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Abstract

We establish a connection betweer: the Khatri-Rao and Tracy-Singh products in-
troduced’ by Khatri and Rao (C.G. Khatri, C.R. Rao, Sankhya 30 (1968) 167-180) and
Tracy and Singh (D.S. Tracy, R.P. Singh, Statistica Neerlandica 26 (1972) 143-157).
respectively, and present further results including matrix equalities and inequalities
involving the two products. Also. we give two statistical applications. © 1999 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The Hadamard and Kronecker products plav an important role in matrix
methods for statistics and econometrics, see e.g. [1-3]. Relevani io these two
matrix products the Khatri-Rao product for partitioned matrices. see [4.5], is
claimed to be a generalized Hadamard product. Rao and Kleffe [6] hus com-
piled several matrix equalities involving the Khatri-Rao product. which seem
to be most existing resuits. Liu [3] has recently given a further result. The
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Tracy-Singh product. introduca¢ also for partitioned matrices and used in an
application to econometrics by Tracy and Singh {7}, is a generalized Kronecker
product.

The purpose of this present paper is to study matrix results on the Khatri-
Rao and Tracy-Singh products. In Sectior: 2 we introduce the definitions of
the four above-mentioned products. and several elementary results. In Sec-
tion 3 we cstablish a connection between the Khatri-Rao and Tracy--Singh
products and present matrix inequalities invclving these two products. In
Section 4 we discuss statistical applications of some of the obtained res:lts of
Section 3. We complete the paper with a final section of concluding rersnirks.

2, Elementary resuits
2. 1. Definitions and equalities

We introduce the definitions of four matrix products, namely the Krone-
cker. Hadamard, Tracy-Singh and Khatri-Rao products, and then give several
cqualities involving the Tracy-Singh and Khatri-Rao products.

Consider matrices A = (a;;) and C = (¢;;) of order m x n and B = (by) of
order p x q. Let A = (4;;) be partitioned with 4;; of order m; x n; as the (i, /}ih
block submatrix and let B = (By,) be partitioned with By, of order p; x g, as the
(k.1)th block submatrix Q- w, =m, Y nj=n Y. po=pand Y. q: =¢). The
four matrix products of A and B are defined as follows.

1. Kronecker product

A B=(a,B),.

where a;; B is of order p x ¢ and A - B of order mp x nq.
2. Hadamard product

A C = (),

where a;,¢;; 18 a scalar and A © Cis of order m x n.
3. Tracy--Singh product

AoB= (4,0 B),‘,‘ = ((dy; B“)kl)ij'

where «,; = By is of order myp, x n.q,, A;; 0 B of order m;p x n,q and 40 B of
order mp X ny.
4. Khatri-Rao product

.‘\ * B fems (A,-, B,’,')'--

I

where 4, o B, is of order myp; x nyq; and 4 + B of order (3_mp) x (3 nq;)-
Note that Tracy and Singh'’s [7] definition of the Tracy-Singh product is to

placc Ao By = (4,0 By) as the (k./)th block submatrix of AcB. For a
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non-partitioned matrix B, their A o B is A © B. The new definition advocated
above of the Tracy-Singh product is different and is given in such a way
{(similar to that the right Kronecker product is defined): 4,0 B = (4;, @ By) is
located as the (i. j)th biock submatrix. In fact. our theorems to be presented in
the sequel remain the same for the two definitions, which link each other, of the
Tracy-Singh product. However, we prefer to use the new definition. We see
that for non-partitioned matrices A and B both A o B and A B yield the
Kronecker product. For C={(c¢;;) where ¢;; is a scalar, we have

CoB=(c;0R),; = ((c; @ Bu)y), = ((cyBuly)y = (¢iB); =C 2B
and
C«B = (c;8;)

which can be viewed as a gencralized Hadamard product. We have the
following results on the Tracy-Singh and Khatri-Rao products.

Theorem 1. Let A, B, T, D, E und F be compatibly partitioned matrices, then
(a) (A e 3)(D o E) = (AD) o (BE)
(b) (Ao B) = A" oB" jor the Moore-Penrose inverse
(¢) A=B #BxA in generul
(d) C B =B xT where C = (¢;) and ¢; is a scalar
() (A+B) =A'«B
DA+D)+*B+E)=AxB+A«xE+D«xB+D+E
(2) (AxB)#F = Ax (BxF)
iMiA+*B) 2 (D+xE)={(A~ D)« (B E)

Proof. Straightforward. 0
2.2. Miscellaneous results

We introduce several known results including Alhort’s theorem (to be
employed tc derive most of new results) and the others {to be generalized in
Section 3). Without loss of generality, we consider

A:(A“ Au)’ BE(BH 3!:) n
An Az By B2
where A,An, Alg./fgl.Ag:, B. B“, Bg;gQBg; an{i B~ are »r 5. my X g, my X no,
By X My, My X Hae PX G, Py X G, DX qa. pr X g and pr X g (my + i = m,
m na=n, py+ pr = pand g, + ¢- = ¢) matrices, respectively.
Furthermore we denote special matrices M and N as follows

'll'..
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My My Nu Np
M — ( il 12), N = ( l,l !-)’ 2)
Mlz M), le N»
where M, M|, Ma;, N, Ny and Ny are m X m, my X my, my X ma, p X p, p1 X py

and p» % p» symmetric matrices respectively, and M), and N, are m; x m, and
P X p» matrices, respectively.

We write M > P in the Lowner ordering sense, which means M—P >0 is
positive semidefinite, for symmetric matrices M and P of the same order. Al-
bert’s [8] theorem, see also Refs. [9] or [10], asserts that: M > 0 if and only if
My =20,M: = MnMﬁMjg and M, ~ MpM”Mp =2 0. In particular, M > 0 if
and only if M,, > 0 and M» — M],M;'M}; > 0. Trenkler [11] established an
elegant result on the Kroaecker product, see also [12]

M= Pisequivalent tc MM > PP, (3)

where M= 0and P > 0.
Faliva {13] seems to be the first one to observe the following connection
between the Kronecker and Hadamard products, see also e.g. [3]

JARCOK=A0C, (4)

where A and C are of the same order m x n, in general; J is the m?> x m selection
matrix and K is the n” x  selection matrix. Browne [14] early used the equality
when J = K with m = n.

Amemiya’s [15] inequality on the Hadamard product is

AAGCC= (A aC)ABC), (5
where A and C are of order.m x n.
Schott’s [16] Theorem 7.22 imphes that: if M > 0 is positive semidefinite
with positive diagonal elements, then
N > 0 implies MG N > 0. . (6)
Liu [3] presented

M = 0 implies M+ M = 0. €))]

A well-known result on the Kronecker product, which can be viewed as a
special case of Theorem 1(a), is as follows

(A B)(DE) = (AD} 3 (BE). (8)
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3. Maian results

3.1. Ca the Tracy-Singh product

Theorem 2. Let M>P>0,N>Q >0, and M,P,N and Q be compatibly
partitioned matrices, then

MoNZ=PoQ =0, 9

M > P is equivalent to MoM = PoP. (10)

Proof. To establish Eq. (9) we first consider M o N with Af;; o N:

J
Mon = (MreN Mo

Mj,oN MpoN
M ®Ny M, ®N;

MyjoN= .
8 \ My @ N, Mu®N22)

We prove the following statements ), (ii) and (iii). —

(1) M oN>20: Because N >0, Aibert’s thé¢srem ensures that
N]] = O,Ngz —N{ZN;;NQ = 0 and N[z =N[1N?ii\r,2. Civen MH = 0, we get
Mj; o N = 0 by using Eq. (8) and Albert’s theorem.

(i) MpoN-—(M],oN}(M;oN)"(M;oNY>0: It follows from using
Theorem 1 (b) and (a), My — M[,M{ M 2 G. N = 0 and (i) above.

(iii) M2 0N = (My; o N)(M;; o N)" (M5 0o N): By virtue of Theorem 1 (a)
and (b), we establish

MpoN= M”MﬁMlg oNN*N = (t'vf“ o N)(M“ e] N)+(M;2 o N).
Then, by Albert’s theorem based on (1), (ii) and (iii) we obtain
MoN=20 forM>=0 and N> 0.

Furthermore, this result implies that

PoQ>20MoN~-PcQ=MocN-MoQ+MoQ-PoQ
=Mo(N-Q)+(M—-P)oQ>0.
To prove Eq.(10) we notice that MoM>PoP for M>P. Also,
MoM>PoP implies {xox)(MoM)(xox) > (xox)(PoP)(xox), ie.

(xMx)? = (xPx)?, and therefore xXMx = x'Px. for M > 0,P >0 and any
compatible vector x. Hence, M=P. U
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If we replace the Tracy-Sigh product by the Kronecker product, Eq. (10)
turns to be Eq. (3), which is given by Trenkler [i11].

2.2, Connection between the Khatri-Rao and Tracy-Singh products

To establish Theorem 3 we define the following selection matrices Z; of
order k x r and Z» of order ng x &

h 0, 0y O )' Iy 0p 0 0
Zy = , o= , i1
' ( 0 0 0 5 ’ ( ¢ 0 0 122) (1

wherq Z:Z; == l; and lez;g =£2 with Ilhlgg,.[\_‘;,lgg,!} and Hg b&lﬂg mpmp X

mpy, Mapr X #ypy, Mgy X mgy, naga X maga, v X ¥ and ¢ x ¢ identity matrices
(k=mp, m=m;+my, n=n+ny, p=p +p, §=q+q, r=mp +mp,
and : = mq, + n2qa), and 0;;, 05, 0,2 and 0y, being myp; X mypy, mypy x mypy,
mq; x mq, and mq, X n»q; matrices of zeros.

Theorem 3 Let A and B be partitioned as in Eq. (1) and M and X be partitioned
as in Eq. (2), we have

AxB=Z|(AoB)Z:, {(i2)
and
Mx«N=Z'(MoN)Z, (13)

where Z, and Z, in Eq. (11) both become the k x r selection matrix & with
ZZ=VN.,asl =1 andl =L withm;=n; and p; = ¢;, i = 1,2.

Proof. Using the definitions of the Khatri-Rao and Tracy-Singh products. we
establish Theorem 3. [J

Obviously, Eq. (12) generalizes Eq. (4), a result in Ref. [13}, and Eq. (13)
generalizes the result of Browne [14].

3.3. On the Khatri- Rao product

Theorem 4, Let A and B be partitioned as in Eq. (1), then
A'AxBB = (A +xB)(A«B). (14)

Proof. Using Eq. {(12) and Theorem 1(a), and noting that I, > Z;Z, we derive
Eq. (14). O
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For the Hadaiiard product, Eq. (14) reduces to Eq. (5), which is due to
Amemiya {15].

Theorem 5, Let MZ2P2>20,N>Q 20, aid M,P,N and Q be compatibly
partitivned matrices, then

M«sN2PxQ =0 (15)
Let M be partitioned as in Eq. (2) with My, £0 and M» £0, then
M > 0 is equivalent io M+« M 2 0. (16)

P.oof. Using Egs.(9) and (13) above we prove Eq.(15). Clearly,
M > 0 implies M« M > 0. We prove that M xM > 0 implies M > 0 below.
As

MMy M M
M*Mz( T n Mp® :-)20,

M, @M, MpQM;
Albert’s theorem guarantees
My @M, 20,
My @ My — (Mi, ® M},)(My © My) (Miz ® Mya) 2 0,
My ® My = (M- @ My ) (My @ My) (M2 @ M)
Then using Eq. (3) leads to

My 20,

My ~ ML,M M2 20,

My = MM\ My,
ieM>20 O

Here Eq. (16} is stronger than Eq. (7) given by Liu [3].

Theotem 6. Let M = 0 such that My > 0 and My > 0, then
N> 0implies M+xN>0.

Froof. Use Albert’s theorem. O

We mention that Theorem 6 is an extension of (6) by Schott [16].

Theorem 7. IfM = 0 and My, = My = My, then
M« N > 0 is equivalent to My; > 0 and N > 0. (17)
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Proof. Use Albert’s theorem. O

Theorem 8. Let M > Q and N > 0 be m x m and p x p positive definite mairices
partitioned as in Eq. (2), I be a rxr identity matrix, r=mp + mxp,
m=my +ma, p=p;+p2and k = mp, then

(M+N)"' <M «N} (18)
-1 <(Ai+/k) -l /
M s«NTg Y (M« N)™"; (19)
MxN- M7 «NY'<(Vi - Va)'s (20)
(M = N)* < M2 % N (21)

( 4+
M 4ﬁ.;lk (M “"i) (22)
(M N)? — M2« N> L (4 = 4L (23)
M N< (M« N2, (24)
M2 N2 g 22 v (25)
‘,4}, Ak
2 2\ 4/2 ¥ i;f )
(M2« N2 - M Ng 220 (26)

4(/| +—/ﬁ

where Ay = --- = A are the eigenvalues of Mo N of order k x k.

Proof. We obtain Theorem 8 by using Eq. (13), and replacing H by Mo N > 0
and X by Z of Eq. (13) in the following inequalities, see e.g. {3]:

(X'HX)™' < X'H'X;
(A + Ae)’

g1y < . - -1,
XH'X < Y (X'HX) s
XHX - (XH'X)" < (VA - VAL
(X'HX) < X'HX;

4414
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X'HX - (X'HX)* < Zl;{},; — i)k

X'HX < (X'HXX)V%,
2 A+ A

X'H*X X'HX;

R N/

X'HX)V? XHX<L*j£I
( X) 4(4; + /k)

where H > 0 is a k£ x k matrix with cigenvalues 4, > --- 2 4 >0, and X is a
k » r matrix such that XX =1. O

4. T'wo applications

Sims et al. [17] has considered estimation and hypothesis testing in iincar
time series regressions with unit roots. Chambers et al. [I8] has discussed
limited information maximum likelihood estimation for analysis of survey

* data. They derived respectively two variance matrices which contain a Khatri-
Kao product. We will find sufficient (and necessary) conditions for the two
variance matrices to be stricily positive definite, which they did not study.

The first variance matrix can be written as

Y=-0+W

where;

W

z
"""(z )
(N um\
B rgf', rz["zj

tv

>0, I >0

For the definitions of the relovant submatrices above and detail background,

see Refs. [17,19]. Obviously, Theorem 5 ensures in an algebraic approach that

Y20,as 2=>0and W > 0 (both due to Albert’s theorem). In practice, an

important question is to examine when ¥ > 0 is positive definite. By using

Eq. (17) in Theorem 7 we get the answer: ‘P > 0 1s equivalent to X > 0 with

W>0,ie Z>0with Il — I‘ZF'(F. "y 'MI > 0, as [T, > 0 is assumed.
The second variance matrix is

A=P=xQ,

where
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R R h ¢
Pz(R 15)20’ Q=(c Z)’

R=L-1/N1,2, >0, N>n+1, h>0 is a scalar, 2>0 is a
(g + 1) x (g + 1) variance matrix, cis a (¢ + 1) x I vector.

Also, Chambers et al. {I8] uses #, = h - ¢'Z !¢ (which is a scalar), and
contains necessary details. We are interested in when A > 0. Based on Theorem
6, we specify A > 0if y; > 0 which is equivalent toQ > 0as 2 >0(41 20,40,
if 1 = 0). Such a (sufficient) condition is useful and efficient because it is quite
easy to check.

5. Concluding remarks

{. The results in this paper are related to those on the Kronecker and
Hadamard products or more general than some of them. We have only two
applications of the results on the Khatri-Rao product and expect to have
more.

2. Theorem 3 is an extension of the connection between the Hadamard and
Kronecker products, which is effective to be used in deriving results of the
Hadamard product based on those of the Kronecker product, see e.g. [3].
Similarly, applying Theorem 3 we can derive more inequalities involving the
Khatri-Rao product from those involving the Tracy-Singh product based on
matrix results like the inequalities satisfying such as X'X =1 used in e.g. The-
orem 8. See also Theorem 4.

3. Aibert’s theorem plays an essential roie inn deriving our results, especially
Eqgs. (9) and (16).
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