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From the new measurement of F L at HERA we derive fixed-Q 2 averages 〈F L/F2〉. We compare these with
bounds which are rigorous in the framework of the standard dipole picture. The bounds are sharpened
by including information on the charm structure function F (c)

2 . Within the experimental errors the
bounds are respected by the data. But for 3.5 GeV2 � Q 2 � 20 GeV2 the central values of the data
are close to and in some cases even above the bounds. Data on F L/F2 significantly exceeding the bounds
would rule out the standard dipole picture at these kinematic points. We discuss, furthermore, how
data respecting the bounds but coming close to them can give information on questions like colour
transparency, saturation and the dependencies of the dipole-proton cross section on the energy and the
dipole size.

© 2013 Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Recently new results for the structure functions F L and F2 of
deep inelastic electron– and positron–proton scattering (DIS) have
been published by the H1 Collaboration [1]. In this Letter we com-
pare these results with predictions of the popular colour-dipole
model of DIS. That is, we investigate if the data respect certain
bounds for the ratios of structure functions. These bounds are rig-
orous predictions of the standard dipole model and rely only on
the non-negativity of the dipole-proton cross section.

The kinematics of e±p scattering is well known, see for in-
stance [1,2]. The reaction is

e±(k) + p(p) → e±(
k′) + X

(
p′) (1)

and we use the variables

q = k − k′ = p′ − p, Q 2 = −q2,

W 2 = (p + q)2, x = Q 2

2pq
= Q 2

W 2 + Q 2 − m2
p
. (2)
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The measured structure functions F2 and F L are related to the
cross sections σT and σL for absorption of transversely or longi-
tudinally polarised virtual photons by

F2
(
x, Q 2) = Q 2

4π2αem
(1 − x)

[
σT

(
x, Q 2) + σL

(
x, Q 2)],

F L
(
x, Q 2) = Q 2

4π2αem
(1 − x)σL

(
x, Q 2). (3)

Here Hand’s convention [3] for the virtual-photon flux factor is
used and terms of order m2

p/W 2 are neglected. For low to mod-

erate values of Q 2 the dipole picture for DIS [4–6] is frequently
used to describe the data. For various applications of the dipole
model see for instance [7–27]. In [28,29] this dipole picture was
thoroughly examined using functional methods of quantum field
theory. In particular, the assumptions were spelled out which one
has to make in order to arrive at the standard-dipole-model for-
mulae1 for σT and σL or, equivalently, F2 and F L ,

F2
(
x, Q 2) = Q 2

4π2αem
(1 − x)

∑
q

∫
d2r

[
w(q)

T

(
r, Q 2)

+ w(q)
L

(
r, Q 2)]σ̂ (q)(r, ξ),

1 One of these assumptions is that the dipole-proton cross section is independent
of the longitudinal momentum fraction of the quark in the dipole. Lifting this as-
sumption, as is done for example in [21,22,26], would lead to a modification of the
bounds that we discuss here.
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Fig. 1. The functions 1
αem Q 2

q
(w(q)

T + w(q)
L )(r, Q 2) (left) and g(Q , r,mq) (right) versus r, both for three fixed values of Q 2 and for quark mass mq = 0; see (4) and (9).
F L
(
x, Q 2) = Q 2

4π2αem
(1 − x)

∑
q

∫
d2rw(q)

L

(
r, Q 2)σ̂ (q)(r, ξ),

(4)

see Section 6 of [29]. The charm structure function F (c)
2 is given by

the charm quark contribution to F2. In (4) w(q)
T ,L are the probability

densities for the virtual photon γ ∗ splitting into a quark–antiquark
pair of flavour q and transverse separation r. Their standard ex-
pressions are given in Appendix A. An integration over the quark’s
longitudinal momentum is performed. The cross section for the qq̄
pair scattering on the proton is denoted by σ̂ (q)(r, ξ). This cross
section depends on r and an energy variable ξ the choice of which
is left open here. In [28–32] it was argued that the correct variable
to choose is ξ = W . However, in the literature the energy variable
used most frequently in the dipole cross section is ξ = x.

In the standard-dipole-model formulae (4) the densities w(q)
T ,L

are known (see Appendix A) but the dipole-proton cross sections
σ̂ (q) have to be taken from a model. In the following we shall only
use that they have to be non-negative,

σ̂ (q)(r, ξ) � 0. (5)

We emphasise that throughout this Letter we use the terms “stan-
dard dipole model” or, for brevity, “dipole model”, to represent all
models satisfying (4), (5) and (29) to (32) of Appendix A. It is this
class of models we want to consider. The structure of the above
equations allows to derive a non-trivial upper bound, valid in any
dipole model, on the ratio

R
(
x, Q 2) = σL(x, Q 2)

σT (x, Q 2)
; (6)

see [29,30]. Equivalently, one can obtain a non-trivial upper bound
on the ratio

F L(x, Q 2)

F2(x, Q 2)
= R(x, Q 2)

1 + R(x, Q 2)
. (7)

This bound can be substantially improved if information on the
charm structure function F (c)

2 (x, Q 2) is included [31]. There is then
an allowed domain, again valid in any dipole model, for the two-
dimensional vector

�V (
x, Q 2) =

(
F L(x, Q 2)/F2(x, Q 2)

F (c)
2 (x, Q 2)/F2(x, Q 2)

)
. (8)

It is the purpose of this Letter to confront the dipole-model
bounds on F L/F2 and on the vector �V (x, Q 2) with the new HERA
results [1]. This is done in Section 2. In Section 3 we discuss the
results, and we give a summary in Section 4.
2. The standard-dipole-model bounds and the data

We discuss first the bound for the ratio F L/F2 of (7). For this
we define

g(Q , r,mq) = w(q)
L (r, Q 2)

w(q)
T (r, Q 2) + w(q)

L (r, Q 2)
, (9)

where mq is the mass of the quark q. For the case of mass-

less quarks, mq = 0, Fig. 1 shows 1
αem Q 2

q
(w(q)

T + w(q)
L )(r, Q 2)

and g(Q , r,0) as functions of r for three different values of

Q =
√

Q 2 (compare Fig. 10 of [29] for a similar plot of the
function (w(q)

L /w(q)
T )(r, Q 2)). Note that (w(q)

T + w(q)
L )(r, Q 2) is

monotonously decreasing with r. Its behaviour for small and large
r is as follows for mq = 0:

(
w(q)

T + w(q)
L

)(
r, Q 2) ∝ 1

r2
for r → 0,

(
w(q)

T + w(q)
L

)(
r, Q 2) ∝ 1

r4
for r → ∞. (10)

For a derivation of these results and for the case mq 
= 0 see Ap-
pendix A of [32]. For massless quarks the function g depends only
on the dimensionless variable

z = Q r, (11)

such that we can write

g̃(z) = g(Q , r,0). (12)

The function g̃(z) has a maximum at

zm = 2.5915 (13)

with

g̃(zm) = 0.27139. (14)

It was shown in [31] that

g(Q , r,mq)� g̃(zm) (15)

for all Q � 0, r � 0 and mq � 0. Using then (5) the dipole-model
formulae (4) lead to the bound

F L(x, Q 2)

2
� g̃(zm) = 0.27139. (16)
F2(x, Q )
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Fig. 2. The data for the fixed-Q 2 averages 〈F L/F2〉 confronted with the dipole-model
upper bound (16) represented by the dotted line. The data are extracted from [1].

We note that the bound (16) for F L/F2 is equivalent to the bound
for R (6) derived in [30,31],

R
(
x, Q 2) � g̃(zm)

1 − g̃(zm)
= 0.37248. (17)

Data for F L and F2 at the same kinematic points are presented
in [1] for Q 2 values ranging from 1.5 to 45 GeV2. The data for
the same Q 2 value span a small range of x and this range varies
strongly with Q 2; see Fig. 12 of [1]. On the other hand, for all Q 2

bins the data are inside a narrow W interval

167 GeV–232 GeV (18)

with a mean value of about W0 = 200 GeV. Therefore, in the
following we find it more convenient to consider F L and F2 as
functions of W and Q 2 instead of x and Q 2.

Since we do not expect any large variation of the ratio
F L(W , Q 2)/F2(W , Q 2) for fixed Q 2 within the W interval (18) of
the measurement we have averaged the H1 data [1] for given Q 2.
In a first step for all H1 data points the ratio F L(W , Q 2)/

F2(W , Q 2) and its corresponding experimental uncertainty are
calculated taking into account the correlation between the F L and
F2 measurement as given in Table 22 in [1]. In a second step error
weighted averages 〈F L(〈W 〉, Q 2)/F2(〈W 〉, Q 2)〉 are determined by
combining ratios at constant Q 2 but different W values assum-
ing that the individual measurements of the ratios are uncorre-
lated. Note that identical results are obtained by first averaging
the F L and F2 values at constant Q 2 and then doing the ratio
calculation. The averages are confronted with the bound (16) in
Fig. 2. The numerical values of the data points in Fig. 2 are given
in Appendix B.

We note firstly, that electromagnetic gauge invariance requires

F L(W , Q 2)

F2(W , Q 2)
→ 0 (19)

for Q 2 → 0 at fixed W . The data indicate, indeed, a decrease of
F L/F2 for small Q 2. Fitting F L/F2 with a constant value, as done
in [1], does not seem very plausible physically, in view of (19).

The second point to note is that the data in Fig. 2 are rather
close to the upper bound (16) from the dipole model, especially so
for

3.5 GeV2 � Q 2 � 20 GeV2. (20)

The bound (16) on F L/F2 can be improved if one takes into
account that there is a non-vanishing contribution from charm
quarks to F L and F2, see [31]. Specifically, considering massless
u,d and s quarks, a massive c quark and neglecting b quarks
we can derive certain allowed domains for the vector �V (x, Q 2)

(8) from the dipole model. Again these domains depend only on
the known photon densities w(q)

T ,L , see (29)–(32), and on the non-

negativity of the cross sections σ̂ (q) , see (5). That is, for any dipole
model with the standard photon probability densities w(q)

T ,L the

vector �V (x, Q 2) must be inside the appropriate allowed domain
for the given Q 2 value. A detailed description of how these do-
mains are obtained has been given in [31]. The allowed domains
can be understood as correlated bounds for the ratios F L/F2 and
F (c)

2 /F2. More precisely, one obtains for any given x and Q 2 an up-

per bound on F L/F2 which depends on the value of F (c)
2 /F2 at the

same kinematic point.
In Fig. 3 we show these allowed domains and the correspond-

ing data. The bounds are calculated for a charm quark mass
of mc = 1.23 GeV. For each data point the corresponding ratio
F (c)

2 /F2 is obtained using NLO QCD calculations provided by the
OPENQCDRAD package [33], again with a charm pole mass of
mc = 1.23 GeV. For this calculation the JR09FFNNLO parametrisa-
tion [34] of the proton parton density functions was used, which
was found to describe HERA charm data [35] very well within
the experimental correlated uncertainties of typically 3–9%. Here
and in the following we do not consider the data point at Q 2 =
1.5 GeV2 from [1] as it has an exceedingly large error. For the nu-
merical values of the data in Fig. 3 see Appendix B.

The significance of the data points in relation to the bound can
be seen more clearly from the quantity

〈F L/F2〉
(F L/F2)|bound

(21)

which we plot in Fig. 4. For this figure the bound (F L/F2)|bound
for each data point is extracted from Fig. 3 taking into account the
corresponding value of F (c)

2 /F2 at that kinematical point.

3. Discussion

We see from Figs. 2–4 that the data for 〈F L/F2〉 as derived from
[1] come very close to the bounds which result from the standard
dipole picture. We now discuss the meaning of this observation
from the points of view of both, a dipole-model enthusiast, and a
dipole-model sceptic, respectively.

3.1. Dipole-model enthusiast’s view

The dipole-model enthusiast will say that within the errors of
the data the bounds are respected. Furthermore, he can use the
data to give qualitative arguments concerning the behaviour of the
dipole-proton cross sections for small and large radii r. Let us as-
sume power behaviour of σ̂ (q)(r, ξ) for r → 0 and r → ∞,

σ̂ (q)(r, ξ) ∝ ra for r → 0,

σ̂ (q)(r, ξ) ∝ r2−b for r → ∞. (22)

Taking into account (10) we find that the integrals for F2 and F L

in (4) are convergent if

a > 0 and b > 0. (23)

Of course, with the usual assumptions of colour transparency for
small r, implying a = 2, and of saturation for the dipole-proton
cross sections for large r, implying b = 2, the requirements (23)
are satisfied. From the experimental findings of Figs. 2 to 4 we
can now give qualitative arguments based on the data, that the
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Fig. 3. The allowed domains and the data for 〈F L/F2〉 versus F (c)
2 /F2 for Q 2 = 2 GeV2 to Q 2 = 45 GeV2. In the dipole model, the shaded areas are excluded by the correlated

bounds for F L/F2 and F (c)
2 /F2. The dotted line is the bound (16) on F L/F2 only.
exponents a and b in (22) cannot be too small. Indeed, for a small
value of a the cross sections σ̂ (q)(r, ξ) would decrease only slowly
for r → 0 and this region of small r would contribute significantly
in the integrals (4). But, as we see from the second plot in Fig. 1,
the function g(Q , r,0) is small there and this would lead to a
small value for F L/F2, much below the bound (16), contrary to
what is seen in the data. A similar argument applies to the expo-
nent b in (23), considering the large r behaviour of g(Q , r,0) in
Fig. 1. Thus, the dipole-model enthusiast may hope that with more
data it may even be possible to determine the exponents a and b
from the data on F L/F2 directly without making model assump-
tions for σ̂ (q)(r, ξ).

3.2. Dipole-model sceptic’s view

Let us now go over to the point of view of the dipole-model
sceptic. He will note that some central values of the data for F L/F2
in Fig. 3 are, in fact, above the corresponding bound. If any of the
measured points with 〈F L/F2〉 > (F L/F2)|bound is confirmed, with
corresponding small error, by further experiments then, as a clear
consequence, the standard dipole picture would not be valid at this
kinematic point. But what would be the consequences if the bound
for F L/F2 is not violated but saturated?

For the sake of the argument we shall now for a moment as-
sume that the bound for F L/F2 is reached in the Q 2 range (20).
Clearly, this is not incompatible with the data, see Figs. 3 and 4.
In this limiting case we get as consequence that the dipole-proton
cross sections σ̂ (q)(r, ξ) in (4) can then only contribute at that par-
ticular r values where the functions g(Q , r,0) and g(Q , r,mc) of
(9) have their maximum. This is for both functions the case for
Fig. 4. The ratio 〈F L/F2〉/(F L/F2)|bound, see (21), where the bound on F L/F2 results
from taking into account the value of F (c)

2 /F2 at the kinematical point of each data
point. The dashed line is the ratio (F L/F2)/(F L/F2)|bound obtained in the Golec-
Biernat–Wüsthoff model, see Section 3.

r ≈ 0.51 fm√
Q 2/GeV2

. (24)

We see this for g(Q , r,0) from the second plot in Fig. 1 and this
also holds for g(Q , r,mc). Thus, the ratio F L/F2 can be equal to
the bound in the whole Q 2 interval (20) only if the cross section
σ̂ (q)(r, ξ) is strongly peaked at the r value (24) for this whole Q 2

interval. That is, σ̂ (q)(r, ξ) must then have a δ function behaviour

σ̂ (q)(r, ξ) ≈ δ

(
r − 0.51

)
(r in fm, Q in GeV). (25)
Q
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The corresponding r values range from 0.27 fm for Q 2 = 3.5 GeV2

to 0.11 fm for Q 2 = 20 GeV2. With increasing Q the position of
the delta function peak in (25) moves to smaller r values. As we
have argued at length in [28,29,32], the correct energy variable
in the dipole-proton cross section σ̂ (q)(r, ξ) is ξ = W . Since the
data on F L/F2 is essentially at one value of W ≈ W0 = 200 GeV
(more precisely, in the narrow range (18) around W0) we get from
(25) a Q 2 dependence in σ̂ (q)(r, W0) which should not be there.
The conclusion is that a saturation of the bound on F L/F2 in a
whole Q 2 interval as in (20) is incompatible with the dipole model
and the dipole-proton cross sections having the correct functional
dependence σ̂ (q)(r, W ).

With the – incorrect – choice of energy variable ξ = x in
σ̂ (q)(r, ξ) we get the following. Since the data on F L/F2 is essen-
tially at W = W0 (namely in the narrow range (18) around W0),
we have from (2)

x � Q 2

W 2
0

, Q � √
xW0. (26)

Inserting this in (25) gives

σ̂ (q)(r, x) ≈ δ

(
r − 0.51√

xW0

)
(r in fm, W0 in GeV). (27)

Thus, there is in this case no immediate conflict with the func-
tional dependence σ̂ (q)(r, x). But we note that as x decreases the
peak of the cross section σ̂ (q)(r, x) in (25) shifts to larger values
of r. This is in contrast to what one finds in popular dipole mod-
els, like the one invented by Golec-Biernat and Wüsthoff [7]. There,
one assumes a dipole-proton cross section saturating at large r
with an x-dependent saturation scale. But in that model for de-
creasing values of x the cross section σ̂ (q)(r, x) moves to smaller
values of r, see Fig. 2 of [7]. This is in contradiction to what we
found above in (27).

We were asked by a referee to discuss also the question how
close specific dipole models may come to our bounds. To illus-
trate this issue we confront, as an example, the Golec-Biernat–
Wüsthoff model with our correlated bounds in Fig. 4 where the
ratio (F L/F2)/(F L/F2)|bound for this model is shown as the dashed
line. Specifically, we consider the model of [7] with four flavours
(see Table 1 there), that is

σ̂
(q)
GBW(r, x) = σ0

[
1 − exp

(−Q 2
s (x)r2/4

)]
,

Q 2
s =

(
x0

x̃

)λ

GeV2, x̃ = x
(
1 + 4m2

q/Q 2),
σ0 = 29.12 mb, λ = 0.277, x0 = 0.41 · 10−4. (28)

We take the quark masses slightly different from those chosen in
[7], namely as mu,d,s = 0 and mc = 1.23 GeV, and consider con-
stant W = 200 GeV. Also here, the bound on F L/F2 is computed
from the value of F (c)

2 /F2 obtained in the GBW model for the kine-
matical point defined by the corresponding Q 2. We see from Fig. 4
that the GBW model remains considerably below the bound, and
its closest approach to the bound reaches only 80 % of it. Even that
value is reached only in a very narrow Q 2 range. Evidently, the
GBW dipole cross section is not of the delta-function form (27). As
a consequence, the ratio F L/F2 computed in this model cannot be
close to the bound for a sizeable Q 2 range, as is indeed confirmed
numerically for this model. We have checked that very similar re-
sults are obtained for the GBW model with the parameters chosen
in [1] and for the model of [14]. We emphasise that in this para-
graph we only wanted to show how close one comes to the bounds
in some specific, widely used dipole models. It is explicitly not our
aim to provide a fit to the data with these models. An investiga-
tion of simultaneous fits to F2, F (c)

2 and F L is certainly beyond the
scope of the present Letter. The main purpose of our present Letter
is a comparison of the data to the standard-dipole-model bounds.

The dipole-model sceptic could, furthermore, argue as follows.
Since the bounds explored in the present Letter are just more or
less satisfied by the data it will certainly pay to explore further rig-
orous bounds which can be constructed using the methods of [31].
One could, for instance, consider correlated bounds on F L/F2 at
different Q 2 values. It remains to be explored if the standard
dipole model survives such extended tests.

Finally, we would like to point out another issue that goes
beyond the scope of the present study. This is the question of cor-
rections to the standard dipole model. In [28,29] the dipole picture
was investigated using functional methods. In particular, in (113)
and (117) of [29] a general formula for the DIS amplitudes in the
limit W → ∞ at fixed Q 2 was given. These amplitudes were rep-
resented as integrals over photon wave functions plus rescattering
terms times dipole-proton scattering amplitudes. The need of the
rescattering terms is explained in Section 2 of [28] and is analo-
gous to what one finds in the treatment of overlapping divergences
in QED. From these results the assumptions leading to the stan-
dard dipole model were explicitly listed in Section 6 of [29]. The
problem of going beyond this standard dipole picture by includ-
ing, for instance, gluon emission from quark lines is the following.
In the above framework diagrams with gluon emission from quark
lines will contribute to all factors mentioned above, to the pho-
ton wave function, the rescattering term and the dipole-proton
amplitude. But the latter is a nonperturbative object. Thus, for con-
sistency, one would have to model the corrections one wants to
consider also for this nonperturbative object. Most probably one
will have then to give up for example the assumption that the
quark and antiquark do not change their momenta when travers-
ing the proton. Also the inclusion of diagrams of type (b) in Fig. 4
of [29], which will be necessary at some stage, leads one to the
same conclusion. While an important step towards understanding
part of the corrections to the dipole model was made by com-
puting the photon wave function at NLO (see for example [36–39]
and references therein) the other factors in the full amplitude are
not known to any similar accuracy. Thus, unless one wants to re-
strict the whole description of photon wave functions, rescattering
terms and dipole-proton scattering amplitudes to perturbation the-
ory any quantitative statements on the magnitude of corrections to
the bounds considered in the present Letter appear very difficult
to us. In that situation it should be very useful to have rigorous
tests of the standard dipole picture such that from the data we
may learn if and where modifications are necessary and particu-
larly important.

4. Summary

In this Letter we have derived fixed-Q 2 averages from the re-
cent data on F L/F2. We have discussed the behaviour of these
averages for Q 2 → 0 in view of gauge invariance. The averages
were compared with rigorous bounds derived in the framework
of the standard dipole model. Within the experimental errors the
bounds are satisfied. But the data is surprisingly close to the
bounds for 3.5 GeV2 � Q 2 � 20 GeV2. We find it very remark-
able that the high energy HERA data on F L/F2 at W ≈ 200 GeV
show a very different behaviour as compared to the fixed-target
data on R = σL/σT . The latter were taken at a value of W that
is an order of magnitude smaller. They were analysed in [29,30]
where it was shown that they come close to or exceed the rigor-
ous bounds of the standard dipole model only for Q 2 � 2 GeV2.
We have discussed the meaning of our findings for the HERA data
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from the points of view of both, the dipole-model enthusiast and
the sceptic. Clearly, if the central values of the data exceeding the
bounds are confirmed with correspondingly small errors by further
experiments, the standard dipole picture is ruled out at these kine-
matic points. We have, furthermore, shown that from data coming
close to or maybe saturating the bounds in the Q 2 interval (20)
one can draw very interesting conclusions on the behaviour of
the dipole-proton cross sections. We have given arguments that
these cross sections cannot be too large for the limits r → 0 and
r → ∞ of the dipole size r. The enthusiast may interpret this as
model-independent signatures pointing to colour transparency and
saturation. We have explored the consequences of a possible exact
saturation of the bounds in the whole Q 2 interval (20). We have
shown that this leads then rigorously to a δ-function behaviour of
the dipole-proton cross sections, that is, to cross sections vanishing
everywhere except at one r value which is proportional to 1/Q . Of
course, such a behaviour would be hard to accept from the physics
point of view and would present strain for the standard dipole pic-
ture. If such a behaviour is confirmed by further experiments with
small errors one would have to examine which of the assumptions
needed to arrive at the standard dipole model (listed in Section 6.2
of [29]) one needs to relax. But at present, given the errors of the
data, δ functions for the cross sections σ̂ (q)(r, ξ) as in (25) and (27)
are not really necessary and the widths of the distributions com-
patible with the data have to be explored. But this is beyond the
scope of this Letter. We have restricted ourselves to demonstrating
that the popular 4-flavour GBW model [7] for the dipole-proton
cross section does not approach the correlated bound to more than
about 80 % and is far from saturating the bound for any extended
Q 2 range.

To summarise, we have demonstrated in our Letter that mea-
surements of F L/F2 give very valuable information on the dipole
picture, its validity, and potentially on questions like colour trans-
parency and saturation of the dipole-proton cross section. The
standard dipole picture is widely used, also outside DIS. Therefore,
it should pay to investigate in detail its range of validity in as rigor-
ous a way as possible, that is, to test the assumptions, spelled out
in [29], underlying this picture. Thus, programs for future electron–
and positron–proton scattering experiments (see for instance [40,
41]) certainly should foresee F L measurements as an important
item on the list of physics topics.
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Appendix A. Photon densities

The probability densities w(q)
T ,L for the virtual photon in (4) are

given by

w(q)
T

(
r, Q 2) =

1∫
0

dα
∑
λ,λ′

∣∣ψ(q)T
λλ′ (α, r, Q )

∣∣2
, (29)

w(q)
L

(
r, Q 2) =

1∫
0

dα
∑
λ,λ′

∣∣ψ(q)L
λλ′ (α, r, Q )

∣∣2
, (30)

where the squared photon wave functions (summed over quark
helicities λ, λ′) are
Table 1
Structure function ratios for different values of Q 2: F (c)

2 /F2 from NLO QCD calcu-
lations [33] and averaged ratios 〈F L/F2〉 as derived from H1 measurements [1], see
Section 2 for details.

Q 2 [GeV2] F (c)
2 /F2 〈F L/F2〉

1.5 0.102 0.12 ± 0.30
2 0.113 0.14 ± 0.11
2.5 0.124 0.16 ± 0.07
3.5 0.142 0.23 ± 0.06
5 0.159 0.29 ± 0.06
6.5 0.177 0.24 ± 0.06
8.5 0.198 0.19 ± 0.06

12 0.207 0.25 ± 0.05
15 0.220 0.20 ± 0.05
20 0.231 0.24 ± 0.05
25 0.237 0.21 ± 0.05
35 0.242 0.16 ± 0.06
45 0.238 0.17 ± 0.09

∑
λ,λ′

∣∣ψ(q)T
λλ′ (α, r, Q )

∣∣2

= 3

2π2
αem Q 2

q

{[
α2 + (1 − α)2]ε2

q

[
K1(εqr)

]2

+ m2
q

[
K0(εqr)

]2}
(31)

and

∑
λ,λ′

∣∣ψ(q)L
λλ′ (α, r, Q )

∣∣2 = 6

π2
αem Q 2

q Q 2[α(1 − α)
]2[

K0(εqr)
]2

(32)

for transversely and longitudinally polarised photons, respectively.
Here r = √

r2 with r denoting the two-dimensional transverse vec-
tor from the antiquark to the quark. Q q are the quark charges
in units of the proton charge, and K0 and K1 are modified

Bessel functions. The quantity εq =
√

α(1 − α)Q 2 + m2
q involves

the quark mass mq . For a derivation of the photon wave functions
see for example [29].

Appendix B. Data for 〈F L/F2〉 and F (c)
2 /F2

Table 1 contains the numerical values of the data for 〈F L/F2〉
and F (c)

2 /F2 used in Figs. 2 and 3. They have been obtained as

described in Section 2. The error on F (c)
2 /F2 is estimated to be 5%.
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