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Abstract 

We prove that the endpoint visibility graph of a set of disjoint segments that satisfy one of 
two restrictions, always contains a simple Hamiltonian circuit. The first restriction defines the 
class of independent segments: the line containing each segment misses all the other segments. 
The second restriction specifies unit lattice segments: unit length segments whose endpoints 
have integer coordinates. 

1. Introduction 

It has been conjectured [2] that the visibility graph for a set of non-collinear 

disjoint line segments always contains a simple Hamiltonian circuit.’ Mirzaian first 

proved this for what we call hulled segments: segments each of which touches the 

convex hull of the segments [2]. Later we found an alternative proof of this result [4]. 

In this paper we prove the conjecture for two more classes of segments, which we 

call “independent segments” and “unit lattice segments.“3 A set of segments is called 

independent if for each segment s in the set, the line containing s does not meet any 

other segment in the set. The proof for this class is not difficult. A set of unit lattice 

segments are disjoint segments with endpoints on the integer lattice, and each of unit 
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*This conjecture has been formulated by several researchers independently of Mirzaian [Z]: Toussaint 

[7], and (later) in [4]. Circuits through line segments were first studied in 1985; see [6]. 
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length (so all segments are vertical or horizontal). Our proof for this case is more 

involved, but still elementary in the tools employed. 

We now define the visibility graph more precisely. The endpoint visibility graph (or 

just visibility graph) G of a set S of closed, disjoint line segments has a node for each 

segment endpoint, and an arc between two nodes x and y if [x, y]nS={x, y} or 

[x,y]: the intersection is either just the two endpoints, or the entire closed segment. 

We say that the two endpoints x and y are visible to each other, or that they see each 

other. Note that visibility is blocked by even grazing contact with a segment, but that 

G contains an arc corresponding to each segment in S. 

A simple Hamiltonian cycle is a Hamiltonian cycle embedded in the plane that does 

not touch itself: it corresponds to a simple polygon. Under our definition of visibility, 

the graph for a set of collinear segments does not contain a Hamiltonian cycle, so we 

will exclude this case when appropriate.4 

2. Independent Segments 

We first prove Hamiltonicity for sets of independent segments. An example set is 

shown in Fig. 1. 

Theorem 2.1. For any set S of n > 1 independent segments, there exists a circumscribing 

Hamiltonian cycle C in the visibility graph of S such that every segment on the convex 

hull of S is included in C. 

Proof. First, we show the base case, where n = 2. Since the two segments are indepen- 

dent, both segments must lie in their convex hull. Therefore there exists a Hamiltonian 

cycle that follows the convex hull, includes both segments, and is circumscribing. 

We assume that our theorem is true for up to n- 1 segments. Now suppose that 

S contains n independent segments. For s E S, let L,= {s} u {s’ E S Is’ is left of s} and 

R, = (s} u {s’ E S Is’ is right of s}. Choose an s E S such that neither L,= {s} nor 

R, = (s}. If no such s E S exists, then for all s E S, s is on the convex hull of S. In this case 

we can find a Hamiltonian cycle C such that C follows the convex hull of S, and 

therefore includes every segment in S and is circumscribing. 

Otherwise, suppose L= L, contains k segments. Then 1 < ktn. R= R, contains 

n - k + 1 segments, and 1 < n - k + 1 < n. So there exists a circumscribing Hamiltonian 

cycle CL of the set L such that every segment on the convex hull of L is included in CL. 

Similarly there exists a circumscribing Hamiltonian cycle CR of the set R such that 

every segment on the convex hull of R is included in CR. See Fig. 1. Now remove 

s from both CL and CR and then glue CL and CR together. Since s had at least one 

4Collinear segments are hulled; unit lattice segments might be collinear. 
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Fig. 1. Independent segments, with paths shown before the final merge. The first partition is the line 

containing d, the second through b, etc. After the first partition with s=d, L,= {a, b, c, d), and 

R,={d,e,f,y,kLj}. 

segment to its right and at least one segment to its left, s is not on the convex hull of S. 

So we have a circumscribing Hamiltonian cycle C of S such that every segment on the 

convex hull of S is included in C. 0 

Fig. 1 shows a set of independent segments, along with the Hamiltonian cycle 

implied by viewing the above induction proof as a recursive algorithm. It should 

be clear from the proof that we do not need the line containing every segment 

of S to partition the set: we only need at each stage at least one segment with this 

property. One could base an alternative definition of independence on this observa- 

tion and still prove our result, at the cost of defining a somewhat unnatural class of 

segments. 

2.1. Algorithm 

There are two algorithmic issues: determining if a set of segments is independent, 

and running the recursive algorithm implied by the proof. The recursion leads to an 

O(n2) algorithm if applied naively, as there would be no guarantee that the dividing 

segment chosen splits the sets into balanced halves. This algorithm can be improved 

by using half-plane range searching algorithms to split more intelligently. For 

example, we can achieve O(n3j2 log n) by using a result of Matousek and Welzel [3]. 

They show how to preprocess points in O(n 3’2 log n) time so that queries asking for 

the number of points above a line can be answered in O(& log n) time. With n such 

queries, we could find a segment whose line bisects the set of segments. So we obtain 

the recurrence T(n) = 2T(n/2) + O(n 3/2 log n), whose solution is T(n) = 0(n3/’ log n). 
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Perhaps more interesting is checking for independence. We can easily perform this 

check in O(n’) time, by checking for each segment whether its containing line meets 

any other segment. This algorithm can be improved by using techniques for process- 

ing the segments for ray shooting. For example, a result of Agarwal [l, Theorem 6.11, 

p. 2241 results in an O(n3” polylog n) independence testing algorithm: preprocess the 

segments in O(n 3/2 log” n) time (w < 4.33), using O(JI~‘~) storage, and then shoot a ray 

along each segment forward and backwards, at a total query cost of O(n3j2 log’n) 

time. 

We leave it open whether these algorithms may be improved to o(n3”). 

3. Unit lattice segments 

Let S be a set of n unit lattice segments. We say that a column of the integer lattice is 

nonempty if at least one endpoint of a segment s E S lies in the column, and we can 

number the nonempty columns 1,2,. . ., m from left to right, where m is the number of 

nonempty columns. Additionally, we say that ai is the ith segment endpoint from the 

bottom in column a. 

Unit lattice segments are “almost” independent, and it is likely that a recursive 

algorithm is possible, similar in spirit to that just presented for independent segments. 

However, there are a number of complications not present with independent seg- 

ments, and we have chosen a more direct construction. 

Our proof proceeds in three stages, each removing assumptions from the previous 

stage. First we assume that each column contains at least two endpoints, and there are 

an even number of columns. This permits a simple monotone oscillating path, 

discernable in the first 10 columns of Fig. 2b. Second, we remove the assumption of an 

even number of columns. The last odd column is integrated into the path by 

zigzagging horizontally; see column 11 of Fig. 2b. Finally, we remove the assumption 

of at least two endpoints per column, and consider sections of one endpoint per column. 

We begin by proving two lemmas necessary for the basic oscillating path. 

3.1. Top and bottom edges 

The top and bottom edges between two columns will be used to connect column 

2j- 1, to 2j, 1 <j <m/2. In Fig. 2, columns 1-2, 34, 5-6, 7-8, and 9-10 are so 

connected. 

Lemma 3.1. Let S be a set of na 1 unit segments. For all adjacent columns a and 

b=a+ 1, with 1 <a<m, the top endpoints in columns a and b are visible to each other, 

and the bottom endpoints in columns a and b are visible to each other. 

Proof. Let Ui, bj be the top endpoints in columns a and b, respectively. Suppose ai and 

bj do not see each other. Then there exists some segment s that blocks visibility 
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Fig. 2. (a) A set of segments with at least two endpoints per column. (b) Hamiltonian path constructed by 

algorithm. 

between ai and bj. So some part of s must lie between columns a and b. Thus, s must be 

horizontal, with one endpoint a, in column a and one endpoint b, in column b. Since 

s must block visibility between ui and bj, either a, lies below ui in column a and b, lies 

above bj in column b, or a, lies above ai in column a and b, lies below bj in column b. 

Both of these are contradictions, since a, and bj are the top endpoints of columns 

a and b, respectively. Therefore, Ui and bj see each other. 

Similarly, the bottom endpoints of columns a and b are visible to each other. 0 

3.2. Isthmuses 

We define an isthmus to be a pair of disjoint visibility edges, (ai, bj) and (Ui+ 1, bj+ 1), 

between two adjacent columns a and b = a + 1, where ai and ai+ r, and bj and bj+ 1, are 

adjacent in their respective columns. Isthmuses will be used to connect column 2j to 

2j + 1, 1 <j <m/2. In Fig. 2b, isthmuses connect columns 2-3, 445,6-7 and 889. 

Lemma 3.2. An isthmus exists between any two adjacent columns, if each column 

contains at least two endpoints. 
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Proof. If there is no horizontal segment between adjacent columns a and b, then any 

pair of adjacent endpoints in column a form an isthmus with any pair of adjacent 

endpoints in column b, because no visibility edge between the columns is blocked. 

So assume now that s=(ai, bj) is a horizontal segment. We consider two further 

cases. First, suppose that there are endpoints in both column a and column b to one 

side of s. Without loss of generality, let ai+ 1 and bj+ 1 be the endpoints to this side and 

adjacent to Ui and bj, respectively. Then ai+ I and bj+ 1 can see one another, because if 

there was an intervening blocking segment, then one of its endpoints would either be 

between ai and ai+i or between bj and bj+ 1. 

The second case occurs when all of the endpoints in column a are to one side of 

s and all of the endpoints in column b are to the other side of s. Without loss of 

generality, let Ui+ 1 and bj_ 1 be the endpoints adjacent to ai and bj, respectively. Then 

(ai, bj-11 and (ai+i, bj) must be visibility edges for the same reason as above. 

Because there are at least two endpoints in each column, this exhausts all cases, and 

completes the proof. 0 

3.3. Two endpoints per column, m even 

We can now show Hamiltonicity for sets of unit lattice segments with an even 

number m of columns and with at least two endpoints in each column. 

Theorem 3.3. Let S be a set of unit lattice segments such that m is even, and for all a, 

1 <u<m, column a contains at least two endpoints. Then the visibility graph of S has 

a simple Hamiltonian cycle. 

Proof. By Lemma 3.2, we can find an isthmus between all adjacent columns a and 

a + 1, where a is even and 2 <a <m - 2. Call this set of isthmuses X. In each column b, 

let bj, bj+ 1 be the isthmus endpoints, and let b, be the top endpoint. Clearly, we have 

vertical paths along column b from bj to bI, and from bj+ 1 to b,. These paths together 

include all of the endpoints in column b. Also, there is a path along column 1 from the 

top endpoint to the bottom endpoint using all the endpoints in column 1, and there is 

a similar path along column m. Let Y be the set of all of these paths along the columns. 

Finally, by Lemma 3.1, the visibility edges (al, b,) and (a,, b,) exist, where a and b are 

adjacent columns with a odd and 16 a <m, and a, and b, are the top endpoints in their 

respective columns. Call this set of top and bottom edges Z. 

If we join the sets X, Y, and Z, we obtain a simple Hamiltonian cycle for S. See the 

first 10 columns of Fig. 2b. 0 

3.4. Last two columns: m odd 

Theorem 3.3 assumes that m, the number of columns in S, is even. Therefore the 

cycle uses the top and bottom visibility edges between columns m- 1 and m, and 

continues through the endpoints along column m. If m is odd, however, the path 
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described in the proof of Theorem 3.3 would use the isthmus between columns m- 1 

and m, and would continue to the top and bottom of column m. This would prevent 

the path from closing to form a cycle. We now give an algorithm to deal with this final 

column. 

For m odd, let a = m- 1 and b = m, and let al, b, and a,, b, be the bottom and top 

endpoints, respectively, of columns a and b. Sort the endpoints in columns a and b, 

with the exception of a1 and a,, into a list L, lowest to highest, choosing arbitrarily 

between Ui and bi if they are at the same height. Let 7c = a,, L, a,. We claim that rc joins 

with the rest of the path to form a Hamiltonian cycle. For example, in Fig. 2b, a= 10 

and b=ll, with aS=a3 and b,=b,; here L=(bl, a2, b,) and x=(al, b,, a2, b,, u3). 

The path enters column a at a, and a,. If the first element of L is in column a, then 

this first element must be a2, and a, can see a2. If the first element of L is in column b, 

then it must be bl, and ai can see bl by Lemma 3.1. 

Now suppose we are at some endpoint ai in L, where ai is not the last element of L. 

If the next endpoint in L is ai+ i, we can continue along 7t since Ui sees ai+ 1. Otherwise, 

if the next endpoint in L is bj, suppose a, and bj do not see each other. Then there must 

be a horizontal segment between columns a and b, with endpoints vertically and 

strictly between ai and bj. But then bj would not follow Ui in L. Therefore, ai and bj see 

each other, and we can continue along n. If we are at some endpoint bk in L, where bk is 

not the last element of L, we can also continue along 7c by a similar argument as above. 

Finally, if the last element of L is a, _ i, a,_ 1 and a, see each other. If the last element 

is b,, then b, sees a, by Lemma 3.1. Therefore, 71 can join the rest of the path to form 

a Hamiltonian cycle. 

We note that it is possible to fall into the above situation when m is even. This can 

occur when there is a column that contains only one segment endpoint, which we 

consider in the following section. However, the above algorithm works for this case as 

well. 

3.5. One endpoint per column 

We now consider the last aspect of the proof, columns containing just one endpoint. 

Here it is more difficult to keep upper and lower paths separated. Let columns a and 

z each contain more than two endpoints, and suppose all the columns between a and 

z, columns b,. . ., y, contain exactly one endpoint each; we will call this set of columns 

C1. 
In both columns a and z, a pair of terminal endpoints will be distinguished: ai and 

Uj (i <j), and zk and z, (k </). The path to the left will terminate at and determine 

ai and aj, but we have a choice for the terminals in column z that resume the path to 

the right. These will be chosen to be adjacent, as if at the right end of isthmus, or at the 

top and bottom of the column if z is the last column. 

The task is then to find two disjoint paths, nA from ai to zk, and rcg from aj to z,, 

which together touch every endpoint in Ci. Because there is just one endpoint in each 

of these columns, we will dispense with subscripts, calling them b etc. 
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Fig. 3. One endpoint per column. 

Let A be the set of endpoints of Ci that lie strictly above the line through Ui and zk, 

and let B be the set of endpoints on or below this line. (Either A or B might be empty.) 

Then simply let rcA start at aj, include all endpoints in A left to right, and terminate at 

z,, and similarly let rcB start at ai, include all endpoints in B left to right, and terminate 

at zk. See Fig. 3. The reason this works is as follows. A and B are disjoint and partition 

the endpoints in Ci, so nA and rcB are disjoint and together cover C1. The only issue is 

whether each pair of consecutive vertices of the paths can see one another. Let p and 

q be two consecutive vertices of 7~~. Suppose some segment s intersects the open 

segment (p, q), and so blocks visibility. Then one of s’s endpoints r must be on or 

above the line through p and q, and therefore in A. Since the segments are unit length, 

Y must lie between p and q horizontally. So rr4 would include Y between p and q, 

contradicting our assumption that p and q are consecutive vertices on nA. 

We assumed the existence of columns a and z surrounding C1, but their absence 

causes no difficulties. If b= 1, so there are no terminals to the left of b, simply start 

rrA and nB at Ui=Uj= b. And similarly if y = m, the last column, end rc4 and nB at 

zk=ze=y. 

3.6. Summary 

The entire Hamiltonian cycle for an arbitrary set of unit lattice segments can be 

constructed left to right, as follows. For any contiguous group of columns from the left 

with two or more endpoints per column, connect via the path oscillating between 

extreme edges and isthmuses (Section 3.3). If this group includes all columns, either we 

are finished, or the last (odd) column needs to be adjusted as described in Section 3.4. 

If on the other hand the group is adjacent to a group C1 of one-endpoint columns, 

connect across C1 as just described. If C1 does not include the m-th column, then to its 

right we have another group of columns with two or more endpoints. We proceed as 

before, and repeat until all columns are consumed. 

An example is shown in Fig. 4. Columns l-3 contain more than one end point, and 

are connected using a 2-3 isthmus (indicated by short dashes). Column 4 has just one 

endpoint. The dashed line shows the “UiZk ” line partitioning the endpoints into A (one 

endpoint) and B (empty). We place the terminals adjacent in column 5, as at the right 
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Fig. 4. A set of segments that exercise all aspects of the algorithm. Columns 4, and 7-10, contain just one 

endpoint. 

end of an isthmus. Columns 556 again contain more than one endpoint. Columns 

7710 form a one-endpoint group, and again the dashed lines shows the A/B partition- 

ing line. Here A contains one endpoint, and B the remainder. Column 11 contains 

only two endpoints, treated as the right end of an isthmus. Columns 11-15 each 

contain more than one endpoint. An isthmus is used for 12-13 (shown with short 

dashes), leaving column 15 “odd.” This column is integrated by vertically sorting the 

endpoints in columns 14 and 15. 

Theorem 3.4. For any set S of n> 1 noncollinear unit lattice segments, there exists 

a simple Hamiltonian cycle in the visibility graph. 

3.7. Algorithm 

The proof leads to a straightforward O(n log n) algorithm. The integer-coordinate 

endpoints are first sorted horizontally, and then vertically within each column. The 

coordinates can then be replaced by indices of sorted rank, effectively removing empty 

rows and columns, as clearly this transformation does not affect visibility between 

adjacent rows or columns. The remainder of the algorithm implied by the proof is 

linear-time: 

1. Identifying top and bottom endpoints in a column (Section 3.1) is constant-time. 

Finding an isthmus between adjacent columns (Section 3.2) requires checking the 

local vicinity of each straddling horizontal segment, and is thus linear-time. 

Merging the sorted (m- 1)-st and m-th columns (Section 3.4) is linear in the number 

of endpoints in those columns. 

Partitioning C1 by the aizk line for the one endpoint per column case (Section 3.5) is 

linear in the size of Cr. 
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Finally, we note two features of the Hamiltonian cycle produced by our algorithm: 

it is not necessarily monotone with respect to the horizontal (because of the possible 

zigzagging between the last two columns), and it is not usually circumscribing (some 

segments are exterior to the cycle, as in Fig. 2, but not in Fig. 4). We do not know if 

unit lattice segments always admit cycles that are monotone, or circumscribing. 

4. Discussion 

It must be admitted that the evidence for the simple Hamiltonicity of segment 

visibility graphs is weak. The conjecture has now been proved for three highly 

restricted classes: hulled, independent, and unit lattice segments. We have been unable 

to prove it for the following natural class. Define a set of disjoint segments shellable if 

they may be ordered si, sz,. . ., s, such that for each i, 1 < i < n, si lies in the exterior of 

the convex hull of segments si,. . ., si- 1. We leave the status of this problem, as well as 

the general conjecture, open. 
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