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Abstract

We show that on a manifold whose Riemannian metric evolves under backwards Ricci flow two Brownian
motions can be coupled in such a way that their normalized L-distance is a supermartingale. As a corollary,
we obtain the monotonicity of the transportation cost between two solutions of the heat equation in the
case that the cost function is the composition of a concave non-decreasing function and the normalized
L-distance. In particular, it provides a new proof of a recent result of Topping [P. Topping, L-optimal
transportation for Ricci flow, J. Reine Angew. Math. 636 (2009) 93–122].
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let M be a d-dimensional differentiable manifold, 0 � τ̄1 < τ̄2 < T and (g(τ ))τ∈[τ̄1,T ] a
complete backwards Ricci flow on M , i.e. a smooth family of Riemannian metrics satisfying

∂g

∂τ
= 2 Ricg(τ) (1)
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and such that (M,g(τ)) is complete for all τ ∈ [τ̄1, T ]. In this situation Perelman [23, Sec-
tion 7.1] (see also [6, Definition 7.5]) defined the L-functional of a smooth curve γ : [τ1,

τ2] → M (where τ̄1 � τ1 < τ2 � T ) by

L(γ ) :=
τ2∫

τ1

√
τ
[∣∣γ̇ (τ )

∣∣2
g(τ)

+ Rg(τ)

(
γ (τ)

)]
dτ,

where Rg(τ)(x) is the scalar curvature at x with respect to the metric g(τ). Let L(x, τ1;y, τ2) be
the L-distance between (x, τ1) and (y, τ2) defined by the infimum of L(γ ) over smooth curves
γ : [τ1, τ2] → M satisfying γ (τ1) = x and γ (τ2) = y. The normalized L-distance Θt(x, y)

(t � 1) is given by

Θt(x, y) := 2(
√

τ̄2t − √
τ̄1t)L(x, τ̄1t;y, τ̄2t) − 2d(

√
τ̄2t − √

τ̄1t)
2.

For a measurable function c : M ×M → R, let us define the transportation cost Tc(μ, ν) between
two probability measures μ and ν on M with respect to the cost function c by

Tc(μ, ν) := inf
π

∫
M×M

c(x, y)π(dx, dy)

(the infimum is over all probability measures π on M × M whose marginals are μ and ν re-
spectively). To study Perelman’s work from a different aspect, Topping [30] (see also Lott [19])
showed the following result:

Theorem 1. (See Theorem 1.1 in [30].) Assume that M is compact and that τ̄1 > 0. Let
p : [τ̄1, T ] × M → R+ and q : [τ̄2, T ] × M → R+ be two non-negative unit-mass solutions of
the heat equation

∂p

∂τ
= �g(τ)p − Rp,

where the term Rp comes from the change in time of the volume element. Then the normalized
L-transportation cost TΘt (p(τ̄1t, ·)volg(τ̄1t), q(τ̄2t, ·)volg(τ̄2t)) between the two solutions evalu-
ated at times τ̄1t respectively τ̄2t is a non-increasing function of t ∈ [1, T /τ̄2].

By g(τ)-Brownian motion, we mean the time-inhomogeneous diffusion process whose gener-
ator is �g(τ). As in the time-homogeneous case, the heat distribution p(τ, ·)volg(τ) is expressed
as the law of a g(τ)-Brownian motion at time τ . In view of this strong relation between heat
equation and Brownian motion, it is natural to ask whether one can couple two Brownian mo-
tions on M in such a way that a pathwise analogue of this result holds. The main result of this
paper answers it affirmatively as follows:

Theorem 2. Assume that the Ricci curvature of M is bounded from below uniformly, namely
there exists K � 0 such that

Ricg(τ) � −Kg(τ) for any τ ∈ [τ̄1, T ]. (2)
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Then given any points x, y ∈ M and any s ∈ [1, T /τ̄2], there exist two coupled g(τ)-Brownian
motions (Xτ )τ∈[τ̄1s,T ] and (Yτ )τ∈[τ̄2s,T ] with initial values Xτ̄1s = x and Yτ̄2s = y such that the
process (Θt (Xτ̄1t , Yτ̄2t ))t∈[s,T /τ̄2] is a supermartingale. In addition, we can take them so that
the map (x, y) �→ (X,Y ) is measurable. In particular, for any ϕ : R → R being concave and
non-decreasing, E[ϕ(Θt (Xτ̄1t , Yτ̄2t ))] is non-increasing.

Obviously, (2) is satisfied if M is compact. Thus it includes the case of Theorem 1. As a result,
Theorem 2 easily implies the following extension of Theorem 1 (see Section 5.3):

Theorem 3. Assume that (2) holds. Let ϕ : R → R be concave and non-decreasing. Then
Tϕ◦Θt (p(τ̄1t, ·)volg(τ̄1t), q(τ̄2t, ·)volg(τ̄2t)) is non-increasing in t ∈ [1, T /τ̄2] for non-negative
unit-mass solutions p and q to the heat equation.

We prove Theorem 2 by constructing a coupling via approximation of g(τ)-Brownian motions
by geodesic random walks as studied in [14]. In the next section, we demonstrate background
of the problem, review related results and compare their methods with ours. Since our method
superficially looks like a detour compared with other existing coupling arguments, there we ex-
plain the reason why we choose that way. To state the idea behind our proof explicitly, we prove
Theorem 2 under the assumption that there is no singularity of L-distance in Section 3. Since all
technical difficulties are concentrated on the singularity of L-distance, we can study the problem
there in more direct way by using stochastic calculus. Some estimates on variations of L-distance
are gathered in Section 4. The proof of the full statement of Theorems 2 and 3 will be provided
in Section 5.

Before closing this section, we give two remarks on Theorems 2 and 3.

Remark 1. As shown in [16], under backwards Ricci flow g(τ)-Brownian motion cannot ex-
plode. Hence Θt(Xt , Yt ) is well defined for all t ∈ [s, T /τ̄2] in Theorem 2. This fact also ensures
that p(τ, ·)volg(τ) has unit mass whenever it does at the initial time. We implicitly require this
property to make Tϕ◦Θt (p(τ̄1t, ·)volg(τ̄1t), q(τ̄2t, ·)volg(τ̄2t)) well defined in Theorem 3.

Remark 2. There are plenty of examples of backwards Ricci flow satisfying (2) even when M

is non-compact. Indeed, given a metric g0 on M with bounded curvature tensor, there exists a
unique solution to the Ricci flow ∂tg(t) = −2 Ricg(t) with initial condition g0 satisfying

sup
x,t

|Rmg(t)|g(t)(x) < ∞

for a short time (see [28] for existence and [5] for uniqueness). Then the corresponding back-
wards Ricci flow satisfying (2) is obtained by time-reversal.

2. Review and remarks on background of the problem

The Ricci flow was introduced by Hamilton [9]. There he effectively used it to solve the
Poincaré conjecture for 3-manifolds with positive Ricci curvature. By following his approach,
Perelman [23–25] finally solved the Poincaré conjecture (see also [4,12,22]). There he used L-
functional as a crucial tool. At the same stage, he also studied the heat equation in [23] in relation
with the geometry of Ricci flows. It suggests that analyzing the heat equation is still an efficient
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way to investigate geometry of the underlying space even in the time-dependent metric case. This
guiding principle has been confirmed in recent developments in this direction. For example, we
refer to [36] as one of such developments. In connection with the theory of optimal transporta-
tion, McCann and Topping [21] showed the monotonicity of Tρ2

g(τ)
(p(τ, ·)volg(τ), q(τ, ·)volg(τ)),

where ρg(τ) is the g(τ)-Riemannian distance, under backwards Ricci flow on a compact mani-
fold. Topping’s result [30] can be regarded as an extension of it to contraction in the normalized
L-transportation cost (see [19] also). By taking τ̄2 → τ̄1, he gave a new proof of the monotonicity
of Perelman’s W -entropy, which is one of fundamental ingredients in Perelman’s work.

A probabilistic approach to these problems is initiated by Arnaudon, Coulibaly and Thalmaier.
In [2, Section 4], they sharpened McCann and Topping’s result [21] to a pathwise contraction in
the following sense: There is a coupling (Xt , Yt )t�0 of two Brownian motions starting from
x, y ∈ X respectively such that the g(t)-distance between Xt and Yt is non-increasing in t al-
most surely. In their approach, probabilistic techniques based on analysis of sample paths made
it possible to establish such a pathwise estimate. As an advantage of their result, the pathwise
contraction easily yields that Tϕ◦ρg(τ)

(p(τ, ·)volg(τ), q(τ, ·)volg(τ)) is non-increasing for any
non-decreasing ϕ. As an application of this sharper monotonicity, we can obtain an L1-gradient
estimate of Bakry–Émery type (see [15]) for the heat semigroup. In the time-homogeneous case,
this gradient estimate has been known to be very useful in geometric analysis (see e.g. [3,17]).
McCann and Topping’s result only implies L2-gradient estimate and it is weaker than the L1-
estimate. (In the time-homogeneous case, it is known that L2-estimate also implies L1-estimate
(see [3,17,26]). However, to the best of our knowledge, an extension of such equivalence in the
time-inhomogeneous case is not yet established.) As another advantage of Arnaudon, Coulibaly
and Thalmaier’s approach, their argument works even on non-compact M (cf. [16]). Our Theo-
rem 2 can be regarded as an extension of their result. Indeed, our approach is the same as theirs
in spirit and advantages of probabilistic approach as mentioned are also inherited to our results as
we have seen in Theorem 3. We can expect that our approach makes it possible to employ several
techniques in stochastic analysis to obtain more detailed behavior of Θt(Xτ̄1t , Yτ̄2t ), especially
in the limit τ̄2 → τ̄1, in a future development.

Now we compare our method of the proof with existing arguments in coupling methods from
a technical point of view. We hope that the following observation would be helpful to extend
other coupling arguments than ours in this case. A common and basic idea is to couple infinites-
imal motions of two Brownian particles by using a parallel transport of tangent vectors along
a minimal geodesic joining them. Thus the technical difficulty arises from the singularity of
(L-)distance, or the presence of (L-)cut locus. In our approach, we consider coupled geodesic
random walks each of which approximates the Brownian motion. After we establish a difference
inequality for time evolution of the L-distance between coupled random walks, we will obtain
the result by taking a limit. Note that the convergence of our random walk in law to the Brownian
motion in this time-inhomogeneous case is already established in [14].

In the time-homogeneous case, there are several arguments [8,10,32–34] to construct such a
coupling by approximating it with ones which move as mentioned above if they are distant from
the cut locus and move independently if they are close to the cut locus. In these cases, it will
be important to estimate the size of the total time when particles are close to the cut locus. To
do the same in the time-inhomogeneous case, it does not seem straightforward since the (L-)cut
locus depends on time, namely it moves as time evolves. In our approach, instead of applying
stochastic calculus, we only need to show a difference inequality. Thus the singularity at the
L-cut locus causes less difficulties at this stage (see Remark 7 for more details).
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If we employ the theory of optimal transportation, we will work on coupling of heat distribu-
tions instead of coupling of Brownian motions. Once we move to the world of heat distributions,
we can ignore the cut locus since they are of measure zero with respect to the Riemannian mea-
sure. However, in the derivation of the monotonicity results, the theory of optimal transportation
at present covers only the case that the cost function is squared distance or L-distance. It re-
flects the difference of results between McCann and Topping [21] and Arnaudon, Coulibaly and
Thalmaier [2]. It should be remarked that such a difference still exists between these two ap-
proaches, the one by optimal transportation and the other by stochastic analysis, even in the
time-homogeneous case.

Arnaudon, Coulibaly and Thalmaier [2] study the problem by developing a new method. They
constructed one-parameter family of coupled particles ((Xt (u))t�0)u∈[0,1] so that Xt(u) moves
as a Brownian motion for any u and (Xt (u))u∈[0,1] is a C1-curve whose length is non-increasing
in t . Thus (Xt (0),Xt (1)) is the expected coupling. To construct it, they first consider a finite
number of particles ((Xt (ui))t�0)i which are coupled with other particles by parallel transport.
Then, by increasing the number of particles, we obtain such a one-parameter family in the limit.
Since they are coupled by parallel transport, the distance between two particles is of bounded
variation (at least before they hit the cut locus). Thus, if adjacent particles are sufficiently close
to each other at time t , we can take a deterministic δ > 0 such that they cannot hit the cut locus at
least until time t + δ. Based on this observation, they succeeded in avoiding the problem coming
from the cut locus by increasing the number of particles to make it constitute a one-parameter
family of particles. In the case of this paper, we work on the L-distance instead of the Rieman-
nian distance and construct a coupling by space–time parallel transport instead of a coupling by
parallel transport. As a result, L-distance between coupled particle is not of bounded variation
(see Remark 6 for more details). Thus, our problem differs in nature from what is studied in [1].
If we want to extend Arnaudon, Coulibaly and Thalmaier’s approach in the present case, we
have to be careful and need some additional arguments. Even if we succeed in constructing a
one-parameter family of particles ((Xt (u))t�0)u∈[0,1] coupled by space–time parallel transport,
we cannot expect that (Xt (u))u∈[0,1] is a C1-curve. In our approach, such a difference causes no
additional difficulty. Indeed, as studied in [13,14], we already know that it works to construct
coupled particles by reflection, the distance of which is naturally regarded as a semimartingale
with a non-vanishing martingale part.

3. Coupling of Brownian motions in the absence of L-cut locus

Since the proof of Theorem 2 involves some technical arguments, first we study the problem
in the case that the L-distance L has no singularity. More precisely, we do it here under the
following assumption:

Assumption 1. The L-cut locus is empty.

See Section 5.1 or [6,30,35] for the definition of L-cut locus. Under Assumption 1, the fol-
lowing hold:

1. For all x, y ∈ M and all τ̄1 � τ1 < τ2 � T there is a unique minimizer γ
τ1τ2
xy of L(x, τ1;y, τ2)

(existence of γ
τ1τ2
xy is proved in [6, Lemma 7.27], while uniqueness follows immediately from

the characterization of L-cut locus, see Section 5.1).
2. The function L is globally smooth.
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Thus, in this case, we can freely use stochastic analysis on the frame bundle without taking any
care on regularity of L.

3.1. Construction of the coupling

A g(τ)-Brownian motion X̃ on M (scaled in time by the factor τ̄1) starting at a point x ∈ M

at time s ∈ [1, T /τ̄2] can be constructed in the following way [1,7,16]: Let π : F (M) → M

be the frame bundle and (ei)
d
i=1 the standard basis of R

d . For each τ ∈ [τ̄1, T ] let (Hi(τ ))di=1
be the associated g(τ)-horizontal vector fields on F (M) (i.e. Hi(τ,u) is the g(τ)-horizontal
lift of uei ). Moreover let (V α,β)dα,β=1 be the canonical vertical vector fields, i.e. (V α,βf )(u) :=

∂
∂mαβ

|m=Id(f (u(m))) (m = (mαβ)dα,β=1 ∈ GLd(R)), and let (Wt)t�0 be a standard R
d -valued

Brownian motion. By Og(τ)(M), we denote the g(τ)-orthonormal frame bundle.
We first define a scaled horizontal Brownian motion as the solution Ũ = (Ũt )t∈[s,T /τ̄1] of the

Stratonovich SDE

dŨt = √
2τ̄1

d∑
i=1

Hi(τ̄1t, Ũt ) ◦ dWi
t − τ̄1

d∑
α,β=1

∂g

∂τ
(τ̄1t)(Ũt eα, Ũt eβ)V αβ(Ũt ) dt (3)

on F (M) with initial value Ũs = u ∈ Og(τ̄1s)
x (M), and then define a scaled Brownian motion X̃

on M as

X̃t := πŨt .

Note that X̃t does not move when τ̄1 = 0. The last term in (3) ensures that Ũt ∈ Og(τ̄1t)(M) for
all t ∈ [s, T /τ̄1] (see [1, Proposition 1.1], [7, Proposition 1.2]), so that by Itô’s formula for all
smooth f : [s, T /τ̄1] × M → R

df (t, X̃t ) = ∂f

∂t
(t, X̃t ) dt + √

2τ̄1

d∑
i=1

(Ũt ei)f (t, X̃t ) dWi
t + τ̄1�g(τ1t)f (t, X̃t ) dt.

Let us define (Xτ )τ∈[τ̄1s,T ] by Xτ̄1t := X̃t . Then Xτ becomes a g(τ)-Brownian motion when
τ̄1 > 0.

Remark 3. Intuitively, it might be helpful to think that Xτ lives in (M,g(τ)), or X̃t lives in
(M,g(τ̄1t)). The same is true for Y and Ỹ which will be defined below. Similarly, for all curves
γ : [τ1, τ2] → M appearing in connection with L-distance, we can naturally regard γ (τ) as in
(M,g(τ)).

We now want to construct a second scaled Brownian motion Ỹ on M in such a way that its
infinitesimal increments dỸt are “space–time parallel” to those of X̃ (up to scaling effect) along
the minimal L-geodesic (namely, the minimizer of L) from (X̃t , τ̄1t) to (Ỹt , τ̄2t). To make this
idea precise, we first define the notion of space–time parallel vector field:
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Definition 1 (Space–time parallel vector field). Let τ̄1 � τ1 < τ2 � T and γ : [τ1, τ2] → M be a
smooth curve. We say that a vector field Z along γ is space–time parallel if

∇g(τ)

γ̇ (τ )
Z(τ) = −Ric#

g(τ)

(
Z(τ)

)
(4)

holds for all τ ∈ [τ1, τ2]. Here ∇g(τ) stands for the covariant derivative associated with the g(τ)-
Levi-Civita connection and Ric#

g(τ) is defined by regarding the g(τ)-Ricci curvature as a (1,1)-
tensor via g(τ). Since (4) is a linear first-order ODE, for any ξ ∈ Tγ (τ1)M there exists a unique
space–time parallel vector field Z along γ with Z(τ1) = ξ .

Remark 4. Whenever Z and Z′ are space–time parallel vector fields along a curve γ , their g(τ)-
inner product is constant in τ :

d

dτ

〈
Z(τ),Z′(τ )

〉
g(τ)

= ∂g

∂τ
(τ )

(
Z(τ),Z′(τ )

) + 〈∇g(τ)

γ̇ (τ )Z(τ),Z′(τ )
〉
g(τ)

+ 〈
Z(τ),∇g(τ)

γ̇ (τ )Z
′(τ )

〉
g(τ)

= 2 Ricg(τ)

(
Z(τ),Z′(τ )

) − Ricg(τ)

(
Z(τ),Z′(τ )

) − Ricg(τ)

(
Z(τ),Z′(τ )

)
= 0.

Definition 2 (Space–time parallel transport). For x, y ∈ M and τ̄1 � τ1 < τ2 � T , we define
a map m

τ1τ2
xy : TxM → TyM as follows: m

τ1τ2
xy (ξ) := Z(τ2), where Z is the unique space–time

parallel vector field along γ
τ1τ2
xy with Z(τ1) = ξ . By Remark 4, m

τ1τ2
xy is an isometry from

(TxM,g(τ1)) to (TyM,g(τ2)). In addition, it smoothly depends on x, τ1, y, τ2 under Assump-
tion 1.

Remark 5. The emergence of the Ricci curvature in (4) is based on the Ricci flow equation (1).
Indeed, we can introduce the notion of space–time parallel transport even in the absence of (1)
with keeping the property in Remark 4 by using 2−1∂τ g(τ )# instead of Ric#

g(τ) in (4). This would
be a natural extension in the sense that it coincides with the usual parallel transport when g(τ) is
constant in τ .

Similarly as in [10, Formula (6.5.1)], we now define a second scaled horizontal Brownian
motion Ṽ = (Ṽt )t∈[s,T /τ̄2] on F (M) as the solution of

dṼt = √
2τ̄2

d∑
i=1

Hi(τ̄2t, Ṽt ) ◦ dBi
t − τ̄2

d∑
α,β=1

∂g

∂τ
(τ̄2t)(Ṽt eα, Ṽt eβ)V αβ(Ṽt ) dt,

dBt = Ṽ −1
t m

τ1,τ2

πŨt ,πṼt
Ũt dWt

with initial value Ṽs = v ∈ Og(τ̄2s)
y (M), and we set Ỹt := πṼt . As we did for X̃, let us define

(Yτ )τ∈[τ̄2s,T ] by Yτ̄2t := Ỹt to make Y a g(τ)-Brownian motion. From a theoretical point of view,
it seems to be natural to work with (Xτ ,Yτ ) (see Remark 3). However, for technical simplicity,
we will prefer to work with (X̃t , Ỹt ) instead in the sequel.
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3.2. Proof of Theorem 2 in the absence of L-cut locus

Our argument in this section is based on the following Itô formula for (X̃t , Ỹt ):

Lemma 1. Let f be a smooth function on [s, T /τ̄2] × M × M . Then

df (t, X̃t , Ỹt ) = ∂f

∂t
(t, X̃t , Ỹt ) dt +

d∑
i=1

[√
2τ̄1Ũt ei ⊕ √

2τ̄2Ṽt e
∗
i

]
f (t, X̃t , Ỹt ) dWi

t

+
d∑

i=1

Hessg(τ̄1t)⊕g(τ̄2t)f |
(t,X̃t ,Ỹt )

(√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i ,

√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i

)
dt.

Here the Hessian of f is taken with respect to the product metric g(τ̄1t) ⊕ g(τ̄2t), e∗
i stands for

e∗
i (Ũt , τ̄1t; Ṽt , τ̄2t), where

e∗
i (u, τ1;v, τ2) := v−1mτ1,τ2

πu,πvuei,

and for tangent vectors ξ1 ∈ TxM , ξ2 ∈ TyM we write ξ1 ⊕ ξ2 := (ξ1, ξ2) ∈ T(x,y)(M × M).

Proof. As in [11, Formula (2.11)], Itô’s formula applied to a smooth function f̃ on [s, T /τ̄2] ×
F (M) × F (M) gives

df̃ (t, Ũt , Ṽt ) = ∂f̃

∂t
(t, Ũt , Ṽt ) dt

+
d∑

i=1

[√
2τ̄1

(
Hi,1(τ̄1t, ·)f̃

)
(t, Ũt , Ṽt ) dWi

t

+ √
2τ̄2

(
Hi,2(τ̄2t, ·)f̃

)
(t, Ũt , Ṽt ) dBi

t

]
+

d∑
i=1

[
τ̄1

(
H 2

i,1(τ̄1t, ·)f̃
)
(t, Ũt , Ṽt ) + τ̄2

(
H 2

i,2(τ̄2t, ·)f̃
)
(t, Ũt , Ṽt )

]
dt

+ 2
√

τ̄1τ̄2

d∑
i,j=1

(
Hi,1(τ̄1t, ·)Hj,2(τ̄2t, ·)f̃

)
(t, Ũt , Ṽt ) d

〈
Wi,Bj

〉
t

−
d∑

α,β=1

[
τ̄1

∂g

∂τ
(τ̄1t)(Ũt eα, Ũt eβ)V αβ(Ũt )

⊕ τ̄2
∂g

∂τ
(τ̄2t)(Ṽt eα, Ṽt eβ)V αβ(Ṽt )

]
f̃ (t, Ũt , Ṽt ) dt,

where Hi,1 respectively Hi,2 means Hi applied with respect to the first respectively second space
variable. By the definition of B , this equals
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∂f̃

∂t
(t, Ũt , Ṽt ) dt

+
d∑

i=1

[√
2τ̄1Hi(τ̄1t, Ũt ) ⊕ √

2τ̄2H
∗
i (Ũt , τ̄1t; Ṽt , τ̄2t)

]
f̃ (t, Ũt , Ṽt ) dWi

t

+
d∑

i=1

[√
τ̄1Hi(τ̄1t, Ũt ) ⊕ √

τ̄2H
∗
i (Ũt , τ̄1t; Ṽt , τ̄2t)

]2
f̃ (t, Ũt , Ṽt ) dt

−
d∑

α,β=1

[
τ̄1

∂g

∂τ
(τ̄1t)(Ũt eα, Ũt eβ)V αβ(Ũt ) ⊕ τ̄2

∂g

∂τ
(τ̄2t)(Ṽt eα, Ṽt eβ)V αβ(Ṽt )

]
f̃ (t, Ũt , Ṽt ) dt,

where H ∗
i (u, τ1;v, τ2) is the g(τ2)-horizontal lift of ve∗

i (u, τ1;v, τ2).
The claim follows by choosing f̃ (t, u, v) := f (t,πu,πv) because this f̃ is constant in the

vertical direction so that the term involving V αβf̃ vanishes. �
Let Λ(t, x, y) := L(x, τ̄1t;y, τ̄2t). In order to apply Lemma 1 to the function Θ we need the

following proposition, whose proof is given in the next section. Since we will use it again in
Section 5, we state it without assuming Assumption 1.

Proposition 1. Take x, y ∈ M , u ∈ Og(τ̄1t)
x (M) and v ∈ Og(τ̄2t)

y (M). Let γ be a minimizer
of L(x, τ̄1t;y, τ̄2t). Assume that (x, τ̄1t;y, τ̄2t) is not in the L-cut locus. Set ξi := √

τ̄1uei ⊕√
τ̄2ve∗

i (u, τ̄1t;v, τ̄2t). Then

∂Λ

∂t
(t, x, y) = 1

t

τ̄2t∫
τ̄1t

τ 3/2
(

3

2τ
Rg(τ)

(
γ (τ)

) − �g(τ)Rg(τ)

(
γ (τ)

) − 2|Ricg(τ)|2g(τ)

(
γ (τ)

)

− 1

2τ

∣∣γ̇ (τ )
∣∣2
g(τ)

+ 2 Ricg(τ)

(
γ̇ (τ ), γ̇ (τ )

))
dτ , (5)

d∑
i=1

Hessg(τ1)⊕g(τ2) Λ|(t,x,y)(ξi, ξi)

� d
√

τ

t

∣∣∣∣
τ=τ̄2t

τ=τ̄1t

+ 1

t

τ̄2t∫
τ̄1t

τ 3/2(2|Ricg(τ)|2g(τ)

(
γ (τ)

) + �g(τ)Rg(τ)

(
γ (τ)

)

− 2

τ
Rg(τ)

(
γ (τ)

) − 2 Ricg(τ)

(
γ̇ (τ ), γ̇ (τ )

))
dτ (6)

and consequently

∂Λ

∂t
(t, x, y) +

d∑
Hessg(τ1)⊕g(τ2) Λ|(t,x,y)(ξi, ξi)
i=1
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� d√
t
(
√

τ̄2 − √
τ̄1) − 1

2t

τ̄2t∫
τ̄1t

√
τ
(
Rg(τ)

(
γ (τ)

) + ∣∣γ̇ (τ )
∣∣2
g(τ)

)
dτ

= d√
t
(
√

τ̄2 − √
τ̄1) − 1

2t
Λ(t, x, y).

The proof of Theorem 2 is now achieved under Assumption 1 by combining Lemma 1 and
Proposition 1:

Proof of Theorem 2 under Assumption 1. Since Θ is bounded from below, it suffices to show
that the bounded variation part of Θt(X̃t , Ỹt ) is non-positive. By Lemma 1,

dΘt(X̃t , Ỹt ) =
[
∂tΘt (X̃t , Ỹt )

+
d∑

i=1

Hessg(τ̄1t)⊕g(τ̄2t) Θt |(X̃t ,Ỹt )

(√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i ,

√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i

)]
dt

+
d∑

i=1

[√
2τ̄1Ũt ei ⊕ √

2τ̄2Ṽt e
∗
i

]
Θt(X̃t , Ỹt ) dWi

t .

For the bounded variation part we obtain

∂tΘt (X̃t , Ỹt ) =
√

τ̄2 − √
τ̄1√

t
Λ(t, X̃t , Ỹt ) + 2(

√
τ̄2t − √

τ̄1t)
∂Λ

∂t
(t, X̃t , Ỹt ) − 2d(

√
τ̄2 − √

τ̄1)
2

and

d∑
i=1

Hessg(τ̄1t)⊕g(τ̄2t) Θt |(X̃t ,Ỹt )

(√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i ,

√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i

)

= 2(
√

τ̄2t − √
τ̄1t)

d∑
i=1

Hessg(τ̄1t)⊕g(τ̄2t) Λ|
(t,X̃t ,Ỹt )

(√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i ,

√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i

)
.

Thus, by Proposition 1,

∂tΘt (X̃t , Ỹt ) +
d∑

i=1

Hessg(τ̄1t)⊕g(τ̄2t) Θt |(X̃t ,Ỹt )

(√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i ,

√
τ̄1Ũt ei ⊕ √

τ̄2Ṽt e
∗
i

)

� 2(
√

τ̄2t − √
τ̄1t)

[
d√
t
(
√

τ̄2 − √
τ̄1) − 1

2t
Λ(t, X̃t , Ỹt )

]

+
√

τ̄2 − √
τ̄1√

t
Λ(t, X̃t , Ỹt ) − 2d(

√
τ̄2 − √

τ̄1)
2 = 0.

Hence Θt(X̃t , Ỹt ) is indeed a supermartingale. �
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Remark 6. Unlike the case in [2], the pathwise contraction of Θt(X̃t , Ỹt ) is no longer true in
our case. In other words, the martingale part of Θt(X̃t , Ỹt ) does not vanish. We will see it in the
following. The minimal L-geodesic γ = γ

τ1τ2
xy of L(x, τ1;y, τ2) satisfies the L-geodesic equation

∇g(τ)

γ̇ (τ )γ̇ (τ ) = 1

2
∇g(τ)Rg(τ) − 2 Ric#

g(τ)

(
γ̇ (τ )

) − 1

2τ
γ̇ (τ ) (7)

(see [6, Corollary 7.19]). Thus the first variation formula (see [6, Lemma 7.15]) yields

√
2τ̄1Ũt ei ⊕ √

2τ̄2Ṽt e
∗
i Λ(t, X̃t , Ỹt ) = √

2t τ̄2
〈
Ṽt e

∗
i , γ̇ (τ̄2t)

〉
g(τ̄2t)

− √
2t τ̄1

〈
Ũt ei , γ̇ (τ̄1t)

〉
g(τ̄1t)

. (8)

One obstruction to pathwise contraction is in the difference of time-scalings τ̄1 and τ̄2. In addi-
tion, by (7),

√
τ γ̇ (τ ) is not space–time parallel to γ in general (cf. Remark 4).

4. Proof of Proposition 1

In this section, we write τ1 := τ̄1t and τ2 := τ̄2t . We assume τ2 < T . For simplicity of nota-
tions, we abbreviate the dependency on the metric g(τ) of several geometric quantities such as
Ric, R, the inner product 〈·,·〉, the covariant derivative ∇ , etc. when our choice of τ is obvious.
For this abbreviation, we will think that γ (τ) is in (M,g(τ)) and γ̇ (τ ) is in (Tγ (τ)M,g(τ)).
Note that, when τ̄1 = 0, limτ↓τ̄1

√
τ γ̇ (τ ) exists while limτ↓0 |γ̇ (τ )| = ∞. In any case,

√
τ |γ̇ (τ )|

is locally bounded (see Lemma 3).
We first compute the time derivative of Λ. When τ̄1 > 0, by [30, Formulas (A.4) and (A.5)]

we have

∂L

∂τ1
(x, τ1;y, τ2) = −√

τ1
(
Rg(τ1)(x) − ∣∣γ̇ (τ1)

∣∣2)
,

∂L

∂τ2
(x, τ1;y, τ2) = √

τ2
(
Rg(τ2)(y) − ∣∣γ̇ (τ2)

∣∣2)
,

so that

∂Λ

∂t
(t, x, y) = τ̄1

∂L

∂τ1
(x, τ1;y, τ2) + τ̄2

∂L

∂τ2
(x, τ1;y, τ2)

= 1

t

(
τ

3/2
2

(
R

(
γ (τ2)

) − ∣∣γ̇ (τ2)
∣∣2) − τ

3/2
1

(
R

(
γ (τ1)

) − ∣∣γ̇ (τ1)
∣∣2))

. (9)

Thus the integration-by-parts formula yields,

∂Λ

∂t
(t, x, y) = 3

2t

τ2∫
τ1

√
τ
(
R

(
γ (τ)

) − ∣∣γ̇ (τ )
∣∣2)

dτ

+ 1

t

τ2∫
τ1

τ 3/2
(

∂R

∂τ

(
γ (τ)

) + ∇γ̇ (τ )R
(
γ (τ)

)

− 2
〈∇γ̇ (τ )γ̇ (τ ), γ̇ (τ )

〉 − 2 Ric
(
γ̇ (τ ), γ̇ (τ )

))
dτ. (10)
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Note that we have

∂R

∂τ
= −�R − 2|Ric|2 (11)

(see e.g. [29, Proposition 2.5.4]). Since γ satisfies the L-geodesic equation (7), by substituting
(7) and (11) into (10), we obtain (5). Note that the derivation of (9) and (10) is still valid even
when τ̄1 = 0 because of the remark at the beginning of this section. Thus (5) holds when τ̄1 = 0,
too.

In order to estimate
∑d

i=1 Hessg(τ1)⊕g(τ2) Λ|(t,x,y)(ξi , ξi) we begin with the second variation
formula for the L-functional:

Lemma 2 (Second variation formula). (See [6, Lemma 7.37].) Let Γ : (−ε, ε) × [τ1, τ2] → M

be a variation of γ , S(s, τ ) := ∂sΓ (s, τ ), and Z(τ) := ∂sΓ (0, τ ) the variation field of Γ . Then

d2

ds2

∣∣∣∣
s=0

L(Γs) = 2
√

τ
〈
γ̇ (τ ),∇Z(τ)S(0, τ )

〉∣∣τ=τ2
τ=τ1

− 2
√

τ Ric
(
Z(τ),Z(τ)

)∣∣τ=τ2
τ=τ1

+ 1√
τ

∣∣Z(τ)
∣∣2∣∣τ=τ2

τ=τ1
−

τ2∫
τ1

√
τH

(
γ̇ (τ ),Z(τ)

)
dτ

+
τ2∫

τ1

2
√

τ

∣∣∣∣∇γ̇ (τ )Z(τ) + Ric#(Z(τ)
) − 1

2τ
Z(τ)

∣∣∣∣
2

dτ, (12)

where

H
(
γ̇ (τ ),Z(τ)

) := −2
∂ Ric

∂τ

(
Z(τ),Z(τ)

) − HessR
(
Z(τ),Z(τ)

) + 2
∣∣Ric#(Z(τ)

)∣∣2

− 1

τ
Ric

(
Z(τ),Z(τ)

) − 2 Rm
(
Z(τ), γ̇ (τ ), γ̇ (τ ),Z(τ)

)
− 4(∇γ̇ (τ ) Ric)

(
Z(τ),Z(τ)

) + 4(∇Z(τ) Ric)
(
γ̇ (τ ),Z(τ)

)
. (13)

In [6] this lemma is only proved in the case τ1 = 0 and Z(τ1) = 0. However, the proof given
there can be easily adapted to the slightly more general case needed here.

Corollary 1. (See [6, Lemma 7.39] for a similar statement.) If the variation field Z is of the form

Z(τ) =
√

τ

t
Z∗(τ ) (14)

with a space–time parallel field Z∗ satisfying |Z∗(τ )| ≡ 1, then
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d2

ds2

∣∣∣∣
s=0

L(Γs) = 2
√

τ
〈
γ̇ (τ ),∇Z(τ)S(0, τ )

〉
g(τ)

∣∣τ=τ2
τ=τ1

− 2
√

τ Ric
(
Z(τ),Z(τ)

)∣∣τ=τ2
τ=τ1

−
τ2∫

τ1

√
τH

(
γ̇ (τ ),Z(τ)

)
dτ +

√
τ

t

∣∣∣∣
τ=τ2

τ=τ1

.

Proof. Since Z∗ is space–time parallel, Z satisfies

∇γ̇ (τ )Z(τ) = −Ric#(Z(τ)
) + 1

2τ
Z(τ), (15)

so that the last term in (12) vanishes. �
Corollary 2 (Hessian of L). (See [6, Corollary 7.40] for a similar statement.) Let Z be a vector
field along γ of the form (14) and ξ := Z(τ1) ⊕ Z(τ2) ∈ T(x,y)(M × M). Then

Hessg(τ1)⊕g(τ2) L|(x,τ1;y,τ2)(ξ, ξ) � −
τ2∫

τ1

√
τH

(
γ̇ (τ ),Z(τ)

)
dτ +

√
τ

t

∣∣∣∣
τ=τ2

τ=τ1

− 2
√

τ Ricg(τ)

(
Z(τ),Z(τ)

)∣∣τ=τ2
τ=τ1

. (16)

Proof. Let Γ : (−ε, ε)×[τ1, τ2] → M be any variation of γ with variation field Z and such that

∇Z(τ1)S(0, τ1) and ∇Z(τ2)S(0, τ2) vanish. (17)

Let l(s) := L(Γ (s, τ1), τ1;Γ (s, τ2), τ2) and l̂(s) := L(Γ (s, ·)). Since l̂(0) = l(0) and l̂(s) � l(s)

for all s ∈ (−ε, ε), we have l′′(0) � l̂′′(0) so that, using (17),

Hessg(τ1)⊕g(τ2) L|(x,τ1;y,τ2)(ξ, ξ) = d2

ds2

∣∣∣∣
s=0

L
(
Γ (s, τ1), τ1;Γ (s, τ2), τ2

)

= l′′(0) � l̂′′(0) = d2

ds2

∣∣∣∣
s=0

L(Γs).

The claim now follows from Corollary 1. �
Let now Z∗

i (i = 1, . . . , d) be space–time parallel fields along γ satisfying Z∗
i (τ1) = uei

(and consequently Z∗
i (τ2) = ve∗

i ), and Zi(τ ) := √
τ/tZ∗

i (τ ) (so that ξi = Zi(τ1) ⊕ Zi(τ2)).

In order to estimate
∑d

i=1 Hessg(τ1)⊕g(τ2) L|(x,τ1;y,τ2)(ξi, ξi) using Corollary 2 we will compute∑d
i=1 H(γ̇ (τ ),Zi(τ )) in the following (see [6, Section 7.5.3] for a similar argument). Set I1, I2

and I3 by
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I1 := −2
d∑

i=1

∂ Ric

∂τ

(
Zi(τ ),Zi(τ )

)
,

I2 :=
d∑

i=1

[
−HessR

(
Zi(τ ),Zi(τ )

) + 2
∣∣Ric#(Zi(τ )

)∣∣2

− 1

τ
Ric

(
Zi(τ ),Zi(τ )

) − 2 Rm
(
Zi(τ ), γ̇ (τ ), γ̇ (τ ),Zi(τ )

)]
,

I3 := 4
d∑

i=1

[
(∇Zi(τ) Ric)

(
Zi(τ ), γ̇ (τ )

) − (∇γ̇ (τ ) Ric)
(
Zi(τ ),Zi(τ )

)]
.

Then
∑d

i=1 H(γ̇ (τ ),Zi(τ )) = I1 + I2 + I3 holds. By a direct computation,

I2 = τ

t

(
−�R

(
γ (τ)

) + 2|Ric|2(γ (τ)
) − 1

τ
R

(
γ (τ)

) + 2 Ric
(
γ̇ (τ ), γ̇ (τ )

))
. (18)

The contracted Bianchi identity div Ric = 1
2∇R [18, Lemma 7.7] yields

I3 = 4τ

t

(
(div Ric)

(
γ̇ (τ )

) − (∇γ̇ (τ )R)
(
γ (τ)

)) = −2τ

t
(∇γ̇ (τ )R)

(
γ (τ)

)
. (19)

For I1, we have

I1 = −2
d∑

i=1

[
d

dτ

(
Ric

(
Zi(τ ),Zi(τ )

)) − (∇γ̇ (τ ) Ric)
(
Zi(τ ),Zi(τ )

) − 2 Ric
(∇γ̇ (τ )Zi(τ ),Zi(τ )

)]

= −2
d

dτ

(
τ

t
R

(
γ (τ)

)) + 2
τ

t
∇γ̇ (τ )R

(
γ (τ)

) + 4
d∑

i=1

Ric
(∇γ̇ (τ )Zi(τ ),Zi(τ )

)

= −2τ

t

(
1

τ
R

(
γ (τ)

) + ∂R

∂τ

(
γ (τ)

)) + 4
d∑

i=1

Ric
(∇γ̇ (τ )Zi(τ ),Zi(τ )

)
. (20)

Since Zi satisfies (15),

4
d∑

i=1

Ric
(∇γ̇ (τ )Zi(τ ),Zi(τ )

) = 4
d∑

i=1

Ric

(
−Ric#(Zi(τ )

) + 1

2τ
Zi(τ ),Zi(τ )

)

= −2τ

t

(
2|Ric|2(γ (τ)

) − 1

τ
R

(
γ (τ)

))
. (21)

By substituting (21) into (20),

I1 = −2τ
(

∂R (
γ (τ)

) + 2|Ric|2(γ (τ)
))

. (22)

t ∂τ
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Hence, by combining (22), (19) and (18),

d∑
i=1

H
(
γ̇ (τ ),Zi(τ )

) = τ

t

(
−2

∂R

∂τ

(
γ (τ)

) − 2|Ric|2(γ (τ)
) − �R

(
γ (τ)

)

− 1

τ
R

(
γ (τ)

) + 2 Ric
(
γ̇ (τ ), γ̇ (τ )

) − 2(∇γ̇ (τ )R)
(
γ (τ)

))
.

Inserting this into (16) we obtain

d∑
i=1

Hessg(τ1)⊕g(τ2) L|(x,τ1;y,τ2)(ξi , ξi)

� 1

t

τ2∫
τ1

τ 3/2
(

2
∂R

∂τ

(
γ (τ)

) + 2|Ric|2(γ (τ)
) + �R

(
γ (τ)

)

+ 1

τ
R

(
γ (τ)

) − 2 Ric
(
γ̇ (τ ), γ̇ (τ )

) + 2(∇γ̇ (τ )R)
(
γ (τ)

))
dτ

+ d
√

τ

t

∣∣∣∣
τ=τ2

τ=τ1

− 2τ 3/2

t
R

(
γ (τ)

)∣∣τ=τ2
τ=τ1

= d
√

τ

t

∣∣∣∣
τ=τ2

τ=τ1

+ 1

t

τ2∫
τ1

τ 3/2
(

2|Ric|2(γ (τ)
) + �R

(
γ (τ)

)

− 2

τ
R

(
γ (τ)

) − 2 Ric
(
γ̇ (τ ), γ̇ (τ )

))
dτ

which completes the proof of Proposition 1.

5. Coupling via approximation by geodesic random walks

To avoid a technical difficulty coming from singularity of L on the L-cut locus, we provide an
alternative way to constructing a coupling of Brownian motions by space–time parallel transport.
In this section, we first define a coupling of geodesic random walks which approximate g(τ)-
Brownian motion. Next, we introduce some estimates on geometric quantities in Section 5.1.
Those are obtained as a small modification of existing arguments in [6,30,35]. The L-cut locus
is also reviewed and studied there. We use those estimates in Section 5.2 to study the behavior of
the L-distance between coupled random walks. The argument there includes a discrete analogue
of the Itô formula as well as a local uniform control of error terms. Finally, we will complete the
proof of Theorems 2 and 3 in Section 5.3.

Let us take a family of minimal L-geodesics {γ τ1τ2
xy | τ̄1 � τ1 < τ2 � τ̄2, x, y ∈ M} so that a

map (x, τ1;y, τ2) �→ γ
τ1τ2
xy is measurable. The existence of such a family of minimal L-geodesics

can be shown in a similar way as discussed in the proof of [20, Proposition 2.6] since the family
of minimal L-geodesics with fixed endpoints is compact (cf. [6, the proof of Lemma 7.27]). For
each τ ∈ [τ̄1, T ], take a measurable section Φ(τ) of g(τ)-orthonormal frame bundle Og(τ)(M)
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of M . For x, y ∈ M and τ1, τ2 ∈ [τ̄1, T ] with τ1 < τ2, let us define Φi(x, τ1;y, τ2) ∈ F (M) for
i = 1,2 by

Φ1(x, τ1;y, τ2) := Φ(τ1)(x),

Φ2(x, τ1;y, τ2) := mτ1τ2
xy ◦ Φ(τ1)(x),

where m
τ1τ2
xy is as given in Definition 2. Let us take a family of R

d -valued i.i.d. random variables
(λn)n∈N which are uniformly distributed on a unit ball centered at origin. We denote the (Rie-
mannian) exponential map with respect to g(τ) at x ∈ M by exp(τ )

x . In what follows, we define a
coupled geodesic random walk Xε

t = (Xε
τ̄1t

, Y ε
τ̄2t

) with scale parameter ε > 0 and initial condition
Xε

s = (x1, y1) inductively. First we set (Xε
τ̄1s

, Y ε
τ̄2s

) := (x1, y1). For simplicity of notations, we set

tn := (s + ε2n) ∧ (T /τ̄2). After we defined (Xε
t )t∈[s,tn], we extend it to (Xε

t )t∈[s,tn+1] by

λ̂
(i)
n+1 := √

d + 2Φi

(
Xε

τ̄1tn
, τ̄1tn;Y ε

τ̄2tn
, τ̄2tn

)
λn+1, i = 1,2,

Xε
τ̄1t

:= exp(τ̄1tn)

Xε
τ̄1 tn

(
t − tn

ε

√
2τ̄1λ̂

(1)
n+1

)
,

Y ε
τ̄2t

:= exp(τ̄2tn)

Y ε
τ̄2 tn

(
t − tn

ε

√
2τ̄2λ̂

(2)
n+1

)

for t ∈ [tn, tn+1]. We can (and we will) extend the definition of Xε
τ for τ ∈ [T τ̄1/τ̄2, T ] in the

same way. As in Section 3, Xε
τ̄1t

does not move when τ̄1 = 0. Note that the term
√

d + 2 in

the definition of λ̂
(i)
n+1 is a normalization factor in the sense Cov(

√
d + 2λn) = Id. Let us equip

path spaces C([a, b] → M) or C([a, b] → M × M) with the uniform convergence topology in-
duced from g(T ). Here the interval [a, b] will be chosen appropriately in each context. As shown
in [14], (Xε

τ )τ∈[τ̄1s,T ] and (Y ε
τ )τ∈[τ̄2s,T ] converge in law to g(τ)-Brownian motions (Xτ )τ∈[τ̄1s,T ]

and (Yτ )τ∈[τ̄2s,T ] on M with initial conditions Xτ̄1s = x1, Yτ̄2s = y1 respectively as ε → 0 (when
τ̄1 > 0). As a result, Xε is tight and hence there is a convergent subsequence of Xε . We fix such
a subsequence and use the same symbol (Xε)ε for simplicity of notations. We denote the limit in
law of Xε as ε → 0 by Xt = (Xτ̄1t , Yτ̄2t ). Recall that, in this paper, g(τ)-Brownian motion means
a time-inhomogeneous diffusion process associated with �g(τ) instead of �g(τ)/2.

Remark 7. We explain the reason why our alternative construction works efficiently to avoid the
obstruction arising from singularity of L. To make it clear, we begin with observing the essence
of difficulties in the SDE approach we used in Section 3. Recall that our argument is based on the
Itô formula. Hence the non-differentiability of L at the L-cut locus causes the technical difficulty.
One possible strategy is to extend the Itô formula for L-distance. Since L-cut locus is sufficiently
thin, we can expect that the totality of times when our coupled particles stay there has measure
zero. In addition, as that of Riemannian cut locus, the presence of L-cut locus would work to
decrease the L-distance between coupled particles. Thus one might think it possible to extend
Itô formula for L-distance to the one involving a “local time at the L-cut locus”. If we succeed
in doing so, we will obtain a differential inequality which implies the supermartingale property
by neglecting this additional term since it would be non-positive.

Instead of completing the above strategy, our alternative approach in this section directly
provides a difference inequality without extracting the additional “local time” term. When the
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endpoint of minimal L-geodesic is in the L-cut locus, we divide it into two pieces. Then the pair
of endpoints of each piece is not in the L-cut locus. As a result, we obtain the desired difference
inequality of L-distance even in such a case (see the proof of Lemma 4 for more details). In order
to follow such a procedure, it is more suitable to work with discrete time processes.

5.1. Preliminaries on properties of L-functional

Recall that we assumed the uniform lower Ricci curvature bound (2). On the basis of it, we
can compare Riemannian metrics at different times. That is, for τ1 < τ2,

g(τ1) � e2K(τ2−τ1)g(τ2) (23)

(see [29, Lemma 5.3.2], for instance). Recall that ρg(τ) is the distance function on M at time τ .
Note that a similar comparison between ρg(τ1) and ρg(τ2) follows from (2). By neglecting the
term involving γ̇ in the definition of L(γ ), the condition (2) implies

inf
x,y∈M

L(x, τ1;y, τ2) � −2dK

3

(
τ

3/2
2 − τ

3/2
1

)
. (24)

We also obtain the following bounds for L from (2) and (23). Let γ : [τ1, τ2] → M be a minimal
L-geodesic. Then, for τ ∈ [τ1, τ2],

e−2KT

2(
√

τ2 − √
τ1)

ρg(τ̄1)

(
γ (τ1), γ (τ )

)2 − 2

3
dK

(
τ

3/2
2 − τ

3/2
1

)
� L

(
γ (τ1), τ1;γ (τ2), τ2

)
(25)

(see [6, Lemma 7.13] or [30, Proposition B.2]). The same estimate holds for ρg(τ̄1)(γ (τ ), γ (τ2))
2

instead of ρg(τ̄1)(γ (τ1), γ (τ ))2. Taking the fact that L-functional is not invariant under re-
parametrization of curves into account, we will introduce a local estimate on the velocity of
the minimal L-geodesic γ .

Lemma 3. Let τ1, τ2 ∈ [τ̄1, T ] and suppose that τ2 − τ1 � δ for some δ > 0. Then, for any
compact set M0 ⊂ M , there exist constants C1 > 0 depending on K , M0 and δ such that, for any
γ : [τ1, τ2] → M with γ (τ1), γ (τ2) ∈ M0 and τ1 � τ � τ2,

τ
∣∣γ̇ (τ )

∣∣2
g(τ)

� C1. (26)

Proof. Though the conclusion follows by combining arguments in [6, Lemma 7.24] and [35,
Proposition 2.12], we give a proof for completeness. Let o ∈ M be a reference point and take
r0 > 0 so large that B

g(T )

r0/2 (o) contains M0. Take K0 > 0 so that supτ |Rg(τ)| � K0 holds on

B
g(T )
r0 (o). We claim that there exists a constant C0 > 0 such that

L(x, τ1;y, τ2) � C0 (27)

for any x, y ∈ M0. Take a constant speed g(T )-minimal geodesic γ0 : [τ1, τ2] → M joining x

and y. Note that γ0 is contained in B
g(T )
r (o). Thus, by virtue of (23), we have
0
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L(x, τ1;y, τ2) �
τ2∫

τ1

√
τ
(∣∣γ0(τ )

∣∣2
g(τ)

+ Rg(τ)

(
γ0(τ )

))
dτ

� 2e2KT

3

τ
3/2
2 − τ

3/2
1

(τ2 − τ1)2
dg(T )(x, y)2 + 2K0

3

(
τ

3/2
2 − τ

3/2
1

)

� 2T 3/2e2KT

3δ2
dg(T )(x, y)2 + 2K0

3
T 3/2.

Thus the claim follows since x, y ∈ M0.
By combining the above claim with (25), we can show that there exists r1 > r0 which

is independent of γ such that γ (τ) ∈ B
g(T )
r1 (o) for any τ ∈ [τ1, τ2]. Take K1 > 0 so that

|Ricg(τ)|g(τ) � K1 and |∇Rg(τ)|g(τ) � K1 hold on B
g(T )
r1 (o) for any τ ∈ [τ̄1, T ]. By a similar

argument as in [6, Lemma 7.13(ii)], there exists τ ∗ ∈ [τ1, τ2] such that

τ ∗∣∣γ̇ (
τ ∗)∣∣2

g(τ∗) � 1

2(
√

τ2 − √
τ1)

(
L

(
γ (τ1), τ1;γ (τ2), τ2

) + 2dK

3

(
τ

3/2
2 − τ

3/2
1

))
. (28)

By virtue of (2), there exist constants c′
1,C

′
1 > 0 which depends on K , K1 and T such that for

all τ ′
1, τ

′
2 ∈ [τ1, τ2] with τ ′

1 < τ ′
2,

τ ′
2

∣∣γ̇ (
τ ′

2

)∣∣2
g(τ ′

2)
� c′

1τ
′
1

∣∣γ̇ (
τ ′

1

)∣∣2
g(τ ′

1)
+ C′

1, (29)

τ ′
1

∣∣γ̇ (
τ ′

1

)∣∣2
g(τ ′

1)
� c′

1τ
′
2

∣∣γ̇ (
τ ′

2

)∣∣2
g(τ ′

2)
+ C′

1. (30)

The first inequality in (29) can be shown similarly as [6, Lemma 7.24]. It is due to a dif-
ferential inequality based on the L-geodesic equation (7) which provides an upper bound of
∂τ (τ |γ̇ (τ )|2g(τ)). By considering a lower bound of the same quantity instead, we obtain the sec-
ond inequality (30) in a similar way. Hence the proof is completed by combining (29) and (30)
with (28) and (27). �

Let us recall that the L-cut locus, denoted by L Cut, is defined as a union of two different
kinds of sets (see [35]; see [6,30] also). The first one consists of (x, τ1;y, τ2) such that there
exist more than one minimal L-geodesics joining (x, τ1) and (y, τ2). The second consists of
(x, τ1;y, τ2) such that (y, τ2) is conjugate to (x, τ1) along a minimal L-geodesic with respect
to L-Jacobi field. Note that L is smooth on M \ L Cut (see [35, Lemma 2.9]) and that L Cut is
closed (see [30]; though they assumed M to be compact, an extension to the non-compact case
is straightforward).

5.2. Variations of the L-distance of coupled random walks

For proving Theorem 2, our first task is to show a difference inequality of Λ(t,Xε
t ) in

Lemma 4. We begin with introducing some notations. Set γn := γ
τ̄1tn,τ̄2tn
Xε

tn
and let us define a

vector field λ̂
†
n+1 along γn by λ̂n+1(τ ) = √

τ/tnλ
∗
n+1(τ ), where λ∗

n+1 is a space–time parallel

vector field along γn with initial condition λ̂∗
n+1(τ̄1tn) = λ̂

(1)
n+1. Let us define random variables ζn

and Σn as follows:



2760 K. Kuwada, R. Philipowski / Journal of Functional Analysis 260 (2011) 2742–2766
ζn+1 := √
2τ

〈
λ̂

†
n+1(τ ), γ̇n(τ )

〉
g(τ)

∣∣τ̄2tn
τ=τ̄1tn

,

Σn+1 := 1

tn
τ 3/2(Rg(τ)

(
γn(τ )

) − ∣∣γ̇n(τ )
∣∣2
g(τ)

)∣∣τ̄2tn
τ=τ̄1tn

+
((√

τ

tn
− 2

√
τ Ricg(τ)

(
λ̂

†
n+1(τ ), λ̂

†
n+1(τ )

))∣∣∣∣
τ̄2tn

τ=τ̄1tn

−
τ̄2tn∫

τ̄1tn

√
τH

(
γ̇ (τ ), λ̂

†
n+1(τ )

)
dτ

)
.

Here H is as given in (13). The term ζn+1 corresponds to the martingale part of Λ(t,Xt ) and
Σn does to the one dominating the bounded variation part of Λ(t, X̃t , Ỹt ) in Section 3. As we
will see in Lemma 4 below, there is a discrete analogue of the Itô formula (and the corresponding
difference inequality) involving ζn and Σn. As a result of our discretization, we are no longer able
to apply Proposition 1 directly to estimate Σn itself. In this case, we can do it to the conditional
expectation of Σn instead. Set Gn := σ(λ1, . . . , λn). Then, since each Φi is isometry and (d +
2)E[〈λn, ei〉〈λn, ej 〉] = δij , Proposition 1 yields

E[Σn+1 | Gn] � d√
tn

(
√

τ̄2 − √
τ̄1) − 1

2tn
Λ

(
tn,Xε

tn

)
. (31)

For M0 ⊂ M , we define σM0 : C([s, T /τ̄2] → M × M) → [0,∞) by

σM0(w, w̃) := inf{t � s | wτ̄1t /∈ M0 or wτ̄2t /∈ M0}.

For simplicity of notations, we denote σM0(X
ε) and σM0(X) by σε

M0
and σ 0

M0
respectively. As

shown in [14], for any η > 0, we can take a compact set M0 ⊂ M such that limε→0 P[σε
M0

�
T ] � η holds (cf. [16]).

Lemma 4. Let M0 ⊂ M be a compact set. Then there exist a family of random variables
(Qε

n)n∈N, ε>0 and a family of deterministic constants (δ(ε))ε>0 with limε→0 δ(ε) = 0 satisfying

∑
n; tn<σε

M0
∧(T /τ̄2)

Qε
n � δ(ε) (32)

such that

Λ
(
tn+1,Xε

tn+1

)
� Λ

(
tn,Xε

tn

) + εζn+1 + ε2Σn+1 + Qε
n+1. (33)

Proof. When (Xε(τ̄1tn), τ̄1tn;Y ε(τ̄2tn), τ̄2tn) /∈ L Cut, the inequality (33) follows from the
Taylor expansion with the error term Qε

n+1 = o(ε2). Indeed, the first variation formula
([6, Lemma 7.15], cf. (8)) produces εζn+1 and Corollary 2 together with (9) implies the bound
ε2Σn+1 of the second-order term. To include the case (Xε(τ̄1tn), τ̄1tn;Y ε(τ̄2tn), τ̄2tn) ∈ L Cut
and to obtain a uniform bound (32), we extend this argument. Set τ ∗

n := (τ̄1 + τ̄2)tn/2. Then we
can show
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(
Xε

τ̄1tn
, τ̄1tn;γn

(
τ ∗
n

)
, τ ∗

n

)
/∈ L Cut,(

γn

(
τ ∗
n

)
, τ̄ ∗

n ;Xε
τ̄2tn

, τ̄2tn
)

/∈ L Cut

since minimal L-geodesics with these pair of endpoints can be extended with keeping its mini-

mality (cf. see [6, Section 7.8] and [35]). Set x∗
n+1 = exp

(τ∗
n )

γn(τ∗
n )(

√
τ̄1 + τ̄2λ

†
n+1(τ

∗
n )). The triangle

inequality for L yields

Λ
(
tn,Xε

tn

) = L
(
Xε

τ̄1tn
, τ̄1tn;γn

(
τ ∗
n

)
, τ ∗

n

) + L
(
γn

(
τ ∗
n

)
, τ ∗

n ;Xε
τ̄2tn

, τ̄2tn
)
,

Λ
(
tn+1,Xε

tn+1

)
� L

(
Xε

τ̄1tn+1
, τ̄1tn+1;x∗

n+1, τ
∗
n+1

) + L
(
x∗
n+1, τ

∗
n+1;Xε

τ̄2tn+1
, τ̄2tn+1

)
.

Hence

Λ
(
tn+1,Xε

tn+1

) − Λ
(
tn,Xε

tn

)
�

(
L

(
Xε

τ̄1tn+1
, τ̄1tn+1;x∗

n+1, τ
∗
n+1

) − L
(
Xε

τ̄1tn
, τ̄1tn;γn

(
τ ∗
n

)
, τ ∗

n

))
+ (

L
(
x∗
n+1, τ

∗
n+1;Xε

τ̄2tn+1
, τ̄2tn+1

) − L
(
γn

(
τ ∗
n

)
, τ ∗

n ;Xε
τ̄2tn

, τ̄2tn
))

and the desired inequality with Qε
n = o(ε2) holds by applying the Taylor expansion to each term

on the right-hand side of the above inequality.
We turn to showing the claimed control (32) of the error term Qε

n. Take a compact set
M1 ⊃ M0 such that every minimal L-geodesic joining (x, τ̄1t) and (y, τ̄2t) is included in M1
if x, y ∈ M0 and t ∈ [s, T /τ̄2]. Indeed, such M1 exists since we have the lower bound of L in
(25) and L is continuous. Let us define a set A by

A := {(
(τ1, x), (τ3, z), (τ2, y)

) ∈ ([τ̄1, T ] × M1
)3 ∣∣ x, y ∈ M0, τ2 − τ1 � (τ̄2 − τ̄1)s,

τ3 = (τ1 + τ2)/2, L(x, τ1; z, τ3) + L(z, τ3;y, τ2) = L(x, τ1;y, τ2)
}
.

Note that A is compact. Let π1,π2 : A → ([τ̄1, T ] × M1)
2 be defined by

π1
(
(τ1, x), (τ3, z), (τ2, y)

) := (
(τ1, x), (τ3, z)

)
,

π2
(
(τ1, x), (τ3, z), (τ2, y)

) := (
(τ3, z), (τ2, y)

)
.

Then π1(A) and π2(A) are compact and πi(A) ∩ L Cut = ∅ for i = 1,2. The second asser-
tion comes from the fact that (z, τ3) is on a minimal L-geodesic joining (x, τ1) and (y, τ2) for
((x, τ1), (z, τ3), (y, τ2)) ∈ A. Recall that L Cut is closed. Thus we can take relatively compact
open sets G1,G2 ⊂ [τ̄1, T ] × M such that πi(A) ⊂ Gi and Ḡi ∩ L Cut = ∅ for i = 1,2. Then
the Taylor expansion we discussed above can be done on G1 or G2 for sufficiently small ε. Re-
call that L is smooth outside of L Cut (see [6]). Thus the convergence ε−2Qn(ε) → 0 as ε → 0
is uniform in n and independent of Xε

tn
as long as tn < σε

M0
∧ (T /τ̄2). Since the cardinality of

{n | tn < σε
M0

∧ (T /τ̄2)} is of order at most ε−2, the assertion (32) holds. �
We next establish the corresponding difference inequality for Θt(Xε

t ) (Corollary 3). For that,
we show the following auxiliary lemma.

Lemma 5. Let M0 ⊂ M be a compact set. Then there exists a deterministic constant C2 > 0
depending on M0 such that max{|ζn|, |Λ(tn,Xε )|, |Σn|} � C2 holds if tn � σε ∧ (T /τ̄2).
tn M0
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Proof. By the definition of ζn, we have

|ζn| �
√

2(d + 2)tn−1
(
τ̄1

∣∣γ̇n−1(τ̄1tn−1)
∣∣
g(τ̄1tn−1)

+ τ̄2
∣∣γ̇n−1(τ2tn−1)

∣∣
g(τ̄2tn−1)

)
.

Thus the asserted bound for |ζn| follows from (26). Similarly, the estimate for Λ(tn,Xε
tn
) follows

from (24) and (27). For estimating Σn, we deal with the integral involving H in the definition
of Σn. Note that every tensor field appearing in the definition of H is continuous. As in the proof
of Lemma 4, take a compact set M1 ⊃ M0 such that every minimal L-geodesic joining (x, τ̄1t)

and (y, τ̄2t) is included in M1 if x, y ∈ M0 and t ∈ [s, T /τ̄2]. Since Xε
tn−1

∈ M0 × M0 holds on
the event {tn < σε

M0
∧ (T /τ̄2)}, the upper bound (26) of

√
τ |γ̇ (τ )| implies that H(γ̇n(τ ),Z(τ))

is uniformly bounded for any vector field Z(τ) along γn of the form Z(τ) = √
τ/tnZ

∗(τ ) with
a space–time parallel vector field Z∗(τ ) satisfying |Z∗(τ )|g(τ) � 1. This fact yields a required
bound for the integral. For any other terms in the definition of Σn, we can estimate them as we
did for ζn and Λ(tn,Xε

tn
). �

By virtue of Lemma 5, Lemma 4 yields the following:

Corollary 3. Let M0 ⊂ M be a compact set. Then there exist a family of random variables
(Q̃ε

n)n∈N, ε>0 and a family of deterministic constants (δ̃(ε))ε>0 with limε→0 δ̃(ε) = 0 satisfying

∑
n; tn<σε

M0
∧(T /τ̄2)

Q̃ε
n � δ̃(ε)

such that

Θtn+1

(
Xε

tn+1

)
� Θtn

(
Xε

tn

) + ε2

√
tn

(
√

τ̄2 − √
τ̄1)Λ

(
tn,Xε

tn

) − 2ε2 d(
√

τ̄2 − √
τ̄1)

2

+ 2ε(
√

τ̄2tn+1 − √
τ̄1tn+1)ζn+1 + 2ε2(

√
τ̄2tn+1 − √

τ̄1tn+1)Σn+1

+ Q̃ε
n+1. (34)

For u ∈ [s, T /τ̄2], let us define �u�ε by

�u�ε := sup
{
s + ε2n

∣∣ n ∈ N ∪ {0}, 1 + ε2n < u
}
.

Set σ̂ ε
M0

:= �σε
M0

�ε + ε2. Note that {σ̂ ε
M0

= tn} ∈ Gn for all n ∈ N ∪ {0}. We finally prepare the
following moment bound of Θt(Xt ) before entering the proof of Theorem 2.

Lemma 6. There exist c3,C3 > 0 such that

E

[
sup

s�t�T/τ̄2

Θt(Xt )
2
]

< c3Θs(x1, y1)
2 + C3.

Proof. Recall that Θ is uniformly bounded from below by (24). Take b � 0 so large that
Θt(x, y) + b � 0 for x, y ∈ M and t ∈ [s, T /τ̄2] and set Θ̂t (x, y) := Θt(x, y) + b. It suffices
to show
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E

[
sup

s�t�T/τ̄2

Θ̂t (Xt )
2
]

� 4Θ̂s(x1, y1)
2 + C

for some C > 0. Take a relatively compact open set M0 ⊂ M and consider Θ̂tn∧σ̂ ε
M0

(Xε
tn∧σ̂ ε

M0
).

Lemma 5 ensures that the term appearing in (34) is integrable on the event tn < σ̂ ε
M0

. Thus
Corollary 3 and (31) yield that

E
[
Θ̂tm∧σ̂ ε

M0

(
Xε

tm∧σ̂ ε
M0

) − Θ̂tn∧σ̂ ε
M0

(
Xε

tn∧σ̂ ε
M0

) ∣∣ Gn

]
� δ̃(ε).

By imitating the proof of the maximal inequality (cf. [27, Chapter 2, Exercise 1.15]), we obtain

P

[
sup

n; s�tn�σ̂ ε
M0

∧(T /τ̄2)

Θ̂tn

(
Xε

tn

)
� r

]
� 1

r

(
Θ̂s(x1, y1) + δ̃(ε)

)

for r > 0. Then, by following the proof of the Doob inequality in [27],

E

[
sup

s�tn�σ̂ ε
M0

∧(T /τ̄2)

(
Θ̂tn

(
Xε

tn

) ∧ R
)2

]
� 4

(
Θ̂s(x1, y1) + δ̃(ε)

)2 (35)

holds for each R > 0. By (23) and the definition of Xε , there exist CM0 > 0 such that

(
Θ̂t∧σε

M0

(
Xε

t

) ∧ R
)2 �

(
Θ̂tn

(
Xε

tn∧σ̂ ε
M0

) ∧ R
)2 + CM0ε

for t ∈ [tn, tn+1]. Thus (35) yields

E

[
sup

s�t�σε
M0

∧(T /τ̄2)

(
Θ̂t

(
Xε

t

) ∧ R
)2

]
� 4

(
Θ̂s(x1, y1) + δ̃(ε)

)2 + CM0ε. (36)

Let us turn to estimate the second moment of supt Θ̂t (Xt ). Note that we have

E

[
sup

s�t�T/τ̄2

(
Θ̂t (Xt ) ∧ R

)2
]

� E

[
sup

s�t�T/τ̄2

(
Θ̂t (Xt ) ∧ R

)2;σ 0
M0

> t
]
+ R2

P
[
σ 0

M0
� t

]
. (37)

Since {w | σM0(w) > t} is open and the map w �→ sups�t�T/τ̄2
(Θ̂t (wt ) ∧ R)2 is bounded and

continuous on C([s, T /τ̄2] → M × M), (36) yields

E

[
sup

s�t�T/τ̄2

(
Θ̂t (Xt ) ∧ R

)2;σ 0
M0

> t
]

� lim inf
ε→0

E

[
sup

s�t�T/τ̄2

(
Θ̂t

(
Xε

t

) ∧ R
)2;σε

M0
> t

]

� lim inf
ε→0

E

[
sup

s�t�σε
M0

∧(T /τ̄2)

(
Θ̂t

(
Xε

t

) ∧ R
)2

]

� 4Θ̂s(x1, y1).

Thus the conclusion follows by combining the last inequality with (37) and by letting M0 ↑ M

and R → ∞. �



2764 K. Kuwada, R. Philipowski / Journal of Functional Analysis 260 (2011) 2742–2766
5.3. Proof of Theorems 2 and 3

Proof of Theorem 2. First we remark that the map (x, y) �→ (Xε
τ̄1·, Y

ε
τ̄2·) is obviously mea-

surable. Thus, we obtain the same measurability for the law of (Xτ̄1·, Yτ̄2·). The integrability
of Θt(Xt ) follows from Lemma 6. We will show the supermartingale property in the sequel. For
s � s1 < · · · < sm < t ′ < t < T and f1, . . . , fm ∈ Cc(M ×M → R) with 0 � fj � 1, set F(w) :=∏m

j=1 fj (wsj ) for w ∈ C([s, T /τ̄2] → M × M). Take η > 0 arbitrarily and choose a relatively

compact open set M0 ⊂ M so that P[σ 0
M0

� t] � η holds. Note that lim supε→0 P[σε
M0

� t] � η

also holds since {w | σM0(w) � t} is closed. It suffices to show that there is a constant C > 0
which is independent of η and M0 such that,

E
[(

Θt∧σ 0
M0

(Xt∧σ 0
M0

) − Θt ′∧σ 0
M0

(Xt ′∧σ 0
M0

)
)
F(X·∧σ 0

M0
)
]
� C

√
η (38)

holds. In fact, once we have shown (38), then Lemma 6 yields

E
[(

Θt(Xt ) − Θs(Xs)
)
F(X)

]
� 0

since σ 0
M0

→ ∞ almost surely as M0 ↑ M .
Take f ∈ Cc(M × M) such that 0 � f � 1 and f |U ≡ 1, where U ⊂ M × M is an open set

containing M̄0 × M̄0. Then, by virtue of Lemma 6 and the choice of M0,

E
[(

Θt∧σ 0
M0

(Xt∧σ 0
M0

) − Θt ′∧σ 0
M0

(Xt ′∧σ 0
M0

)
)
F(X·∧σ 0

M0
)
]

� E
[(

Θt(Xt ) − Θt ′(Xt ′)
)
f (Xt )f (Xt ′)F (X);σ 0

M0
> t

] + 2C
1/2
4

√
η, (39)

where C4 := c3Θs(x1, y1)
2 + C3. Since {w | σM0(w) > t} is open,

E
[(

Θt(Xt ) − Θt ′(Xt ′)
)
f (Xt )f (Xt ′)F (X);σ 0

M0
> t

]
� lim inf

ε→0
E

[(
Θt

(
Xε

t

) − Θt ′
(
Xε

t ′
))

f
(
Xε

t

)
f

(
Xε

t ′
)
F

(
Xε

);σε
M0

> t
]

= lim inf
ε→0

E
[(

Θ�t�ε

(
Xε�t�ε

) − Θ�t ′�ε

(
Xε

�t ′�ε

))
f

(
Xε�t�ε

)
f

(
Xε

�t ′�ε

)
F

(
Xε

);σε
M0

> t
]
. (40)

Here the last equality follows from the continuity of Θ and f . Then

E
[(

Θ�t�ε

(
Xε�t�ε

) − Θ�t ′�ε

(
Xε

�t ′�ε

))
f

(
Xε�t�ε

)
f

(
Xε

�t ′�ε

)
F

(
Xε

);σε
M0

> t
]

� E
[(

Θ�t�ε∧σ̂ ε
M0

(
Xε

�t�ε∧σ̂ ε
M0

) − Θ�t ′�ε∧σ̂ ε
M0

(
Xε

�t ′�ε∧σ̂ ε
M0

))
F

(
Xε

·∧σ̂ ε
M0

)]
+ 2E

[
sup

s�u�T/τ̄2

∣∣Θu

(
Xε

u

)
f

(
Xε

u

)∣∣2
]1/2

P
[
σε

M0
� t

]1/2
. (41)

Since a function w �→ sup1�u�T/τ̄2
|Θu(wu)f (wu)| on C([s, T /τ̄2] → M × M) is bounded and

continuous, we have

lim sup E

[
sup

∣∣Θu

(
Xε

u

)
f

(
Xε

u

)∣∣2
]1/2

P
[
σε

M0
� t

]1/2 � C
1/2
4

√
η. (42)
ε→0 s�u�T/τ̄2
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Now, with the aid of Lemma 5, the iteration of (34) together with (31) yields

E
[(

Θ�t�ε∧σ̂ ε
M0

(
Xε

�t�ε∧σ̂ ε
M0

) − Θ�t ′�ε∧σ̂ ε
M0

(
Xε

�t ′�ε∧σ̂ ε
M0

))
F

(
Xε

·∧σ̂ ε
M0

)]
� δ̃(ε). (43)

Here δ̃(ε) is what appeared in Corollary 3. Hence we complete the proof by combining (40),
(41), (42) and (43) with (39). �
Proof of Theorem 3. Fix 1 � s < t � T/τ̄2. We may assume

Tϕ◦Θs

(
p(τ̄1s, ·)volg(τ̄1t), q(τ̄2s, ·)volg(τ̄2t)

)
< ∞

without loss of generality. Let π be a minimizer of Tϕ◦Θs (p(τ̄1s, ·)volg(τ̄1t), q(τ̄2s, ·)volg(τ̄2t)),
where the existence of π follows from [31, Theorem 4.1], using the lower bound (24). For each
(x, y) ∈ M × M , we take coupled Brownian motions (Xx

τ )τ∈[τ̄1s,T ] and (Y
y
τ )τ∈[τ̄2s,T ] with ini-

tial values Xx
τ̄1s

= x and Y
y
τ̄2s

= y as in Theorem 2. Since the law of (Xx,Y y) is a measurable
function of (x, y), we can construct a coupling of two Brownian motions (Xτ̄1·, Yτ̄2·) with initial
distribution π from ((Xx

τ̄1·, Y
y
τ̄2·))x,y∈M as a coordinate process on C([s, T /τ̄2] → M × M) by

following a usual manner. By Theorem 2, ϕ(Θt (X
x
τ̄1t

, Y
y
τ̄2t

)) is a supermartingale. Hence we have

E
[
ϕ
(
Θt(Xτ̄1t , Yτ̄2t )

)] =
∫

M×M

E
[
ϕ
(
Θt

(
Xx

τ̄1t
, Y

y
τ̄2t

))]
π(dx, dy)

�
∫

M×M

ϕ
(
Θs(x, y)

)
π(dx, dy)

= Tϕ◦Θs

(
p(τ̄1s, ·)volg(τ̄1s), q(τ̄2s, ·)volg(τ̄2s)

)
.

Since the law of (Xτ̄1t , Yτ̄2t ) is a coupling of p(τ̄1t, ·)volg(τ̄1t) and q(τ̄2t, ·)volg(τ̄2t), we have

Tϕ◦Θt

(
p(τ̄1t, ·)volg(τ̄1t), q(τ̄2t, ·)volg(τ̄2t)

)
� E

[
ϕ
(
Θt(Xτ̄1t , Yτ̄2t )

)]
and hence the conclusion follows. �
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