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a b s t r a c t

AmaizeN is a decision support system to help maize growers schedule nitrogen (N) fertilizer applications
for site-specific maize crops. It forecasts crop yields and N-fertilizer application rates for potential yield
and best economic returns, and predicts the consequences of user management decisions. It takes into
account both crop production and environmental impact. In this article we describe the system function-
ality and underlying crop models, and the system validity and effectiveness evaluated in 16 field trials
covering a wide range of weather and soil conditions. At each trial site crops received either two or four N-
fertilizer application rates, including one rate recommended by AmaizeN. The AmaizeN-predicted maize
yields matched field measurements well (r2 = 0.77; p < 0.001 for silage, and r2 = 0.55; p < 0.001 for grain),
and gave a reasonably good indication of silage crude protein content (r2 = 0.28; p < 0.001) and silage har-
vest date (r2 = 0.71; p < 0.0006). The system was also capable of estimating N-leaching during the cropping
season and predicting residual soil mineral-N at the end of the season (r2 = 0.47; p < 0.001), but more effort
is needed to improve the accuracy of some predictions. In all instances the AmaizeN-recommended N-
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provided by Elsevier - Publisher Con
fertilizer strategy was more efficient than the growers’ practice. Recommended N-fertilizer rates were
on average 85 kg ha−1 less than conventional application rates across 10 crops, with no yield reduction.
Its recommended higher-than-conventional application rate at another crop brought about a significant
yield increase. System development was guided by an industry user group who requested the decision
support system interface to be ‘simple and easy to use’. To ensure user adoption of the system some com-
promises in system prediction accuracy were required. Local agricultural production conditions were

Socie

also incorporated.

© Royal Netherlands

. Introduction

Maize is a cost-effective supplementary feed for livestock in
ew Zealand, enabling farmers to increase profitability from tra-
itional pasture-based systems [1]. Maize crops respond strongly
o nitrogen (N) supply, and N-rich fertilizers are routinely applied
o ensure adequate N availability. While this practice ensures
igh yields, it also increases the risk of nitrate leaching and
roundwater contamination. To achieve economic profitability and

nvironmental sustainability, New Zealand environmental man-
gement authorities have developed resource management rules
hat require farmers to provide nutrient management plans for fer-
ilizer applications based on nutrient management planning tools

∗ Corresponding author at: AgResearch – Grasslands Research Centre, Tennent
rive, Private Bag 11008, Palmerston North 4442, New Zealand. Tel.: +64 6 3518190;

ax: +64 6 3518032.
E-mail address: frank.li@agresearch.co.nz (F.Y. Li).

573-5214/$ – see front matter © Royal Netherlands Society for Agricultural Sciences. Pu
oi:10.1016/j.njas.2009.07.007
ty for Agricultural Sciences. Published by Elsevier B.V. All rights reserved.

[2]. A decision support tool for N-fertilizer management in maize
production is required by the New Zealand maize industry.

Many crop models exist for simulating maize growth and devel-
opment [3–5], and some have been incorporated into crop system
simulation models or decision support systems (DSSs), such as
APSIM [6] and DSSAT [7]. These models or systems have been
widely used to investigate crop growth and environmental impact
under a wide range of environments. Although many of them
have versatile functions, they typically require a large number
of parameters to be specified. Ultimately, this complexity con-
stitutes an impediment for their uptake by farmers. Simple and
easy to use DSSs with limited but clearly defined functions are
highly sought after by specific groups of users. We have devel-
oped such an easy to use system for New Zealand’s maize growers.

The system (AmaizeN) is mainly for (1) forecasting crop yield and
N-fertilizer requirements, and (2) planning N-fertilizer and irri-
gation applications for site-specific maize crops. Both crop yield
and environmental impact are taken into account when planning
management applications.

blished by Elsevier B.V. All rights reserved.
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This paper outlines the system development processes,
escribes system functionality and underlying crop models, reports

ts adequacy in predicting crop yield, crop quality and N-leaching
isks against measurements from field experiments, and evalu-
tes its effectiveness in recommending N-fertilizer rates against
xisting maize growers’ practice. It also presents the principles or
pproaches built in the system for increasing usability, including
n appropriate compromise between system accuracy and con-
enience of use, and the incorporation of regional agricultural
roduction conditions.

. Materials and methods

.1. The system development process

An iterative system development process was followed during
3-year period. A user group was formed at the start to ensure the
SS was simple and easy to use. The user group consisted of maize
rowers, fertilizer consultants, environment management officers,
nd crop researchers. Development included software develop-
ent, field maize experiments, and database preparation. A system

rototype with complete graphical user interface (GUI) was devel-
ped and primarily tested against measurements collected from
eld crops at the end of the first year, and delivered to the user
roup for feedback. Both the GUI and system functionality were
odified during the second year, based on this feedback, and the

ystem functionalities were validated against field experiments.
he system was modified further following extensive interactions
ith potential users at maize field days held in key maize-growing

egions during the second year. This change included reducing sys-
em functionality and simplifying system inputs to increase its
sability. Two major changes were made: (1) removing the system
unction that generates irrigation schedules (because >90% of the

aize crops in New Zealand are rainfed), and (2) reducing the sam-
ling depth for determining soil mineral-N from 1.2 to 0.6 m. This
implification resulted in a ‘light’ version of the AmaizeN system,
eferred to as AmaizeN Lite, which deployed fewer functions and
as much easier to use. All the functions of the AmaizeN system

re described below, but with more details on the major functions
eployed in AmaizeN Lite.

.2. The AmaizeN system

.2.1. System functions and database
The major function of AmaizeN is to recommend N-fertilizer and

rrigation application schedules for a site-specific maize crop, and
o predict crop yield and nitrate leaching risks of either system-
enerated or user-specified management strategies. The system
an also be used to help farmers select the appropriate maize
arieties, sowing date and harvest date in accordance with local
eather and site-specific soil conditions.

AmaizeN is a Windows application, deployed with a database
f local weather stations, general soil types and maize varieties.
he weather data include: daily maximum and minimum temper-
tures, rainfall and solar radiation. The actual weather records of
2 stations in maize-growing areas were included, together with
heir ‘average’ weather data generated on the basis of long-term
30 years, or all years if the period of observation was shorter
han 30 years) meteorological records. Up to date weather data
an be added to the system during the cropping season. The sys-

em switches to the average weather from the date when actual
eather data become unavailable. The general soil type data con-

ain parameters describing soil moisture retention characteristics
nd soil organic matter content, which are derived from the
ational Soil Database of New Zealand [8]. Users may set up soil
Fig. 1. Interface for management set up of the AmaizeN Lite decision support sys-
tem.

profile descriptions for site-specific soil types using their knowl-
edge and measurements. Maize variety information includes plant
leaf number, and thermal time requirement of maize growth and
development. New varieties are expected to be updated. If a variety
is not available in the system, users may select a ‘variety category’
according to the CRM (comparative relative maturity ratings) range
of that variety, or simply select a category variety of long, medium
or short-season as an approximation.

2.2.2. System operation and outputs
When using the system, a user selects a weather station, speci-

fies a variety, and enters sowing date and plant population, as well
as the purpose of the crop (silage or grain) on the ‘Management Set
Up’ page (Fig. 1). The user also selects the soil type, specifies initial
soil moisture status, and enters the measured mineral-N content of
the soil profile and the date of the soil-N test. A guide to collecting
soil samples for soil mineral-N determination is deployed with the
system. The user needs to specify whether irrigation is available
for the field and the irrigation application rule if available. The irri-
gation application rule is specified in the format of applying x mm
of water when soil moisture deficit reaches y mm. No irrigation
application rule can be specified on AmaizeN Lite; instead, a tick
on ‘irrigation available’ means no water deficit will be encountered
during the season.

Clicking on the ‘Schedule’ button (Fig. 1) initiates the system
simulation from the earlier date of sowing or soil mineral-N test.
The simulation re-directs a user to the interface for management
planning and prediction reporting (‘Yield and Schedule’ page of
AmaizeN Lite, Fig. 2). The system outputs are:

(1) N-fertilizer and irrigation requirement and schedules: two
N-fertilizer application rates are generated, one for reaching
potential yield and the other for the best economic return. The
costs of N-fertilizer application ($ per kg N per ha) and the price
of products (cents per kg DM silage, or $ per ton of grain with

an industry standard moisture content of 14%) are required
for recommending the most economic rate. The N required for
reaching potential yield is calculated as the difference between
plant-N uptake assuming an ample N supply and the actual soil-
N conditions at testing. The predicted N-fertilizer rate is split
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ig. 2. Interface for management planning and prediction reporting of the AmaizeN
ite decision support system.

into two applications, one at sowing and the second approxi-
mately 6–8 weeks after sowing (V6 stage, i.e., when at least 50%
of the plants show the 6th leaf collar [9]). Irrigation demand
is scheduled according to user-specified application rules, and
cost of irrigation application ($ per mm per ha) is also specified
for calculating its economic effects.

The system allows the user to adjust N-fertilizer and irri-
gation application schedules according to his management
experience and to investigate the likely consequences of those
adjustments.

2) Grain and silage yields, N uptake and silage quality. Crude
protein content (%CP) of maize silage is estimated according
to model-predicted crop-N uptake (N, kg ha−1) and biomass
(B, kg ha−1) at an appropriate maturity for silage harvest
(%CP = 6.25 × N/B).

3) The dates of plant development stages, including the date for
silage harvest. The time for silage harvest is estimated based
on relationships between maize yield, dry matter content and
nutritional values [10,11]. Maturity differences among maize
varieties are mainly associated with development differences
during the vegetative period, whereas the length of the grain-
filling period is rather consistent [12]. Thus, the thermal time
from silking (850 degree days; base temperature = 0 ◦C) is used
to predict the date when the milkline is 1/3 along the kernel
from the dent (1/3ML date) or 2/3 towards the cob (the date
is shown as 2/3 milkline on the user interface according to
the preference of maize growers, but is referred as 1/3ML date
throughout this text). The predicted 1/3ML date is used to indi-
cate the time to start assessing plant dry matter content (DM%)
for silage harvest. The ideal range for ensiling silage in New
Zealand is 32–37% DM.

4) N-leaching and the end of season residual soil-N. N-leaching
during the cropping season is calculated using the method of
Addiscot [13], and the residual N in the soil profiles is estimated
based on the measured initial status and input and output from

the soil during the cropping season.

The user may save the management set up for a specific crop,
iew or print out a report on the management plan and associated
redictions, and, on the full version, examine crop system dynam-
of Life Sciences 57 (2009) 93–100 95

ics (daily changes) in terms of plant canopy development, biomass
accumulation, and soil mineral-N and soil moisture changes.

2.3. The crop system models

2.3.1. Plant model
The core of the AmaizeN system is a daily time step simulation

model of plant–soil systems in response to variable weather con-
ditions and different management scenarios. The plant model is an
extension of the maize potential growth model of Muchow et al.
[4] and Wilson et al. [14]. In the model a maize variety is defined
by its number of leaves, the area of its largest leaf, and the thermal
durations of various phenological stages. Canopy development was
calculated according to the leaf area of each leaf and leaf appearance
rate multiplied by plant population. Biomass accumulation was the
product of the canopy intercepted solar radiation and radiation use
efficiency (RUE), which is affected by temperature. Biomass is par-
titioned to grain in the reproductive stage with a linear increase of
harvest index [4,14].

The changes to the original potential growth model were
detailed in Li et al. [15]. Briefly, they include the estimation of
the leaf area of the largest leaf of a variety (previously an input),
the addition of plant population effects on plant leaf area, and
the addition of a root system. Mechanisms to quantify crop water
and N demand and the effects of water and N limitations were
added to the potential growth model. Plant-N uptake was allocated
into four pools [16,17]: structural N, leaf-N, labile N, and grain-N.
Plant-N demand was calculated as the sum of the N demand for var-
ious plant tissue components. During the vegetative development
phase, N uptake was allocated to the N pools in a priority order of
structural N, leaf-N, and labile N. Under N limitation, the daily green
area index increment (�GAI) was reduced to what the N could sup-
port after meeting the needs of structural growth. Under extreme
N deficiency, leaf-N was remobilized and re-allocated, resulting in
a GAI reduction. During the grain-filling period, N movement was
driven by the demand of grain growth, and N in vegetative tissue
was remobilized and redistributed into grain. If N was insufficient,
labile N stored in the stem was remobilized to the grain rather than
new mineral-N taken up from the soil. When labile N was exhausted
and soil-N uptake was insufficient, leaf senescence was accelerated
to release more N for grain growth. This would result in a loss of
GAI and a subsequent reduction of biomass accumulation.

2.3.2. Soil moisture
Soil moisture and mineral-N dynamics were simulated using

the same method as in the Sirius wheat model [18], and are similar
to those in the CERES-Maize model [3]. Briefly, the amount of soil
moisture in the root zone was calculated as the balance between
water input (precipitation and irrigation) and output (evapotran-
spiration and drainage). Evaportranspiration was calculated using
the Priestley–Taylor method, and water percolation in the soil pro-
file was simulated using the method of Addiscott [13]. Within any
soil layer, water is present in three phases: unavailable (below
the lower limit of extraction), available immobile (between the
lower limit of extraction and the drained upper limit) and mobile
(between the drained upper limit and saturation). Plant available
water holding capacity per layer was defined as the capacity of the
available immobile phase, whereas actual plant available water was
the sum of available immobile and mobile phase in the root zone.
Moisture-stress effects on plant growth were modelled by reduc-
ing daily leaf expansion, accelerating leaf senescence, and reducing

RUE.

2.3.3. Soil mineral-N
Simulation of soil mineral-N dynamics included the mineraliza-

tion of soil organic-N, N-leaching coupled with water percolation,
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Table 1
Field crops with variable N-fertilization rates.

Site Crop Variety Sowing date Plant pop (×103 ha−1) Initial Na (kg ha−1) N-fertilizer rate (kg ha−1)b

Low Amaize Farmer High

2005–2006 season
Bay of Plenty B05 N59Q9 15/10/05 92 55 36 121 174 256
Gisborne G05 38P05 10/09/05 95 93 36 136 169 336
Hamilton H05 34D71 07/11/05 102 80 78 140 203 300
Manawatu M05 38P05 19/10/05 93 115 45 140 203 300
TeAwamutu T05 33J24 10/10/05 97 134 (189)c 119 257 399

2006–2007 season
Bay of Plenty B06 33J24 07/10/06 80 36 – 232 174 –
Gisborne G06 N4187 23/09/06 103 63 – 175 221 –
Hamilton H06 34D71 19/10/06 110 65 122 242 159 361
Huntly HL06 38P05 17/10/06 92 340 – 54 169 –
Hastings HS06 36H36 21/10/06 90 78 – 165 – –
Manawatu M06 38P05 23/11/06 93 122 – 82 174 –
Northland N06 36B08 15/10/06 87 91 – 152 198 –
Opiki O06 38P05 15/10/06 105 95 (278)d 220 174 335
Taranaki TR06 36M28 19/10/06 105 228 – 128 266 –
Waikato W06 36M28 14/10/06 97 114 – 73 188 –
Chertseye C06 Prinz 31/10/06 113 69 24 79 134 224

a Soil mineral-N content in a soil profile of 1.2 m prior to planting.
b Four N treatments: AmaizeN’s recommendation, farmer practice (Farmer), low N and high N.
c Since AmaizeN’s recommendation is lower than the farmer’s starter N-fertilizer application, another N rate between Amaize N and Farmer N was set, but not used as low
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treatment in the analysis.
d Farmer applied rate on all the sites, eliminating the possibility of low rate, so a
e The crop on the experimental farm received full irrigation and four N-fertilizer

n [15] for comparing different approaches in quantifying crop-N demand and N-de

-fertilizer application and estimation of gaseous N loss and plant-
uptake [18]. Plant-N uptake was driven by demand, but limited

y soil mineral-N availability. To accurately simulate soil mineral-
dynamics, determining the initial mineral-N content in the soil

rofile to a depth of 1.2 m is required. The mineral-N amount
kg N ha−1) in each soil layer was calculated according to the tested

ineral-N content (ppm) and soil bulk density. Whereas the impor-
ance of measuring mineral-N content in deep soil layers was well
ecognized, using the system without testing deep soil-N content
as favoured by potential users. To achieve this an approach was

ncorporated in the system for estimating soil mineral-N content in
he whole soil profile when only topsoil-N is determined. The esti-

ate was done using the general pattern of soil mineral-N profile
s well as actual measurements of topsoil-N. The general pattern of
he soil-N profile (median values of the soil mineral-N in each layer)
as drawn from an independent soil mineral-N data set from a sur-

ey of 63 maize fields across major maize-growing regions of New
ealand [19].

.4. Field experiments

The system was initially tested against four field-grown maize
rops [20]. In the present study a data set of 16 maize crops grown
cross a wide range of weather and soil conditions that received dif-
erent N-fertilizer treatments were used to validate the predictions
nd examine the effectiveness of the AmaizeN system (Table 1).
ost of the crops (except C06 and HS06) were grown on farmers’

elds and managed by farmers using their own standard prac-
ice, except for N-fertilizer application at side-dressing. The system
as designed to recommend applying all N-fertilizer required by a

rop in two applications, one at sowing and one in the V6 stage
s side-dressing. This approach is due to two factors. Firstly, N
ptake by maize from emergence through to the V6 stage only rep-

esents about 5% of the total plant-N uptake and rapid N uptake
akes place between the V8 stage and silking [9]. Secondly, plant
eight after the V6 stage makes it difficult to apply fertilizer with
ractor-mounted spreaders. Accordingly, different N rates were
ested in the field experiments by manipulating the amount of N
etween Amaize and high rates was decided in its place.
(the N rate in column ‘Farmer’ was not decided by farmers). The data set was used
ffects.

applied as side-dressing. At 7 of the farmers’ sites (Table 1), 20 plots
were marked out in a randomized complete block design for an
N-application experiment with 4 treatments and 5 replicates. The
treatments were: (1) AmaizeN-recommended N-application (des-
ignated AmaizeN), (2) farmer practice N (FarmerN), (3) low N, and
(4) high N. At the remaining seven farmers’ sites, two N-fertilizer
treatments, AmaizeN or FarmerN, were compared by designating
two AmaizeN strips within the otherwise farmer-managed field.
Plant and soil measurements were taken on six paired comparisons
of the two N treatments. Crops HS06 and C06 were on experi-
mental farms. Crop C06 (at Chertsey) was a randomized complete
block design for an N-application experiment with four treatments
and four replicates, whereas HS06 (at Hastings) received only one
N-fertilizer rate as per AmaizeN recommendation (six replicates).
Crop C06 was fully irrigated, but the other 15 crops were rainfed
only. Side-dressed N was applied as granulated urea. N-application
rates are summarized in Table 1.

2.4.1. Soil measurements
Soil samples were taken at each site prior to sowing and apply-

ing the starter fertilizers. The soil samples to determine mineral-N
were taken to a depth of 1.2 m in 30-cm increments. Five samples
were taken at each site. Total soil mineral-N (NO3-N and NH4-N)
was determined colorimetrically following 2 M KCl extraction [21].
An additional composite sample of twenty 0–15 cm cores was col-
lected from each site to determine basic soil fertility properties (soil
pH, P-Olsen, exchangeable cations, soil organic matter, total C and
total N), using standard methods. Following the grain harvest at
the end of the season, soil mineral-N was measured again using the
same method on a composite sample collected from the plant row
and the mid-row in each N-treatment plot at each site.

2.4.2. Crop measurements

Standing biomass and its N content at the time of silage har-

vest and grain harvest were determined. The plants in two adjacent
rows of 2.5 m length were counted and harvested; 10 plants were
retained and divided into live leaves, dead leaves, stem and ear,
which were subsequently weighed. To calculate dry matter content
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mulched subsample of each component was weighed fresh and
ven-dried at 70 ◦C until constant weight was reached. N content
f each subsample was determined using the Dumas combustion
ethod [22]. Total N was converted into crude protein content

%CP) using the standard conversion factor 6.25.

.5. Simulation control and data analysis

Actual crop management information, site-specific soil descrip-
ions, and weather data recorded during the season were provided
o AmaizeN for simulating all the treatments over the 16 crop
ites. Soil profiles were described based on the general soil type
ut adjusted using the pre-season measurements. Weather data
ere obtained from on-site or the closest weather stations (mostly
ithin 40 km from the experimental sites).

System predictions were compared with actual measurements
rom these crops, in terms of crop yield (silage and grain), silage %CP
nd harvest date, as well as the end of season residual mineral-N
ontent in the soil profiles. N-leaching during the cropping sea-
on was not measured; AmaizeN yields N-leaching data during the
ropping season using the soil model tested for N-leaching under
ther crops [13,23].

A one-way ANOVA was used to analyse the measured crop yield
nd the residual mineral-N in the soil profiles of each crop under
he different N treatments, and examine the effects of the N treat-

ents. Linear regression and root mean square deviation (RMSD)
ere used to compare AmaizeN predictions with measurements.
ll statistical analyses were done using GenStat 8 [24].

. Results

.1. Validity of AmaizeN predictions

.1.1. Crop yield

Measured standing biomass at silage harvest ranged from

5.1 to 27.2 t DM ha−1, and grain yields ranged from 7.9 to
4.5 t DM ha−1. The effects of N fertilization on both silage
nd grain production were statistically significant for 5 of the
4 measured crops (B05, G05, H05, B06 and TR06; Table 2).

able 2
tanding biomass at silage harvest under various N applications, and silage harvest date c

Crop Yield (t DM ha−1) Diff.a F.pr.

Low Amaize Farmer High

2005–2006 season
B05 21.4 24.7 27.2 26.8 0.004
G05c 18.2 22.2 22.4 22.4 0.001
H05 17.9 20.2 23.3 21.8 0.380
M05 16.7 20.5 20.5 21.9 0.070
T05 20.8 20.3 21.2 20.7 0.980

2006–2007 season
B06 – 24.5 22.2 – 0.010
G06 – 26.3 26.2 – 0.960
H06 26.6 27.0 27.0 24.6 0.247
HL06d – – – – –
HS06 – 23.9 – – –
M06e – 17.6 18.4 – 0.339
N06c – 21.3 22.7 – 0.520
O06 20.1 18.7 20.3 21.1 0.104
TR06 – 23.2 24.0 – 0.089
W06 – 24.6 23.6 – 0.608
C06e 17.1 16.5 15.7 16.5 0.574

a Statistical significance of the difference among N treatments (F-test probability).
b Days diff.: number of days between the predicted 1/3ML date and the actual date for s
c No silage harvest on crop G05 and N06. The silage yield was estimated from the crop
d Only grain yield was determined on crop HL06, with no statistically significant differe
e Harvest of crop M06 and C06 was early to avoid frost.
of Life Sciences 57 (2009) 93–100 97

Effects could not be tested for the two crops HL06 and HS06,
the first one having no silage harvest, the second one hav-
ing received only one N-fertilizer application. The silage (S) and
grain (G) yields predicted by the system matched well with
the corresponding measured values (M) (Fig. 3). The regres-
sions S = 2.7 + 0.91 × M (r2 = 0.77; p < 0.001; RMSD = 1.7 t ha−1) and
G = 2.5 + 0.79 × M (r2 = 0.51; p < 0.001; RMSD = 1.3 t ha−1) were not
significantly different (F.pr. > 0.2) from the regressions with a forced
slope of 1. The system slightly overestimated silage yield (0.7 t ha−1

on average) but not grain yield.

3.1.2. Crop N uptake and silage crude protein content
The model-predicted (P) crop-N uptake was significantly corre-

lated with measurements (M) (P = 75.6 + 0.702 × M, p < 0.0001), but
the prediction had a large deviation (r2 = 0.32, RMSD = 39 kg ha−1).
Results from the first year [20] showed that measured plant %CP
at silage harvest increased significantly with higher N-fertilizer
application rates, and that model-predicted plant-N uptake and
biomass accumulation can be used to predict %CP of maize silage.
Over the whole data set of 16 crops, the model-predicted maize
%CP at silage harvest was also significantly correlated with %CP cal-
culated from measured plant biomass and N content (p < 0.001),
but its predictability was weak with a large deviation (r2 = 0.28;
RMSD = 0.73%).

3.1.3. Silage harvest dates
The AmaizeN-predicted 1/3ML dates, actual silage harvest dates

and the DM% of harvested silage are shown in Table 2. For most
of the crops, DM% was in the range suitable for silage use. Three
crops, C06, M06 and TR06, harvested earlier than the 1/3ML date,
had a low silage DM%. Crop O06 was harvested markedly later than
the 1/3ML date, with a high DM% (Table 2). On the whole, DM%

increased with the number of days (D) harvesting was delayed
beyond the predicted 1/3ML date (DM% = 34.1 + 0.27 × D, r2 = 0.71;
p = 0.0006; excluding one outlier measured at T05). This relation-
ship suggests that the predicted 1/3ML date is a reasonably good
indication for the time to determine DM% for silage harvest.

ompared with 1/3 milkline date predicted by the model.

LSD0.05 (d.f.) 1/3ML date Harvest date Days diff.b DM %

3.2 (12) 09/03/06 14/03/06 5 37
1.8 (12) –
6.2 (12) 02/04/06 04/04/06 2 33
4.1 (12) 19/03/06 21/03/06 2 37
4.7 (12) 17/03/06 24/03/06 7 30

1.5 (5) 09/03/07 15/03/07 6 38
2.7 (5) 17/02/07 22/02/07 5 35
2.9 (12) 25/03/07 27/03/07 2 34
– – – –
– 13/03/07 06/03/07 –7 31
1.8 (5) 30/04/07 17/04/07 –13 31
5.9 (3) –
1.9 (12) 30/03/07 17/04/07 17 37
1.0 (5) 30/03/07 26/03/07 –4 31
4.5 (5) 19/03/07 27/03/07 2 36
2.2 (9) 28/04/07 12/04/07 –16 30

ilage harvest. A negative number indicates actual harvest before the predicted date.
biomass at grain harvest (harvest index = 0.5).
nce between AmaizeN and farmer’s rate (7.8 and 7.9 t ha−1, respectively).
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irrigation applied to this crop. It was also suggested that N-leaching
occurred mainly early in the maize cropping season when rainfall
exceeded evapotranspiration, nitrate was already in the soil pro-
Fig. 3. Comparison of mean measured silage (a) and grain (b) yield with yi

.1.4. N-leaching and the end of season soil mineral-N
More N-fertilizer generally resulted in higher residual soil

ineral-N contents at the end of the cropping season (Table 3).
he differences in residual soil mineral-N between the HighN and
owN treatments were statistically significant (i.e., <LSD0.05) for
ve of the eight crops that received four N treatments (B05, G05,
05, H06, and O06; Table 3). However, the differences between
maizeN and FarmerN treatments were not statistically significant

i.e., >LSD0.05), except at two sites (H06 and O06). These non-
ignificant differences between AmaizeN and FarmerN might partly
e related to the higher plant-N uptake and the increased N emis-
ion and leaching under the higher N-fertilizer rates. In addition, the
umber of soil samples may have been insufficient to account for
oil heterogeneity and possible unevenness of applied N-fertilizer
as shown by the large standard errors in Fig. 4).

Prediction of the total amount of residual soil mineral-N at
arvest was more important than prediction of N-leaching dur-

ng the cropping season, because most drainage and N-leaching in
ew Zealand’s major maize-growing regions occurs during win-
er time when precipitation exceeds potential evapotranspiration
25]. Using the measured pre-planting soil mineral-N profile, the
maizeN-predicted soil mineral-N profile at the end of the cropping
eason matched the end of season measurements (Fig. 4). There was

able 3
esidual soil mineral-N contents (kg ha−1) in the profile to a depth of 1.2 m under
ifferent N treatments at the end of crop season.

Crop Low Amaize Farmer High F.pr. LSD0.05 (d.f.)

B05 34 44 49 51 0.061 13 (11)
G05 62 63 72 124 0.057 50 (12)
H05 55 52 73 110 0.001 14 (12)
M05 81 87 92 94 0.757 27 (12)
T05 166 120 159 182 0.593 99 (12)
B06 – 35 32 – 0.394 9 (5)
G06 – 44 86 – 0.146 63 (5)
H06 108 219 138 265 0.021 102 (12)
HL06 – 180 213 – 0.172 59 (3)
M06 – 167 120 – 0.084 55 (5)
N06 – 68 85 – 0.173 28 (5)
O06 (104) 114 82 158 0.084 27 (12)
TR06 – 150 225 – 0.261 154 (5)
W06 – 50 82 – 0.098 41 (5)
C06 57 77 61 75 0.467 34 (9)

ote: Pre-planting N (in Table 1) is the same across all N treatments at a site, so it
s not included in the analysis. No mineral-N measurements at site HS06, and the

easurement at C06 was only to 90 cm.
redicted by the AmaizeN for 16 maize crops under different N treatments.

a statistically significant linear correlation between the predicted
and measured values (r2 = 0.47; p < 0.001), but the prediction had
a large deviation (RSMD = 51 kg ha−1). This deviation might have
reflected inherent within-field variability and inevitable model
compromises with actual crop conditions. The model predicted that
the soil mineral-N distribution profile under different N-fertilizer
rates also matched field measurements reasonably well [19].

AmaizeN also gave an estimate of N-leaching (passing beyond
a depth of 1.5 m) during the cropping season. No N-leaching
data were collected in the experiments. The model-predicted N-
leaching showed that statistically significant N-leaching during the
maize cropping season occurred under a few crops only (Fig. 5),
which was related to stormy-rainfall events (e.g., G05 and O06), or
to a high soil mineral-N content, especially in the deeper soil lay-
ers (e.g., TR06 and HL06) at the beginning of the cropping season.
N-leaching of crop C06 in the early season might be related to the
file, and the crop roots were shallow and not yet able to recover all
the N. Except during a heavy-rain event, N-fertilizer applied as side-

Fig. 4. Comparison of simulated and measured mineral-N contents in the soil profile
to a depth of 1.2 m at the end of the season. The vertical bars are one standard
deviation, and the diagonal is the 1:1 line (the results on the peaty soil sites are
excluded).
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ig. 5. Simulated N-leaching dynamics under the experimental crops. Except for
he five labelled crops, the leaching was <5 kg N ha−1.

ressing to the rainfed maize crops studied would not have leached
eyond a soil depth of 1.5 m, but would increase the N retained

n the soil profile at the end of the season, thereby increasing the
-leaching risks in winter.

.1.5. Effectiveness in recommending N-fertilizer applications
The AmaizeN-recommended N-application rate was higher than

he farmer’s rate (FarmerN) in three crops: B06, H06 and O06
Table 1). This higher N rate resulted in a significantly higher yield
f crop B06, but not of crops H06 and O06, which were on peaty
oils (Table 2). For crop N06, the AmaizeN-recommended rate was
he same as FarmerN (152 kg N ha−1), so in that case a higher N
ate was applied on the experimental strips (198 kg N ha−1), which
ave no yield increase as expected. For the remaining 10 crops
n farmers’ properties, AmaizeN-recommended N rates averaged
5 kg N ha−1 less than FarmerN, but caused no statistically sig-
ificant yield reductions (p > 0.05 for the 10 crops, Table 2). The
ffectiveness of AmaizeN in calculating N-fertilizer demand was
hown clearly in two crops: W06 and TR06. These received 115 and
38 kg N ha−1, respectively, as side-dressings, using farmer man-
gement, but received none in the experimental strips according to
maizeN recommendations. No difference was found in crop yield
etween the two N treatments in these two crops (Table 2).

. Discussion

.1. The plant–soil system model

N-deficit effects on maize growth were modelled by reducing
AI, similar to the methods used in the wheat models of Sinclair
nd Amir [16] and Jamieson et al. [17]. Experimental measurements
ave shown that both GAI reduction and specific leaf-nitrogen
SLN) dilution occur under N limitation, but maize was more sensi-
ive to SLN dilution [26,27]. However, model-predicted crop yield
nd N uptake were insensitive to the methods used for quantifying
-deficit effects, either by reducing GAI only or by reducing both
AI and SLN, because the effects of GAI reduction and SLN dilution
n biomass compensate for each other [15].
AmaizeN slightly overestimated the silage yield, but not the
rain yield. It appears that the harvest index (HI) was higher than
he value of 0.5 that was assumed in the model [4]. For all crops with

easurements of silage, grain and final biomass, the pooled aver-
ge HI was 0.52. The model-predicted 1/3ML date based on thermal
of Life Sciences 57 (2009) 93–100 99

time gave a reasonably good indication to farmers of the time for
preparing for silage harvest, but incorporating in-season weather
factors (e.g., rainfall or soil moisture conditions) in the forecast-
ing processes would improve the prediction, because wet and cool
weather may slow down the crop dry-down rate [12].

The different N-fertilizer application rates had only statistically
significant effects on the yield of 5 of the 14 crops studied. The
non-significance suggests that more than required N-fertilizer had
been applied on many crops. For crop sites that received only
two N-fertilizer rates (AmaizeN and FarmerN) the yield differences
were mostly statistically significant (except for crop B06, Table 2),
providing evidence that AmaizeN was effective in recommending
N-fertilizer application rates since most of AmaizeN rates were
lower than Farmer’s rates.

The results show that the AmaizeN system did not work well
on peaty soils. The estimated reference mineralization rate of soil
organic-N appeared to be biased in these instances when using the
semi-mechanistic model of N mineralization [18,28]. More research
is needed on the N processes in peaty soils for application of the
system in these situations.

4.2. Balance accuracy and convenience

To turn a simulation model into a model-driven decision sup-
port system, accurate simulation of the soil dynamics and crop
growth is only one aspect. An appropriate compromise between
accuracy and convenience of use is necessary. The prediction of
the AmaizeN system was very sensitive to soil parameters, espe-
cially those describing soil-water retention characteristics. This
matched the results of the simulation research of Lawless et al.
[29]. Using an accurate description of the soil profile based on mea-
surements at a given site, including measuring pre-planting soil
mineral-N to a depth of 1.2 m, will give the most accurate pre-
dictions of yield and environmental impact, but is laborious. In
response to the requests of users to reduce the number of soil mea-
surements required to set up soil profile descriptions, generalized
soil types were deployed within the system. Additionally, a general
pattern of soil mineral-N profiles in maize-growing regions was
built into the system; these were used to estimate soil mineral-
N in the subsoil (below 30 or 60 cm) if only N in the topsoil
(to 30 or 60 cm) was determined [19]. The estimation using this
method was reasonably good. For the 15 field sites (one site was
excluded where N was measured to 90 cm), when soil mineral-N
was measured to a depth of 30 cm, the estimated soil mineral-N
for a profile of 1.2 m matched well with measured values at the 12
sites (RSMD = 23 kg N ha−1, RSMD/mean = 19%); when measured to
a depth of 60 cm, the match was improved (RSMD = 16 kg N ha−1,
RMSD/mean = 13%). The larger deviation of the estimated compared
with the measured soil mineral-N content at the three other sites
was due to significant differences in their soil mineral-N profiles
from the ‘median’ pattern. More accurate estimates of soil mineral-
N deep in the soil profile may be achievable by incorporating soil
types and previous land use history into the estimation meth-
ods [19]. The reduction of system parameter inputs, which was
requested by users, did sacrifice some accuracy but was expected
to increase user adoption of the system.

4.3. Simple user interface

The user interface and functionalities of the AmaizeN system
evolved during its development, culminating in two versions. All

the system functions of the light version (AmaizeN Lite) are acces-
sible in the full version. However, users strongly prefer the light
version, which provides a simple interface and a limited number
of functions. One of the major functions of the AmaizeN system is
to simultaneously generate N-fertilizer and irrigation application
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chedules during the cropping season, using up to date weather
ata and incorporating up to date management applications. Users
an let the system generate N-fertilizer application schedules for a
ropping season by specifying ‘schedule for nitrogen’ only, ‘irriga-
ion unavailable’, and ‘new schedule’ (meaning a schedule for the
hole cropping season, and not for the period from a date during

he cropping season). But these operations and the grid used for
rrigation schedules on the interface were considered complex and
edundant for users who grow rainfed maize crops.

Another function of the AmaizeN system is allowing user to
djust plant silking date. That is, user may adjust the silking date
uring the season to align system prediction with reality. This is

mportant for the prediction of crop maturity for silage harvest,
specially if the variety information is not complete (e.g., using a
RM range to approximate the variety). But this function is not

avoured by most of the users who are interested only in N-fertilizer
pplication schedules. Deployment of limited functions on a simple
ser interface has enhanced the uptake of this technology.

. Conclusions

The AmaizeN-predicted maize silage or grain yields matched
easured yields well, and gave reasonably good prediction of silage

rude protein content and silage harvest date. The system was also
apable of estimating N-leaching during the crop season and pre-
icting residual soil mineral-N at the end of the season, but more
esearch is required to improve the accuracy and precision of some
redictions. Using the tool to quantify crop N-fertilizer requirement
esulted in more efficient and environmentally sound N-fertilizer
anagement. A reasonable compromise between system predic-

ion accuracy and convenience of use, and incorporation of local
gricultural production conditions are necessary for effective user
doption of the system.
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