since φ is surjective, there exists c ∈ R such that
φ(F e

∗
c) = 1. For any z ∈ a, czp

e
∈ a aswell and so z = φ(F e

∗
zp

e
c) ∈ φ(F e

∗
a). Thus a ⊆ φ(F e

∗
a). Repeating

this argument yields the ascending chain in (e). By the Noetherian hypothesis, this stabilizes say at C .
By construction, it is a φ-compatible ideal. If J ≠ 0 is any other φ-compatible ideal then J =

√
J ⊇ a

by (b) and so the fact that C is minimal follows immediately. �

We point out a particular special case of (b) that we will use later.

Corollary 2.7. Using the notation from Proposition 2.6(b), if HomR(F e
∗
R, R) is a free F e

∗
R-module with

generatorΦR, then φ(F e
∗
•) = ΦR(F e

∗
z · •) for some z ∈ R. In this case Dφ = div(z).

Consider the following example with regards to Proposition 2.6(a).

Example 2.8. Set S = k[x1, . . . , xn] where k is a perfect field of characteristic p. In this case, F e
∗
S is

a free S-module with basis {F e
∗
xλ11 . . . x

λn
n }0≤λi≤pe−1. The map ΦS from Proposition 2.6(a) is the map

which sends the basis element F e
∗
xp

e
−1

1 . . . xp
e
−1

n to 1 and all the other basis elements to zero. We will
explain later in Section 6 how such maps can easily be implemented in a computer.

In this case, the divisor associated to ΦS via Proposition 2.6(b) is the trivial divisor. Thus there are
no non-trivialΦS-compatible ideals by Proposition 2.6(b).

We our next goal is to recall Fedder’s Lemma; this will allow us to translate the problem of finding
compatible ideals of R = k[x1, . . . , xn]/I to finding compatible ideals on S = k[x1, . . . , xn]. The point is
that if R = S/I , thenmaps φ̄ : F e

∗
R → R come frommapsφ : F e

∗
S → S, which Fedder’s Lemma precisely

identifies. On the other hand, since ΦS generates HomS(F e
∗
S, S), we can write ΦS(F e

∗
z · •) = φ(F e

∗
•).

Thus the choice of φ̄ is determined by the choice of a certain z ∈ S. Roughly speaking, Fedder’s Lemma
says that the set of allowable z are exactly I [p

e
]
: I .

Lemma 2.9 (Fedder’s Lemma Fedder, 1983, Lemma 1.6). Suppose that S = k[x1, . . . , xn] for some
perfect field k and R = S/I for some ideal I ( S where ρ : S → R is the canonical surjection. Then:

(a) If φ̄ : F e
∗
R → R is any R-linear map, then there exists a S-linear map φ : F e

∗
S → S which is compatible

with I such that φ̄ = φ/I (making the diagram commute as in Eq. (1)).
(b) Given φ̄ and φ as in (a), then φ̄ = φ/I is surjective if and only if φ is surjective at all points in a

neighborhood of V (I) ⊆ Spec S. Furthermore, if φ(F e
∗
•) = ΦS(F e

∗
z · •), then φ is surjective at a point

m ∈ Spec S if and only if z /∈ m[pe].
(c) An arbitrary map φ ∈ HomS(F e

∗
S, S) satisfies φ(F e

∗
I) ⊆ I if and only if there exists c ∈ I [p

e
]
: I such

that we can write φ(F e
∗
•) = ΦS(F e

∗
c · •) where ΦS is as in Example 2.8. Combining this with (a), we

see that

(F e
∗
(I [p

e
]
: I)) · HomS(F e

∗
S, S)

is exactly the set of elements of HomS(F e
∗
S, S) which are compatible with I.

(d) With the notation from (c), there exists an isomorphism:

HomR(F e
∗
R, R) ∼=


(F e

∗
(I [p

e
]
: I)) · HomS(F e

∗
S, S)


(F e

∗
I [p

e
]) · HomS(F e

∗
S, S)


.

Proof. The proof found in Fedder (1983, Lemma 1.6) is quite easy to read and so we will not repeat it
here. �

We now state an easy corollary of Fedder’s Lemma which shows that in fact we may reduce to the
case of a Frobenius splitting on S = k[x1, . . . , xn].

Corollary 2.10. Using the notation from Lemma 2.9(a), additionally suppose that φ̄ is surjective. Then
there exists a map ψ : F e

∗
S → S such that

(i) ψ is a Frobenius splitting.
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(ii) For every φ̄-compatible ideal J ⊆ R, the inverse image ρ−1(J) ⊆ S is compatibly split byψ (although
there may be new ψ-compatible ideals not coming from φ̄).

Proof. For simplicity, we useM to denote the F e
∗
S-module HomS(F e

∗
S, S). Fix any φ as in Lemma 2.9(a)

and suppose that c ∈ S is such that φ(F e
∗
c) /∈ I , such a c exists by the surjectivity of φ̄. Now consider

the F e
∗
S-submoduleW ⊆ M generated by (F e

∗
I [p

e
]) · M and φ, in other words

W := ⟨φ⟩Fe∗S + (F e
∗
I [p

e
]) · M.

Note that the formation of W commutes with localization. Also note that for any ψ(F e
∗
•) = φ(F e

∗
b ·

•)+ ΦS(F e
∗
f · •) ∈ W , the induced map ψ/I =: ψ̄ on R = S/I simply coincides with φ̄(F e

∗
b̄ · •).

Consider now the map Γ : W → S defined by the rule Γ (ψ) = ψ(F e
∗
1). We will prove that Γ

is surjective and thus that 1 ∈ Image(Γ ). It is enough to prove the statement locally at every prime
Q ∈ Spec S. There are two cases, either Q ∈ V (I) ⊆ Spec S or not.

(a) If Q ∈ V (I), then after localizing at Q , we notice that φQ : F e
∗
SQ → SQ has 1 in its image, say

φQ (a) = 1. It follows that the function γ (F e
∗
•) = φQ (F e

∗
a · •) sends 1 to 1 and so ΓQ (γ ) = 1.

(b) If Q /∈ V (I), then it is even easier since then WQ = HomSQ (F
e
∗
SQ , SQ ) and claim follows

immediately.

Since now 1 ∈ Image(Γ ), there exists ψ ∈ HomS(F e
∗
S, S) such that ψ(F e

∗
1) = 1.

Suppose finally that J ⊆ R is φ̄-compatible. We must show that J ′ = ρ−1(J) is ψ-compatible.
We notice that ψ induces ψ/I : F e

∗
R → R and furthermore, ψ/I(F e

∗
•) = φ̄(F e

∗
b · •) for some

b ∈ R as observed initially. It is enough to show that ψ/I(F e
∗
J) ⊆ J but this is obvious by the above

characterization of ψ/I . �

As a final remark in this section, wemention a common source of compatibly Frobenius split ideals.

Remark 2.11. Suppose that X is a projective Frobenius split variety projectively normally embedded
into Pn. In that case the affine cone over X is Frobenius split and so yields a Frobenius split ring
(the projective normality then guarantees that it is a quotient of the ring S = k[x0, . . . , xn]). This
is a particularly common way of producing Frobenius split rings. In this case, the same Fedder-type
Lemma works, and one can compute the compatibly Frobenius split subvarieties of X by computing
the compatible ideals of Spec S.

3. The statement of the algorithm

Suppose that S := k[x1, . . . , xn] where k is a perfect field of characteristic p > 0.
Because of Fedder’s Lemma 2.9 and Corollary 2.10, we additionally suppose that φ : F e

∗
S → S is a

surjective S-linear map (for example a Frobenius splitting) that is compatible with I (and henceforth I
will not play much of a role). In a later section, we will handle the non-surjective case. The advantage
with working with S instead of R is that F e

∗
S is a free S-module, and so specifying φ is the same as

specifying where a basis is sent. Finally we fix z ∈ S such thatΦS(F e
∗
z · •) = φ(F e

∗
•)whereΦS is as in

Example 2.8.
With the notation above, and given any prime ideal Q ⊆ S (in practice containing I) the recursive

algorithm described below produces a list of all prime φ-compatible ideals which properly contain
Q . In order to do this, the algorithm finds the smallest φ-compatible ideal properly containing Q . The
initial input Q to the algorithm can be the zero ideal or each of the minimal primes of I .

Of course, the plan of the algorithm is to apply Proposition 2.6(e) to the ring S/Q , see Step (3) below.
Therefore we need to define the ideal a which all the Frobenius split subvarieties contain. Identifying
the singular locus is straightforward, see step (1) below, and identifying the locus corresponding to
the divisor Dφ on R is accomplished in (2). Step (4) is then recursive where we replace Q by larger
ideals.

Here are the steps of the algorithm (later we will describe an algorithm which works for non-
surjective φ).
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(1) Find an ideal J ⊆ S such that Spec (S/Q ) \ (V (J) ∩ Spec (S/Q )) is a regular non-empty scheme.
For example J could define the singular locus of S/Q .

(2) Compute B := AnnS

(Q [pe]

: Q )/(⟨z⟩ + Q [pe])


=

(⟨z⟩ + Q [pe]) : (Q [pe]

: Q )

. This ideal in not

contained in Q as long as φ/Q is non-zero.
(3) Find the first t such that φt(F te

∗
(JB + Q )) = φt+1(F (t+1)e

∗ (JB + Q )) = C (as in Proposition 2.6(e)).
We will show that the ideal C properly contains Q .

(4) Let Q1, . . . ,Qm be the minimal primes of C , add them to the list of compatible ideals, and repeat
the algorithmwith Qi = Q . Every φ-compatible ideal, properly containing Q , that is minimal with
respect to inclusion, appears in the list of the Qi.

In Section 6 below, we will discuss issues of complexity, especially with regards to the integer t
needed in Step (3),

4. The proof that the algorithm works

In this section, we prove the individual claims made in the algorithm. Step (1) has no associated
claims so we move on to Step (2) which is the only technical point in the argument. Let us briefly
explain the difficulty.While the divisor associated toφ is easy to identify on Spec S (it ismerely div(z)),
it is harder to identify on S/Q (which need not even be normal), indeed, this divisor has no transparent
relation to div(z) except in special cases. Step (2) identifies an ideal whose support contains Dφ/Q at
least on the locus where S/Q is normal. To do this we utilize Fedder’s Lemma 2.9.

Let us informally explain where the ideal B comes from. Indeed, (Q [pe]
: Q ) corresponds via

Fedder’s Lemma to the set of all elements of HomS(F e
∗
S, S)which are compatible with Q . On the other

hand, ⟨z⟩ + Q [pe] corresponds to the submodule of HomS(F e
∗
S, S) generated by all ψ which are both

compatible with Q and such that ψ/Q = φ/Q . We then observe that
(⟨z⟩ + Q [pe]) : (Q [pe]

: Q )


simply defines the locus where these two modules are distinct. On the regular locus of R/Q , this is
simply the defining equation of Dφ/Q .

Now we carefully prove a generalization of the claim from step (2).

Lemma 4.1. For any φ : F e
∗
S → S compatible with Q , the ideal B constructed in (2) is not contained in Q

as long as φ(F e
∗
S) is not contained in Q (we do not require that φ is surjective).

Proof. Consider the induced S/Q -linear map φ/Q : F e
∗
(S/Q ) → S/Q . Notice that Image(φ/Q ) =

φ(F e
∗
S)/Q ≠ 0 since Q does not contain φ(F e

∗
S). Therefore, the map φ/Q : F e

∗
(S/Q ) → S/Q is not the

zero map. We will use N to denote the F e
∗
S-module HomS(F e

∗
S, S) and use M to denote the F e

∗
(S/Q )-

module HomS/Q (F e
∗
(S/Q ), S/Q ). Consider the cyclic F e

∗
(S/Q )-submodule ofM

K := ⟨φ/Q ⟩ ⊆ M := HomS/Q (F e
∗
(S/Q ), S/Q ).

Now, M is a F e
∗
(S/Q )-module of generic rank 1, and so there exists an element F e

∗
d ∈ F e

∗
S \ F e

∗
Q such

that

(F e
∗
d) · M ⊆ K .

We will show that d ∈ F e
∗
Bwhich will imply that B is not contained in Q .

We use Fedder’s Lemma 2.9 to see that

HomS/Q (F e
∗
(S/Q ), S/Q ) = M ∼=


F e
∗
(Q [pe]

: Q ) · N


(F e
∗
Q [pe]) · N


.

Furthermore, under this identification, the submodule K corresponds to
F e
∗
(⟨z⟩ + Q [pe]) · N


(F e

∗
Q [pe]) · N


.

It follows that dmultiplies F e
∗
(Q [pe]

: Q ) into F e
∗
(⟨z⟩ + Q [pe]) and so d ∈ B as desired. �
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The remaining claims from the algorithm are easy and we now prove the claim in (3).
Lemma 4.2. The ideal C constructed in (3) exists and properly contains Q .
Proof. By (1) and (2), the ideal JB is not contained in Q , thus JB + Q properly contains Q . The result
then follows since this chain of ideals stabilizes by Proposition 2.6(e). �

Finally, we prove the claim in step (4).
Lemma 4.3. With the notation of step (4), if P is any prime φ-compatible ideal, properly containing Q ,
then P contains Qi for some 1 ≤ i ≤ m.
Proof. This follows immediately from Proposition 2.6(e). �

5. A more general algorithm

In this section we describe a slight modification of this algorithm which produces something of
interest even if φ is not surjective. Fix S and φ : F e

∗
S → S an S-linear map as in Section 3, but do

not assume that φ is surjective. Consider the ideal of S, K =
√
Image(φ). With a minor change to the

algorithm presented above, we can compute all the prime φ-compatible ideals of J not containing K .
Furthermore, we can identify all the φ-compatible primes, see Remark 5.3.

Obviously there is another way to do this too, set V (K) ⊆ Spec S to be the vanishing locus of K .
Then one can cover Spec R \ V (K) with affine charts, charts where φ is surjective, and compute the
compatible ideals on each of those charts. However, a minor change of our original algorithm allows
us to run it without this complication.

The input for each stage of our algorithm is the same as before and the steps are quite similar (listed
below):
(1*) Find an ideal J ⊆ S such that Spec (S/Q ) \ (V (J) ∩ Spec (S/Q )) is a regular non-empty scheme.

For example J could define the singular locus of S/Q .
(2*) Compute B := AnnS


(Q [pe]

: Q )/(⟨z⟩ + Q [pe])


=

⟨z⟩ + Q [pe]) : (Q [pe]

: Q )

. This ideal in not

contained in Q as long as Q does not contain K .
(3*) Define an ascending chain of ideals of S recursively as follows: C0 = JB+Q and Ct = φ(F e

∗
Ct−1)+

Ct−1. Find the first t such that Ct = Ct+1 and set C = Ct . The ideal C properly contains Q .
(4*) Let Q1, . . . ,Qm be the minimal primes of C which do not contain K . Then repeat the algorithm

with Qi = Q (all of the Qi will be φ-compatible ideals so should be added to the list of valid
outputs). Everyφ-compatible ideal, properly containingQ but not K , that isminimalwith respect
to inclusion, appears in the list of the Qi.

Running this recursively will produce all φ-compatible primes not containing K .
Nowwe prove that the algorithm is correct. Again property (1*) has no associated claims. Property

(2*)’s proof is already contained in the proof of Lemma 4.1. We now prove that the assertions in
properties (3*) and (4*) hold.
Lemma 5.1. The ideal C defined in (3∗) properly contains Q .
Proof. This chain also is ascending and is thus eventually constant. It also properly contains Q since
C0 does. �

Lemma 5.2. With the notation of step (4∗), if P is any prime φ-compatible ideal, properly containing Q ,
then P contains Qi for some 1 ≤ i ≤ m.
Proof. Note that C vanishes on the same locus as the test ideal τ(S/Q , φ/Q ) by Schwede (2009) and
Proposition 2.6. In particular, P contains

√
τ(S/Q , φ/Q ) ⊇ (JB + Q )/Q = C0 because the test ideal

is the unique smallest φ/Q -compatible ideal. Thus P = φ(F e
∗
P) + P ⊇ φ(F e

∗
C0) + C0 = C1 and

so recursively, P contains C and thus also P contains
√
C and so it also contains a minimal prime of

√
C . �

Remark 5.3. Finally we explain how to find all the φ-compatible primes. We have just found all the
φ-compatible ideals not containingK . On the other hand, suppose P ⊇ K is a prime ideal, wewill show
it is always φ-compatible. It is easy to see that P is φ-compatible if and only if P/K is φ/K compatible.
But P/K is clearly compatible since φ/K is zero.
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6. Further remarks

In this section we briefly discuss issues related to the implementation of this algorithm and also
discuss some connections with previous work.

6.1. Notes on implementation and complexity

In this subsection, we briefly discuss the issues surrounding the implementation of this algorithm.
The computationally intensive steps in the algorithm involve computation of the singular locus in

step (1), the computation of colon ideals in step (2), the repeated application of φ in (3) and finally
primary decomposition in step (4). Indeed, all the steps (1), (2) and (4) are already implemented in
many computer algebra systems (for example Macaulay2). Step (1) is simply the computation of,
potentially many, minors (although any single minor that does not vanish on the given Q would
suffice). The computation of the colons of ideals in step (2) reduces to the computations of ideal
intersections as described in Greuel and Pfister (2008, Section 1.8.8). Step (3) will be handled below
and the primary decomposition in step (4), a list of references for the history of computing primary
decomposition can be found on Cox et al. (2007, Page 206).

In order to implement the algorithm (or the generalized version fromSection 5),we need to answer
the following question.

Question 6.1. How does one compute the images of the S-linear maps φ : F e
∗
S → S?

We fix a φ = (F e
∗
u) · ΦS ∈ HomS(F e

∗
S, S). Given any ideal J ⊆ S, ΦS(F e

∗
J) is an ideal that has

appeared previously in several contexts. Again,ΦS is as in Example 2.8. Notably, in Blickle et al. (2008),
and Katzman (2008), also see Blickle et al. (2010, Proposition 3.10), it was shown that ΦS(F e

∗
J) is the

unique smallest ideal A ⊆ S with the property that J ⊆ A[pe]. In these contexts it was denoted by I [1/p
e
]

and Ie(J) respectively. In the context described, where S is a free module over Sp
e
, this ideal is highly

computable as we next show (cf. Katzman, 2008, Section 5; Blickle et al., 2008, Proposition 2.5).
It is easy to see that for ideals J1, J2 ⊆ S, we have Ie(J1 + J2) = Ie(J1) + Ie(J2), so the calculation

of Ie(J) reduces to the case where J is generated by one element g ∈ S. Let α denote n-tuple of non-
negative integers (α1, . . . , αn), let 0 ≤ α < pe denote the condition 0 ≤ α1, . . . , αn < pe and write
xα = xα11 · · · xαnn . Now write

g =


b∈B,

0≤α<pe

gpe
b,αbx

α

where gb,α ∈ S. We claim that Ie(⟨g⟩) is the ideal A generated by

gb,α | b ∈ B, 0 ≤ α < pe


. To see

this note first that, clearly, g ∈ A[pe]. If L ⊆ S is such that g ∈ L[pe] then we can find a1, . . . , as ∈ L and
r1, . . . , rs ∈ S such that

g =


b∈B,

0≤α<pe

gpe
b,αbx

α
=

s
i=1

ria
pe
i .

For all 1 ≤ i ≤ swe can now write

ri =


b∈B,

0≤α<pe

rp
e

b,α,ibx
α

where rb,α,i ∈ S and we obtain
b∈B,

0≤α<pe

gpe
b,αbx

α
=


b∈B,

0≤α<pe


s

i=1

rp
e

b,α,ia
pe
i


bxα.



1004 M. Katzman, K. Schwede / Journal of Symbolic Computation 47 (2012) 996–1008

Since these are direct sums, we may compare coefficients and deduce that for all b ∈ B and
0 ≤ α < pe, gpe

b,α =
s

i=1 r
pe
b,α,ia

pe
i hence gb,α =

s
i=1 rb,α,iai and gb,α ∈ L.

This construction translates easily into an algorithm as follows. Extend the ring S to T =

S[y1, . . . , yn], chose a term ordering in which the variables x1, . . . , xn are bigger than y1, . . . , yn
and reduce the g ∈ T with respect to the ideal generated by xp

e

1 − y1, . . . , x
pe
n − yn to obtain

g ≡


0≤α<pe gαx
α where gα ∈ k[y1, . . . , yn]. For each 0 ≤ α < pe we can write gα as a sum of terms

λ1yβ
(1)

+ · · · + λmyβ
(m)

with λ1, . . . , λm ∈ k and for each 1 ≤ i ≤ m we can write λi =


b∈B λ
pe
i,bb

where λi,b ∈ k. Now gα =


b∈B

m
i=1 λ

pe
i,bby

β(i) and Ie(g) is the ideal generated by
m

i=1 λi,bx
β(i) for

all choices of 0 ≤ α < pe and b ∈ B. Notice that the complexity of applying φ is essentially the
complexity of finding the Sp-coordinates of elements in S in terms of a given set of free generators
of S.

One can also ask the following.
Question 6.2. Howmany times must φ be applied in step (3)?

In the experiments we have done so far, the condition in step (3) does not seem to be a limiting
factor since applying ΦS is itself a very fast operation and the required value of t is quite small. Of
course, the particular t needed also depends upon the given ideal Q .

Indeed, one can give a reasonable bound on t based upon the sort of analysis found in Blickle et al.
(2008). Fix a an ideal in S = k[x1, . . . , xn] and write φ(F e

∗
•) = ΦS(F e

∗
z · •). Suppose that a is generated

by elements of degree atmost d in S so that z ·a is generated by elements of degree atmost (deg z)+d.
We now consider the generators of F e

∗
(z · a) ⊆ F e

∗
S as an S-module. It is easy to see that F e

∗
(z · a) is

generated by elements of degree at most (deg z) + d + (pe − 1)n (since F e
∗
S is as an S-module is

generated by elements of degree at most (pe − 1)n). Note that if f is a polynomial of degree k, then
it follows that ΦS(F e

∗
f ) is a polynomial of degree at most ⌊

k−(pe−1)n
pe ⌋. We the see that ΦS(F e

∗
z · a) is

generated by elements of degree at most (deg z)+ d + (pe − 1)n − (pe − 1)n
pe


=

 (deg z)+ d
pe


.

If we apply φ again, we obtain an ideal generated by elements of degree at most (deg z)+


(deg z)+d

pe


pe


≤

 (1 + pe)(deg z)+ d
p2e


.

For t ≫ 0, φt(F te
∗

a) is generated by elements of degree at most (1 + pe + · · · + p(t−1)e)(deg z)+ d
pte


≤

 (pte − 1)(deg z)
p(t+1)e


+ 1 ≤

deg z
pe


+ 1.

Wenow ask howmany times needwe to apply φ before we reach this stable degree (which is a vector
space of polynomials of bounded degree). But for this we merely need d/pte ≤ 1, or in other words
after at most ⌈logpe(d)⌉ applications of φ.

Of course, we still may need to apply φ further when are working within this vector space.
However, as soon as the containment φt(F te

∗
z · a) ⊇ φt+1(F (t+1)e

∗ z · a) is equality, that step in
our algorithm terminates. In particular, we are working within this fixed vector space which has
dimension at most the binomial coefficient:

M :=

 deg z
pe


+ 1 + n
n


.

Recall that n is the number of variables in S. Therefore, we require at mostM applications of φ.
In summary, in step (3), we need only apply φ at most:

⌈logpe(d)⌉ +

 deg z
pe


+ 1 + n
n


times.
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6.2. Connections with the previous work

We now also briefly explain some of the other ways the ideas in this algorithm have previously
appeared. We use the notation from Section 6.1, in particular φ(•) = ΦS(u · •).
Definition 6.3 (Katzman, 2008, Definition 5.5, cf. Blickle et al., 2008). As above, fix u ∈ R. For any ideal
J ⊆ S we define J⋆

eu to be the smallest ideal A ⊆ S containing J with the property uA ⊆ A[pe].

It follows that the sequence of ideals {Ci}i≥0 from step (3*) stabilizes at the value (JB + Q )⋆
eu. This

construction (and the fact that it had already been computed by the first author) was part of the
inspiration for this project. In view of this, step (3*) can be totally phrased in the language of J⋆

eu.
The original motivation for studying J⋆

eu was to compute the test ideal. In particular, the ideal C
we construct in (3*) restricts to the test ideal τ(S/Q , φ/Q ) in many cases (with additional work, it
can always be made to restrict to the test ideal, see for example Katzman (2008)); however, it always
restricts to the test ideal τ(S/Q , φ/Q ) if φ/Q is surjective.
Remark 6.4. One can also view the results of this paper from the point of view of Frobenius maps on
the injective hull of residue fields. Let (S,m) be a complete local regular ring and E = ES(S/m) is the
injective hull of its residue field. Let f : S → S be the Frobenius map f (s) = sp, and let S[Θ; f e] be the
skew-polynomial ring with coefficients in S where the variableΘ satisfiesΘs = f e(s)Θ for all s ∈ S.

The S-module E has a natural structure of S[T ; f e]-module which can be described by identifying
E with a module of inverse polynomials k[x−

1 , . . . , x
−
n ] (cf. Brodmann and Sharp, 1998, Example

12.4.1) and extending additively the action Tλx−β1
1 · · · x−βn

n = λp
e
x−peβ1
1 · · · x−peβn

n for all λ ∈ k
and β1, . . . , βn > 0. Any structure of S[Θ; f e]-module on E is given by Θ = uT , where T is the
natural action above, and, with this Θ , an S-submodule AnnE J ⊆ E is an S[Θ; f e]-submodule if
and only if uJ ⊆ J [p

e
] (cf. Katzman, 2008, Section 4). Thus we see that the uT -compatible ideals of

R = S/I are the annihilators of S[Θ; f e]-submodules of E which contain I , i.e., S[Θ; f e]-submodules of
AnnE I = ER(R/mR) and hence our algorithm produces these. These annihilators form the set of special
ideals in the language of Sharp (2007), and Katzman (2008). An analysis of our algorithm shows that
it will produce all special primes P for which the restriction ofΘ to AnnEP is not the zero map.

7. The algorithm in action

In this section we present some interesting calculations performed with a Macaulay2
implementation of the algorithms presented in this paper.

First we include an example where we step through the algorithm. This example is also interesting
because the ideal defining the singular locus of R = S/I is not always compatible with our choice of φ.
Example 7.1. Consider the ring S = k[x, y, z, w] where k is any perfect field of characteristic 3 and
set I = ⟨x2 − yz⟩.

We set
z = (x2 − yz)2w2x(x + 1) = x6w2

+ x4yzw2
+ x2y2z2w2

+ x5w2
+ x3yzw2

+ xy2z2w2

and fixφ(F∗•) = ΦS(F∗z ·•). It is easy to see thatφ is I-compatible by Fedder’s Lemma2.9 noting that z
is a multiple of (x2w−yzw)2 . Furthermore, note that z has a term x2y2z2w2 /∈ m[3]

= ⟨x3, y3, z3, w3
⟩,

which implies thatφ is surjective at the origin.More generally, the same term implies thatφ(F∗1) = 1
which means that φ is surjective everywhere as it is a Frobenius splitting.

First we set Q = I In step (1) of the algorithm, we compute the singular locus of S/Q , it is
defined by the ideal J = ⟨x, y, z⟩. For step (2) of the algorithm, Macaulay2 will easily verify that
B := (z + Q [3]) : (Q [3]

: Q ) = ⟨x2 − yz, x2w2
+ xw2

⟩. Now we move on to step (3): one can
either verify by hand, or by Macaulay2 that

φ(F∗JB + Q ) = ⟨w, x2 − yz⟩.
On the other hand

φ2 F 2
∗
(JB + Q )


= φ(F∗φ(F∗⟨w, x2 − yz⟩)) = ⟨w, x2 − yz⟩

as well, so the ideal C = ⟨w, x2 − yz⟩. This ideal is already prime so no primary decomposition is
needed for step (4).
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Nowwe repeat the algorithm with a new Q ′
:= ⟨w, x2 − yz⟩. In step (1), the singular locus is now

J ′ = ⟨x, y, z, w⟩. In step (2), one obtains B′
:= ⟨w, yz + x, x2 + x⟩. For step (3), we easily compute that

φ(F∗J ′B′
+ Q ′) = S = φ2(F 2

∗
J ′B′

+ Q ′).

In particular, there are no new Qi and the algorithm terminates.
It follows that the only proper non-zero φ-compatible ideal of S properly containing I is ⟨w, x2 −

yz⟩S . In particular, the only proper non-zero φ/I = φ̄-compatible ideal of R = S/I is the ideal ⟨w⟩R.

Now we perform a more involved calculation which looks in greater detail at the example given
in Katzman (2008, Section 9).

Example 7.2. Let K be the field of two elements, S = K[x1, x2, x3, x4, x5], denote m =

⟨x1, x2, x3, x4, x5⟩.
Now take I be the ideal of S generated by the 2 × 2 minors of

x1 x2 x2 x5
x4 x4 x3 x1


and let S = R/I . We consider a φ ∈ HomR(F 1

∗
S, S) induced by pre-multiplying the R-linear map ΦS

from Example 2.8 by an element z ∈ (I [p] : I) ⊆ S

z = x31x2x3 + x31x2x4 + x21x3x4x5 + x1x2x3x4x5 + x1x2x24x5 + x22x
2
4x5 + x3x24x

2
5 + x34x

2
5.

Since z /∈ ⟨x21, x
2
2, x

2
3, x

2
4, x

2
5⟩ = m[2], we see that φ is surjective from Fedder’s Lemma, Lemma 2.9(b).

Our algorithm now produces a complete set of φ-compatible primes as follows:

R, ⟨x1, x4⟩, ⟨x1, x4, x5⟩
⟨x1 + x2, x21 + x4x5⟩, ⟨x1 + x2, x21 + x4x5⟩, ⟨x3 + x4, x1 + x2, x22 + x4x5⟩,
⟨x1, x2, x5, x3 + x4⟩, ⟨x1, x2, x4⟩, ⟨x1, x2, x5⟩, ⟨x1, x3, x4⟩,
⟨x1, x2, x3, x4⟩, ⟨x1, x2, x4, x5⟩, ⟨x1, x3, x4, x5⟩,m.

Consider now the Frobenius action Θ = zT on the injective hull E of the residue field of
K[[x1, x2, x3, x4, x5]]. Theφ-compatible primes above are also the special primes of the S[Θ; f ]-module
E. In Katzman (2008, Section 9) it was shown that there is a S[Θ; f ]-linear surjection of E onto
H2

mS(S)where the latter is equipped with its canonical S[Θ; f ]-module structure, and the set of prime
annihilators of S[Θ; f ]-submodules of this quotient are those listed in the first row in the list above.

Example 7.3. We now consider an example suggested by the referee and inspired by the calculation
of Schubert varieties, see in particular Knutson (2009, Section 7) for the origin of the element u below.

Let S to be a polynomial ring in indeterminates {xij | 1 ≤ j < i ≤ 4} over a field K of prime
characteristic 2 and let

u = x41(x31x42 − x41x32)(x41 − x21x42 − x31x43 + x21x32x43);

this is the product of the four lower left minors of the matrix

M =

 1 0 0 0
x21 1 0 0
x31 x32 1 0
x41 x42 x43 1

 .
For sets α, β ⊆ {1, 2, 3, 4} of the same cardinality, let [α, β] denote the determinant of the sub-

matrix of M consisting of the rows in α and the columns in β . Our algorithm produces the following
twenty-three compatible ideals: the ideal generated by all variables, twelve ideals generated by the
variables in the positions



M. Katzman, K. Schwede / Journal of Symbolic Computation 47 (2012) 996–1008 1007

together with the ten ideals
⟨[34, 12]⟩, ⟨[34, 12], [34, 13], [34, 23]⟩, ⟨[34, 12], [23, 12], [24, 12]⟩,
⟨[34, 12], [23, 12], [34, 13], [34, 23], [24, 12]⟩, ⟨[234, 123]⟩, ⟨[234, 123], x41⟩,
⟨[23, 12], x41, x42⟩, ⟨[23, 12], x41, x42, x43⟩,
⟨[34, 23], x31, x41⟩, ⟨[34, 23], x21, x31, x41⟩.

Finally, we compute an example when the map φ is not surjective to illustrate the more general
algorithm.

Example 7.4. We fix a 2 × 4 matrix of indeterminates, and we let S to be a polynomial ring in these
indeterminates over a field K of prime characteristic 2.

For any 1 ≤ i < j ≤ 4 we denote ∆ij the 2 × 2 minor obtained from columns i and j and for any
subset A ⊆ {1, 2, 3, 4} we denote VA the ideal generated by the matrix entries in all columns listed in
A.

For z = ∆12∆13∆14 = (x11x22 − x21x12)(x11x23 − x21x13)(x11x24 − x21x14), we form φ(F∗•) =

ΦS(F∗z · •). This φ is easily seen to not be surjective. Our generalized algorithm produces two sets of
compatible ideals. The first is the poset

⟨∆12,∆13,∆14,∆23,∆24,∆34⟩

⟨∆12,∆14,∆24⟩

iiiiiiiiiiiiiiii
⟨∆12,∆13,∆23⟩ ⟨∆13,∆14,∆34⟩

UUUUUUUUUUUUUUUU

⟨∆12⟩

iiiiiiiiiiiiiiiiii
⟨∆14⟩

iiiiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUUUU
⟨∆13⟩

UUUUUUUUUUUUUUUUUU

It is easy to see that z ⊆ V [2]
1 and so the induced map φ/V1 is the zero map since φ(F∗S) ⊆ V1. In

particular, our algorithm also produces the following poset of primes.

V1,2,3,4

V1,2,3

{{{{{{{{
V1,2,4 V1,3,4

CCCCCCCC
V1 + ⟨∆23,∆24,∆34⟩

V1,2

{{{{{{{{
V1,3

{{{{{{{{

CCCCCCCC
V1,4

CCCCCCCC
V1 + ⟨∆23⟩

nnnnnnnnnnnn
V1 + ⟨∆24⟩ V1 + ⟨∆34⟩

PPPPPPPPPPPP

V1

UUUUUUUUUUUUUUUUUUUUUUU

PPPPPPPPPPPPPP

=======

yyyyyyyy

hhhhhhhhhhhhhhhhhhhhh

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Our generalized algorithm is only guaranteed to find those primes which are not contained in φt(F t
∗
S)

for t ≫ 0. However, these primes contain no information, see Remark 5.3, and are simply an artifact
of the algorithm.
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