JOURNAL OF COMBINATORIAL THEORY (A) 15, 329-332 (1973)

Note

Room Squares with Sub-squares

W. D. WALLIS

University of Newcastle, New South Wales, 2308, Australia Communicated by the Managing Editors Received January 13, 1972

Suppose there is a Room square of side r. Then there is a Room square of side 4r + 1 with a sub-square of side r which is isomorphic to the original square.

No example was known previously of a Room square of side s with a subsquare of side r where $s \leq 6r$.

1. ROOM SQUARES AND SUB-SQUARES

A Room square \mathscr{R} of side r based on R, where R is a set of order r + 1, is an $r \times r$ array whose cells either are empty or contain an unordered pair of distinct elements of R, with the properties that \mathscr{R} contains each such unordered pair precisely once, and that the entries in any given row or any given column of \mathscr{R} contain every member of R once. If z is a distinguished member of R, we say \mathscr{R} is standardized with respect to z if the diagonal positions contain the entries $\{x, z\}$. It is possible to standardize any Room square by row and column permutations.

If there is a Room square of side r, then it is clear that r must be an odd integer. Room squares of side r have been constructed for every odd r except 3, 5 and 257; sides 3 and 5 are impossible (see, for example, [5]), so that only side 257 remains in doubt.

Given a Room square \mathscr{S} of side s based on S, it may be that the entries common to some r rows and r columns form a Room square \mathscr{R} of side r based on a subset of S. We then say \mathscr{R} is a subsquare of \mathscr{S} . To avoid a trivial case, we shall also demand that r < s. It is known [2] that, if there is a Room square of side r_1 and a Room square of side r_2 with a sub-square of side r_3 , where $r_2 - r_3 > 6$, then there is a Room square of side $r_1(r_2 - r_3) + r_3$ with sub-squares of sides r_1, r_2 and r_3 . Mullin [4] has extended this result to the case $r_2 - r_3 = 6$ for most values of r_1 . Any Room square has sub-squares of sides 0 and 1.

The above results cannot be used to find a Room square of side s with a sub-square of side r unless $s \ge 6r + 1$. Lawless [3] has found a Room square of side 151 with a sub-square of side 25 using pairwise balanced designs. But no example seems to be known where $s \le 6r$. On the other hand, the best-known lower bound was found in [1]: if there is a Room square of side s with a sub-square of side r, then $s \ge 3r + 2$.

We shall prove the following theorem:

THEOREM 1. If there is a Room square \mathcal{R} of side r, r > 1, then there is a Room square of side 4r + 1 with a sub-square of side r isomorphic to \mathcal{R} .

The proof of this Theorem is given in Section 2.

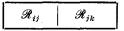
2. PROOF OF THEOREM 1

Throughout this section we suppose \mathscr{R} is a Room square of side r based on the set $R = \{0, 1, 2, ..., r\}$ and standardized with respect to 0. We further assume that \mathscr{R} has (x, x) entry $\{0, x\}$. (If necessary, this can be attained by permuting the labels $\{1, 2, ..., r\}$.)

We shall denote by R_i the set

$$R_i = \{1_i, 2_i, ..., r_i\},\$$

so that R_i has r elements. We write \mathscr{R}_{ij} for the array derived from \mathscr{R} by first deleting all the diagonal entries from \mathscr{R} and then replacing the pair $\{x, y\}$, where x < y, by $\{x_i, y_j\}$. It should be observed that the arrays \mathscr{R}_{ij} , where i and j each range from 1 to 4, contain between them all the unordered pairs of elements of $R_1 \cup R_2 \cup R_3 \cup R_4$ except for pairs of the form $\{x_i, x_j\}$; further, each row of the array



contains every member of R_j , except that x_j is missing from the *j*-th row.

Assume \mathscr{R} is of side r > 1. Then we can find permutations ϕ and ψ on $\{1, 2, ..., r\}$ with the properties that:

- (i) the $(i, i\phi)$ and $(i, i\psi)$ cells of \mathcal{R} are always empty;
- (ii) $i\phi \neq i\psi$, $i\phi \neq i$ and $i\psi \neq i$ for any *i*.

(In fact, from [5], we can find a set of $\frac{1}{2}(r-1)$ permutations, any pair of which have these properties. Since r > 1 we know $r \ge 7$, so $\frac{1}{2}(r-1) \ge 3$.) Given two such permutations, consider the $4r \times 4r$ array

	\mathscr{R}_{22}	\mathscr{R}_{31}	\mathscr{R}_{13}	\mathscr{R}_{44}
$\mathscr{S} =$	$\mathscr{R}_{43}\phi$	\mathscr{R}_{14}	\mathcal{R}_{32}	\mathscr{R}_{21}
	$\mathscr{R}_{34}\phi$	\mathcal{R}_{23}	\mathscr{R}_{41}	\mathscr{R}_{12}
	$\mathscr{R}_{11}\psi$	\mathscr{R}_{42}	\mathscr{R}_{24}	\mathscr{R}_{33}

 $(\mathscr{R}_{11}\psi$ means the array whose column $x\psi$ is column x of \mathscr{R}_{11} ; similarly for $\mathscr{R}_{34}\phi$ and $\mathscr{R}_{43}\phi$.) \mathscr{S} contains all unordered pairs of entries from $R_1 \cup R_2 \cup R_3 \cup R_4$ except the $\{x_i, x_j\}$. Every member of the set appears once in each row and once in each column, except that each x_i is missing from rows x, r + x, 2r + x, and 3r + x and columns r + x, 2r + x, and 3r + x, and that

 x_2 is missing from column x,

 x_1 is missing from column $x\psi$,

 x_3 and x_4 are missing from column $x\phi$.

To make \mathscr{S} into a Room square of side 4r + 1 we must add entries to introduce the missing pairs and elements suitably, and also incorporate two new elements, 0 and ∞ say, and add an extra row and column to \mathscr{S} . To place the missing elements, we construct another array and superimpose it and \mathscr{S} . We shall write \mathscr{D}_{ij} for the $r \times r$ array with entry $\{x_i, x_j\}$ in the (x, x) position and all other cells empty. \mathscr{B}_{ij} and \mathscr{C}_{ij} , respectively, shall be one-row and one-column arrays of size r with x-th entry $\{x_i, x_j\}$. To avoid extra notation, we permit i = 0 or $i = \infty$ in \mathscr{D}_{ij} , with the understanding that $x_0 = 0$ and $x_{\infty} = \infty$ for every x. Finally we define an $r \times r$ array \mathscr{A} with entries

 $\{\infty, x_2\}$ in position (x, x),

 $\{0, x_1\}$ in position $(x, x\psi)$,

 $\{x_3, x_4\}$ in position $(x, x\phi)$,

WALLIS

for x = 1, 2, ..., r, and all other cells empty. If we write \mathscr{T} for the $(4r + 1) \times (4r + 1)$ array

	A				
		\mathscr{D}_{04}		${\mathscr D}_{\infty 1}$	C 23
$\mathscr{T} =$		${\mathscr D}_{\infty 3}$	\mathscr{D}_{02}		\mathscr{C}_{14}
		\mathscr{D}_{12}	$\mathscr{D}_{\infty 4}$	\mathscr{D}_{03}	
			<i>B</i> ₁₃	<i>B</i> ₂₄	$\{0, \infty\}$

then the required Room square of side 4r + 1 can be constructed by superimposing \mathscr{S} on the first 4r rows and columns of \mathscr{T} . Because each \mathscr{R}_{ij} has empty diagonal, and because the permutations ϕ and ψ have properties (i) and (ii), this superimposition can be done without ever putting two pairs into the same cell. The entries common to rows 3r + 1 to 4r and columns 3r + 1 to 4r form a sub-square of side r based on $\{0\} \cup R_3$, isomorphic to \mathscr{R} .

REFERENCES

- 1. R. J. COLLENS AND R. C. MULLIN, Some properties of Room squares a computer search, *Proc. First Louisiana Conf. Combinatorics, Graph Theory and Computing, Baton Rouge* 1970, 87-111.
- 2. J. D. HORTON, Variations on a theme by Moore, Proc. First Louisiana Conf. Combinatorics, Graph Theory and Computing, Baton Rouge 1970, 146-166.
- 3. J. F. LAWLESS, Pairwise balanced designs and the construction of certain combinatorial systems, *Proc. Second Louisiana Conf. Combinatorics, Graph Theory and Computing, Baton Rouge* 1971, 353-366.
- 4. R. C. MULLIN, On the existence of a Room design of side F_4 , Utilitas Math. 1 (1972), 111-120.
- 5. W. D. WALLIS, On the existence of Room squares, to appear in Aequationes Math.

332