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By using the gauge-invariant, but path-dependent, variables formalism, we study the impact of
condensates on physical observables for a three-dimensional Higgs-like model. As a result, for the case of
a physical mass term like m2

Hφ∗φ, we recover a screening potential. Interestingly enough, in the case of a
“wrong-sign” mass term −m2

Hφ∗φ, unexpected features are found. It is shown that the interaction energy
is the sum of an effective-Bessel and a linear potential, leading to the confinement of static charges.
However, when a Chern–Simons term is included, the surprising result is that the theory describes an
exactly screening phase.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

As well known, a full understanding of the QCD vacuum struc-
ture and color confinement mechanism from first principles re-
main still elusive. However, phenomenological models still repre-
sent a key tool for understanding different nonperturbative QCD
effects. Therefore, much about the physics of confinement may be
learned from such models. In this connection it becomes of inter-
est, in particular, to recall that many approaches to the problem
of confinement rely on the phenomenon of condensation. For ex-
ample, in the illustrative scenario of dual superconductivity [1–3],
where it is conjectured that the QCD vacuum behaves as a dual-
type II superconductor. In fact, in this case, because of the con-
densation of magnetic monopoles, the chromo-electric field acting
between qq pair is squeezed into strings, and the nonvanishing
string tension represents the proportionality constant in the linear
potential.

On the other hand, considerable attention has been paid re-
cently [4–7] to condensation of charged scalars and its physical
consequences. The interest in studying these systems is mainly
due to the possibility of describing condensed helium-4 nuclei
in an electron background in white dwarf cores. More precisely,
a Lorentz-violating Higgs-like effective Lagrangian has been pro-
posed, where a nonzero vacuum expectation value for the fermion
field, which permits to realize the condensation of the helium-4,
plays an essential role in this development. Accordingly, the con-
densate characterizes the new vacuum of the theory with striking
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consequences over the different phases of the pure gauge sector
of the proposed model. In this context, in a previous paper [8],
the impact of condensates on physical observables in terms of the
gauge-invariant but path-dependent variables formalism has been
explored. Specifically, we have computed the static potential be-
tween test charges in a condensate of scalars and fermions. As a
result, in the case of a “right-sign” mass term m2

Hφ∗φ, we have re-
covered the screening potential. Interestingly enough, in the case
of a “wrong-sign” mass term −m2

Hφ∗φ, unexpected features were
found. It was observed that the interaction energy is the sum of
an effective-Yukawa and a linear potential, leading to the confine-
ment of static charges. It is worthwhile mentioning at this point
that the above static profile is analogous to that encountered in
both Abelian and non-Abelian models. For example, in connection
to antisymmetric tensor fields that result from the condensation of
topological defects as a consequence of the Julia–Toulouse mech-
anism [9], in a gauge theory with a pseudoscalar coupling in the
presence of a constant magnetic strength expectation value [10],
and in a gauge theory which includes the mixing between the fa-
miliar photon U (1)QED and a second massive gauge field living in
the so-called hidden-sector U (1)h [11]. Also, in the case of gluo-
dynamics in curved space–time [12], and of a non-Abelian gauge
theory with a mixture of pseudoscalar and scalar couplings, where
a constant chromo-electric, or chromo-magnetic, strength expecta-
tion value is present [13]. In this way, we have provided a new
correspondence among diverse effective theories. This work is de-
voted to study the stability of the above scenario for the three-
dimensional case. Of special interest will be to check if a linearly
increasing gauge potential is still present whenever we go over
into three dimensions. As well as, we shall examine the effect of
a Chern–Simons term, in the above scenario, on a physical observ-
able.
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It is worth recalling at this point that three-dimensional
theories are interesting because of its connection to the high-
temperature limit of four-dimensional theories [14–17], as well
as, for their applications to condensed matter physics [18]. Thus,
as already mentioned, the main purpose here is to examine the
effects of the space–time dimensionality on a physical observ-
able for the three-dimensional case. To do this, we will work out
the static potential for the model under consideration by using
the gauge-invariant but path-dependent variables formalism along
the lines of Ref. [8]. As we will see, there are two generic fea-
tures that are common in the four-dimensional case and its lower
extension studied here. First, the existence of a linear potential,
leading to the confinement of static charges. However, when a
Chern–Simons term is included, the surprising result is that the
theory describes an exactly screening phase. The second point
is related to the correspondence among diverse effective theo-
ries. In fact, in the case of a “wrong-sign” mass term −m2

Hφ∗φ,
we obtain that the interaction energy is the sum of an effective-
Bessel and a linear potential. Incidentally, the above static poten-
tial profile is analogous to that encountered in: a Lorentz- and
CPT-violating Maxwell–Chern–Simons model [19], a Maxwell-like
three-dimensional model induced by the condensation of topo-
logical defects driven by quantum fluctuations [20], a Lorentz
invariant violating electromagnetism arising from a Julia–Toulouse
mechanism [21], and three-dimensional gluodynamics in curved
space–time [22].

Before going ahead, it is appropriate to observe here that a
Abelian gauge theory possessing a confining phase may sound
strange. In this context, it may be recalled that the existence of a
phase structure for the continuum Abelian U (1) gauge theory was
obtained by including the effects due to the compactness of the
U (1) group, which dramatically changes the infrared properties of
the model [23]. These results, first found in [23], have been ever
since rederived by many different techniques [24–26] where the
key ingredient is the contribution of self-dual topological excita-
tions to the partition function of the theory. However, our analysis
renders manifest that the mechanism of confinement in our model
is not condensation of topological excitations, rather the scalars.
This is what makes the current work different from earlier (above
mentioned) proposals of confinement in Abelian gauge theories.

2. Three-dimensional Higgs-like model

As already stated, our principal purpose is to calculate the in-
teraction energy between static point-like sources for a Lorentz-
violating Higgs-like effective model. To this end, we shall compute
the expectation value of the energy operator H in the physical
state |Φ〉, which we will denote by 〈H〉Φ . We begin by summa-
rizing very quickly the recently proposed Higgs-like model [7,8],
which describes a condensed of charged scalars in a neutralizing
background of fermions. This would not only provide the theoret-
ical setup for our subsequent work, but also fix the notation. The
starting point is the three-dimensional space–time Lagrangian:

L = −1

4
F 2
μν + |Dμφ|2 − m2

Hφ∗φ + ψ
(
iγ μDμ − M

)
ψ, (1)

where φ is a charged massive scalar field, Aμ is a U (1) gauge po-
tential, and ψ is an “heavy” fermion. The covariant derivative is
defined as: Dμ ≡ ∂μ + ie Aμ. Let us also mention here that m2

H > 0
is a “right sign” mass term and we have not included any self-
interaction for the scalar field. Following our earlier procedure [8],
we shall now consider that the fermions are so heavy that they
cannot be excited in the low energy regime we are studying. In
such a case, the Dirac kinetic term can be neglected and the whole
fermion sector of the model reduces to a constant background den-
sity J 0 coupled to Aμ , that is, ψγ μψ → −δ
μ
0 J 0. This allows us to

write the Lagrangian (1) as

L = −1

4
F 2
μν + |Dμφ|2 − m2

Hφ∗φ − e J 0δ
μ
0 Aμ. (2)

Once this is done, the field equations obtained by varying (2)
with respect to Aμ and φ∗ follow closely that of Ref. [8]:

∂μF μν + 2e2 Aν |φ|2 = e
(

Jνs + J 0δν
0

)
, (3)(

∂μ∂μ − e2 Aμ Aμ + m2
H

)
φ = 0, (4)

where Jνs ≡ i(φ∗∂νφ −φ∂νφ∗). In this way, the ground state of the
system is described by the classical solution:

ψ0γ
μψ0 = −δ

μ
0 J 0, (5)

φ0 =
√

J 0

2mH
, (6)

Aμ
0 = mH

e
δ
μ
0 . (7)

Once there is a nonvanishing background value for the scalar field,
we choose to work in the unitary gauge, so that the phase of the
φ-field can be gauged away. Next to this choice, we split the fields
φ (now, φ = φ∗) and Aμ as the sum of a classical background
around which there appear quantum fluctuations as it follows be-
low:

φ = φ∗ = φ0 + 1√
2
η(x), (8)

Aμ = mH

e
δ0
μ + bμ(x), (9)

the corresponding Lagrangian density, up to quadratic terms in the
fluctuations, is given by

L = −1

4
f 2
μν + 1

2
(∂μη)2 + 1

2
m2

γ b2
μ + 2mHmγ b0η, (10)

where fμν ≡ ∂μbν − ∂νbμ , and m2
γ ≡ 2e2φ2

0 . Following our ear-
lier procedure [8], integrating out the η field induces an effective
theory for the bμ field. This leads us to the following effective La-
grangian density:

Leff = −1

4
f 2
μν + 1

2
m2

γ b2
μ + 2m2

Hm2
γ b0

1



b0, (11)

where 
 = ∂μ∂μ . As a consequence, the Lagrangian (1) becomes
a Maxwell–Proca-like theory with a manifestly Lorentz violating
term. This effective theory provide us with a suitable starting point
to study the interaction energy. However, before proceeding with
the determination of the energy, it is necessary to restore the
gauge invariance in (11). For this purpose, we note that the La-
grangian (11) may be rewritten as

L = −1

4
f 2
μν + 1

2
bμm2bμ − 1

2
bi

(2mHmγ )2



bi, (12)

where m2 ≡ m2
γ (1 + 4m2

H



). With this in hand, the canonical mo-

menta Πμ are found to be Π0 = 0 and Π i = − f 0i . The canonical
Hamiltonian is now obtained in the usual way

H =
∫

d2x

{
−b0

(
∂iΠ

i + m2

2
b0

)
− 1

2
ΠiΠ

i

+ 1
f i j f i j − 1

bi

(
m2 − (2mHmγ )

)
bi

}
. (13)
4 2 
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Time conservation of the primary constraint (Π0 = 0) yields a
secondary constraint Γ (x) ≡ ∂iΠ

i +m2b0 = 0. Notice that the non-
vanishing bracket {Π0, ∂iΠ

i + m2b0} shows that the above pair of
constraints are second class constraints, as expected for a theory
with an explicit mass term which breaks the gauge invariance. To
convert the second class system into first class we enlarge the orig-
inal phase space by introducing a canonical pair of fields θ and Πθ

[8]. It follows, therefore, that a new set of first class constraints
can be defined in this extended space:

Λ1 ≡ Π0 + m2θ, (14)

and

Λ2 ≡ Γ + Πθ . (15)

In this way the gauge symmetry of the theory under considera-
tion has been restored. Then, the new effective Lagrangian, after
integrating out the θ field, becomes

Leff = −1

4
fμν

[
1 + m2

γ




(
1 + 4m2

H




)]
f μν. (16)

Again, as was explained in [8], we observe that to get the above
theory we have ignored the last term in (12) because it add noth-
ing to the static potential calculation, as we will show it below. In
other words, the new effective action (16) provide us with a suit-
able starting point to study the interaction energy without loss of
physical content.

We now turn our attention to the calculation of the inter-
action energy. In order to obtain the corresponding Hamilto-
nian, the canonical quantization of this theory from the Hamil-
tonian analysis point of view is straightforward and follows
closely that of Ref. [8]. The canonical momenta read Πμ = −[1 +
m2

γ



(1 + 4m2

H



)] f 0μ , and one immediately identifies the usual pri-

mary constraint Π0 = 0 and Π i = −[1 + m2
γ



(1 + 4m2

H



)] f 0i . The
canonical Hamiltonian is thus

HC =
∫

d2x

{
−b0∂iΠ

i − 1

2
Πi

[
1 + m2

γ




(
1 + 4m2

H




)]−1

Π i

+ 1

4
f i j f i j

}
. (17)

The consistency condition Π̇0 = 0 leads to the usual Gauss con-
straint Γ1(x) ≡ ∂iΠ

i = 0. The extended Hamiltonian that gener-
ates translations in time then reads H = HC + ∫

d2x (c0(x)Π0(x) +
c1(x)Γ1(x)), where c0(x) and c1(x) are the Lagrange multipliers.
Since Π0 = 0 for all time and ḃ0(x) = [b0(x), H] = c0(x), which is
completely arbitrary, we discard b0 and Π0 because they adding
nothing to the description of the system. Then, the Hamiltonian
takes the form

H =
∫

d2x

{
c(x)∂iΠ

i − 1

2
Πi

[
1 + m2

γ




(
1 + 4m2

H




)]−1

Π i

+ 1

4
f i j f i j

}
, (18)

where c(x) = c1(x) − b0(x). Evidently, the presence of the arbitrary
quantity c(x) is undesirable since we have no way to giving it a
meaning in a quantum theory. As is well known, the solution to
this problem is to introduce a gauge condition such that the full
set of constraints become second class. A particularly convenient
choice is found to be

Γ2(x) ≡
∫

C

dzν bν(z) ≡
1∫

0

dλ xibi(λx) = 0, (19)
ξx
where λ (0 � λ � 1) is the parameter describing the spacelike
straight path xi = ξ i + λ(x − ξ)i , and ξ is a fixed point (reference
point). There is no essential loss of generality if we restrict our
considerations to ξ i = 0. The choice (19) leads to the Poincaré
gauge [27]. As a consequence, we can now write down the only
nonvanishing Dirac bracket for the canonical variables

{
bi(x),Π j(y)

}∗ = δ
j
i δ

(2)(x − y) − ∂x
i

1∫
0

dλ x jδ(2)(λx − y). (20)

We are now ready to find the interaction energy between point-
like sources for the model under consideration. As we have already
indicated, we will calculate the expectation value of the energy
operator H in the physical state |Φ〉. In this context, we recall that
the physical state |Φ〉 can be written as

|Φ〉 ≡ ∣∣Ψ (y)Ψ (0)
〉 = ψ(y)exp

(
iq

y∫
0

dzi bi(z)

)
ψ(0)|0〉, (21)

where |0〉 is the physical vacuum state. The line integral is along a
spacelike path starting at 0 and ending at y, on a fixed time slice.

Next, taking into account the above Hamiltonian analysis, we
then obtain

〈H〉Φ = 〈H〉0 + 〈H〉(1)
Φ , (22)

where, in this static case, 
 = −∇2. At the same time, 〈H〉0 =
〈0|H|0〉, and the 〈H〉(1)

Φ term is given by

〈H〉(1)
Φ = 〈Φ|

∫
d2x

{
−1

2
Πi

[
1 − m2

γ

∇2

(
1 − 4m2

H

∇2

)]−1

Π i

+ 1

4
f i j f i j

}
|Φ〉. (23)

It should be noted that the above expression may be rewritten as

〈H〉(1)
Φ = −1

2

4M4

(M2
2 − M2

1)

×
∫

d2x 〈Φ|Πi

{
α

∇2

(∇2 − M2
1)

− β
∇2

(∇2 − M2
2)

}
Π i |Φ〉

+ 1

4

∫
d2x 〈Φ| f i j f i j|Φ〉, (24)

with α = 1
(M2

1−m2
γ )

and β = 1
(M2

2−m2
γ )

. While M2
1 = 1

2 (m2
γ

+
√

m4
γ − 16M4 ), M2

2 = 1
2 (m2

γ −
√

m4
γ − 16M4 ) and M ≡ √

mγ mH .

One immediately sees that this expression is similar to that en-
countered in the three space dimensions case [8]. It follows, there-
fore, that in (2 + 1) dimensions, the potential for two opposite
charges located at 0 and y takes the form

V = − q2

2π

4M4√
m4

γ − 16M4

[
1

M2
2

K0(M1L) + 1

M2
1

K0(M2L)

]
, (25)

where K0 is a modified Bessel function, and |y| ≡ L.
Before we proceed further, we wish to illustrate an alternative

derivation of the result (25), which exhibits certain distinctive fea-
tures of our methodology. To begin with, let us recall that the
potential can be obtained from [28]:

V ≡ q
(

A0(0) − A0(y)
)
, (26)
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where the physical scalar potential is given by

A0
(
x0,x

) =
1∫

0

dλ xi Ei(λx), (27)

with i = 1,2. It is worth noting here that this follows from the
vector gauge-invariant field expression [29]

Aμ(x) ≡ Aμ(x) + ∂μ

(
−

x∫
ξ

dzμ Aμ(z)

)
, (28)

where, as in Eq. (19), the line integral is along a spacelike path
from the point ξ to x, on a fixed slice time. The gauge-invariant
variables (28) commute with the sole first constraint (Gauss’ law),
confirming that these fields are physical variables [30]. Note that
Gauss’ law for the present theory reads ∂iΠ

i = J 0, where we have
included the external current J 0 to represent the presence of two
opposite charges. For J 0(t,x) = qδ(2)(x) the electric field is given
by

Ei = q
4M4

(M2
2 − M2

1)

{
1

(M2
1 − m2

γ )
∂ i G(1)(x)

− 1

(M2
2 − m2

γ )
∂ i G(2)(x)

}
, (29)

where G(1)(x) = 1
2π K0(M1|x|) and G(2)(x) = 1

2π K0(M2|x|) are the
Green functions for the Proca operator in two space dimensions.
Using this, the physical scalar potential, Eq. (27), reduces to

A0(t,x) = q
4M4

(M2
2 − M2

1)

[
1

(M2
1 − m2

γ )
G(1)(x)

− 1

(M2
2 − m2

γ )
G(2)(x)

]
, (30)

after substraction of self-energy terms. With this then, we now see
that the potential for a pair of point-like opposite charges q located
at 0 and L becomes

V = − q2

2π

4M4√
m4

γ − 16M4

[
1

M2
2

K0(M1L) + 1

M2
1

K0(M2L)

]
, (31)

where |L| ≡ L. It must be clear from this discussion that a correct
identification of physical degrees of freedom is a key feature for
understanding the physics hidden in gauge theories.

Within this framework, we now want to extend what we have
done when a m2

Hφ∗φ term and a quartic self-interaction potential
is considered in expression (1), namely,

L = −1

4
F 2
μν + |Dμφ|2 + m2

Hφ∗φ

− λ

6

(
φ∗φ

)2 − e J 0δ0
μ Aμ. (32)

As before, the last term arises from the condensation mechanism
in a neutralizing background of fermions. Following the same steps
that lead to (16) we arrive at the following effective Lagrangian
density:

Leff = −1

4
fμν

[
1 + m2

γ




(
1 + 4μ2

s

(
 + 2m2
H )

)]
f μν. (33)

In the same way as was done in the previous case, one finds
〈H〉Φ = C1〈Φ|−1

2

∫
d2xΠi

{ ∇2

(∇2 − M2
2)

− η2 ∇2

(∇2 − M2
1)

}
Π i |Φ〉

+ C2〈Φ|1

2

∫
d2xΠi

{
1

(∇2 − M2
2)

− η2 1

(∇2 − M2
1)

}
Π i |Φ〉, (34)

where C1 ≡ 2M4

(2M4−m2
γ )

, C2 ≡ 4m2
H M4

(2M4−m2
γ )

, and η2 ≡ m2
γ

2m2
H

. While M2
1 =

m2
γ , M2

2 = 2m2
H , and M = √

mγ mH .
According to our earlier procedure, we find that the potential

for two opposite charges located at 0 and y takes the form

V = − q2

2π
C1

{
K0(M2L) − M2

1

M2
2

K0(M1L)

}

+ q2

4

C2

M2

{
1 − M1

M2

}
L. (35)

Here, in contrast to the previous case, unexpected features are
found. In fact, we see that the static potential profile displays the
conventional screening part, encoded in the modified Bessel func-
tion, and the linear confining potential.

3. Three-dimensional Higgs-like model and a Chern–Simons
term

We now pass on to the calculation of the interaction energy
between static pointlike sources for the (2+1)-dimensional Higgs-
like model with a Chern–Simons term. In other words, in this sec-
tion we concentrate on the effect of including the Chern–Simons
term in the confinement and screening nature of the potential.
With this in mind, we start by writing:

L = −1

4
F 2
μν + s

2
ενκλ Aν∂κ Aλ

+ |Dμφ|2 − m2
Hφφ∗ − e J 0δ

μ
0 Aμ. (36)

Proceeding as in the previous subsection, the effective Lagrangian
is given by

Leff = −1

4
fμν

[
1 + m2

γ




(
1 + 4m2

H




)]
f μν

+ s

2
εμνλbμ∂νbλ. (37)

The effective Lagrangian expressed by (37) describes the effec-
tive dynamics of the quantum bμ-field. Since we are interested in
pursuing an investigation of the potential which comes from the
bμ-field exchange, we can say that we are actually restricting our
analysis to the low-frequency regime of Leff. In this region, it is
legitimate to drop the fμν f μν -term respect to the other terms,
the reason being that this term is quadratic in the frequencies
and, therefore, the terms m2

γ and s dominate. The space–time de-
pendence of bμ and, hence, its dynamics, is accounted for in the
f 2
μν and in the Chern–Simons terms. Considering the regime of

low-frequencies, it is true that they are both much smaller than
the term in m2. However, disregarding them simultaneously would
lead us to a completely different regime, where only constant field
configurations would be considered. To ensure that contributions
from nonconstant configurations are also taken into account, we
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have to keep at the least the Chern–Simons term, since it is lin-
ear in the frequency whereas the Maxwell-term is quadratic. So,
our claim is that the s-term is the one that survives in the low-
frequency regime, and this guarantees that nonconstant field con-
figurations are not thrown away. Therefore, keeping in mind that
we are bound to the low-frequency regime, we can express Leff as
follows:

Leff = −1

4
fμν

[
m2

γ




(
1 + 4m2

H




)]
f μν + s

2
εμνλbμ∂νbλ. (38)

It is now once again straightforward to apply the gauge-
invariant formalism discussed in the preceding section. For this
purpose, we start by observing that the canonical momenta read

Πμ = [m2
γ



(1 + 4m2

H



)] f μ0 + s
2 ε0μνbν . As we can see there is one

primary constraint Π0 = 0, and Π i = [m2
γ



(1 + 4m2

H



)] f i0 + s
2 εi jb j .

The canonical Hamiltonian for this system, in terms of B = εi j∂
ib j

and Ei = [m2
γ



(1 + 4

m2
H



)]−1(Π i − s

2 εi jb j), is in this case

HC =
∫

d2x

{
−b0

(
∂iΠ

i + s

2
B

)
+ 1

2
Ei

[
m2

γ




(
1 + 4m2

H




)]
Ei

}

+
∫

d2x

{
1

2
B

[
m2

γ




(
1 + 4m2

H




)]
B

}
. (39)

The conservation in time of the primary constraint Π0 leads to
the secondary constraint Γ1(x) ≡ ∂iΠ

i + s
2 B = 0. The above con-

straints are the first-class constraints of the theory since no more
constraints are generated by the time preservation of the sec-
ondary constraints. Once again, the corresponding total (first-class)
Hamiltonian that generates the time evolution of the dynamical
variables reads H = HC + ∫

d2x (c0(x)Π0(x) + c1(x)Γ1(x)), where
c0(x) and c1(x) are the Lagrange multiplier fields to implement
the constraints. As before, neither b0(x) nor Π0(x) are of interest
in describing the system and may be discarded from the theory. As
a result the Hamiltonian becomes

H =
∫

d2x

{
c(x)

(
∂iΠ

i + s

2
B

)
+ 1

2
Ei

[
m2

γ




(
1 + 4m2

H




)]
Ei

}

+
∫

d2x

{
1

2
B

[
m2

γ




(
1 + 4m2

H




)]
B

}
, (40)

where c(x) = c1(x) − b0(x). Since our main motivation is to com-
pute the static potential, we will adopt the same gauge-fixing
condition that was used in the last subsection. Thus, in order to
illustrate the discussion, we now write the Dirac brackets in terms
of the magnetic and electric fields as:

{
Ei(x), E j(y)

}∗ = −s

[
m2

γ




(
1 + 4m2

H




)]−2

εi jδ
(2)(x − y), (41)

{
B(x), B(y)

}∗ = 0, (42)

{
Ei(x), B(y)

}∗ = −
[

m2
γ




(
1 + 4m2

H




)]−1

εi j∂
j

x δ(2)(x − y). (43)

One can now easily derive the equations of motion for the elec-
tric and magnetic fields. We find

Ė i(x) = −s

[
m2

γ




(
1 + 4m2

H




)]−1

εi j E j(x) − εi j∂
j B(x), (44)

Ḃ(x) = −εi j∂
j Ei(x). (45)

In the same way, we write the Gauss law as[
m2

γ
(

1 + 4m2
H

)]
∂i Ei + sB + J 0 = 0. (46)

 

As before, we have included the external current J 0 to represent
the presence of two opposite charges. For J 0(t,x) = qδ(2)(x) the
electric field, in the m2

H 	 k2 case, is given by

Ei = q

m2
γ

√
1 − 32s2m2

H/m4
γ

[
α∂ i G(2)(x) − β∂ i G(1)(x)

]
, (47)

where α = M2
2 − 4m2

H , β = M2
1 − 4m2

H , M2
1 = m4

γ

2s2 [1 +√
1 − 32s2m2

H/m4
γ ], and M2

2 = m4
γ

2s2 [1 −
√

1 − 32s2m2
H/m4

γ ]. Again,

G(1)(x) = 1
2π K0(M1|x|), and G(2)(x) = 1

2π K0(M2|x|). Combining
Eqs. (47) and (26), we can write immediately the potential for
a pair of point-like opposite charges q located at 0 and L, as

V = − q2

2π

1

m2
γ

√
1 − 32s2m2

H/m4
γ

[
αK0(M2L) − βK0(M1L)

]
,

(48)

where |L| = L.
Let us consider next the effect of a m2

Hφ∗φ term and a quartic
self-interaction potential in expression (36), that is,

L = −1

4
F 2
μν + s

2
ενκλ Aν∂κ Aλ

+ |Dμφ|2 + m2
Hφ∗φ − λ

6

(
φ∗φ

)2 − e J 0δ
μ
0 Aμ. (49)

Again, in the same way as was done in the previous case, one
finds

Leff = −1

4
fμν

[
1 + m2

γ




(
1 + 4μ2

s

(
 + 2m2
H )

)]
f μν

+ s

2
εμνλbμ∂νbλ. (50)

Again, as discussed in going from Eq. (37) to Eq. (38), we here
also work in the regime of low frequencies, so that it the fμν f μν -
term can be neglected in comparison with the other terms

Leff = −1

4
fμν

[
m2

γ




(
1 + 4μ2

s

(
 + 2m2
H )

)]
f μν

+ s

2
εμνλbμ∂νbλ. (51)

Once this is done, the above Hamiltonian constrained analysis
can be repeated step by step for this effective theory. Accordingly,
the potential for a pair of point-like opposite charges q located at
0 and L, in the μ2

S/m2
H → 0 case, is given by

V = q2

2π
K0(ML), (52)

where M2 = m4
γ /s2. We immediately see that, unexpectedly, the

confining potential between static charges vanishes in this case.

4. Final remarks

To conclude, this work is a sequel to [8], where we have con-
sidered a three-dimensional extension of the recently proposed
Higgs-like model [7], which describes a condensed of charged
scalars in a neutralizing background of fermions. To do this, we
have exploited a crucial point for understanding the physical con-
tent of gauge theories, namely, the correct identification of field
degrees of freedom with observable quantities. It was shown, that
for the case of a term physical mass m2 φ∗φ, a screening potential
H
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is recovered. Interestingly enough, in the case of a “wrong-sign”
mass term −m2

Hφ∗φ, unexpected features were found. It was ob-
served that the interaction energy is the sum of an effective-Bessel
and a linear potential, leading to the confinement of static charges.
However, when a Chern–Simons term is included, the surprising
result is that the theory describes an exactly screening phase.
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