
 Procedia Computer Science 62 (2015) 457 – 466

Available online at www.sciencedirect.com

1877-0509 © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of The 2015 International Conference on Soft Computing and Software Engineering
(SCSE 2015)
doi: 10.1016/j.procs.2015.08.506

ScienceDirect

The 2015 International Conference on Soft Computing and Software Engineering (SCSE 2015)

DTD2OWL2: A new approach for the transformation of the
DTD to OWL

Mokhtaria Hacherouf*, Safia Nait Bahloulb
*LSSD Laboratory, Faculty of mathematic and computer science, USTO-MB, BP 1505, EL-M’Naouer,31000 Oran, Algeria

bLITIO Laboratory, University of Oran 1,Ahmed Ben Bella, BP 1524, El-M'Naouer, 31000 Oran, Algeria

Abstract

The expansion of data sources existed in the web affects on the quality of research information. The correct answer (answer
specific) of a request is all depend terms selected for their construction. Such as these terms sometimes mean more sense, the
intended meaning may not be found. Fort this need, the Semantic Web has come to cover the semantic level, it proposed an
ontological representation of data sources. This representation is implemented by OWL (Web Ontology Language). The current
challenge of the Semantic Web is the transformation of data formats exist (SQL, XML ...) to the form of ontology (RDF, OWL
...), in order to facilitate the integration of data sources exist in the semantic web. Our target is to provide a series of extension
concepts of DTD2OWL method, a simple and effective method for transforming XML documents into OWL ontologies.
© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of The 2015 International Conference on Soft Computing and Software
Engineering (SCSE 2015).

Keywords: DTD, XML, mapping, OWL Ontology, DTD mixed.

1. Introduction

The publication of information on the current web is only interested by the data structure for facilitates their
recovery, without taking into account, the context of use. The most search engines recover results without
distinguishing the meaning of the search terms. Ex. "chat" is cat (animal) and cat (Internet chat)?. Sometimes you
should open multiple web pages to find the search meaning. Ontology plays a very important role in the

* Mokhtaria Hacherouf. Tel.: +213 7 71 64 25 90.

E-mail address: Mokhtaria.hacherouf@univ-usto.dz

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of The 2015 International Conference on Soft Computing and Software
Engineering (SCSE 2015)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82812633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.506&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.506&domain=pdf

458 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

representation and the use of data. It can be used to describe the semantics of information sources and thus make
their content explicit. Generally, the information published on the web is represented by XML [12], since it is the
standard format for data exchange. The reuse of this information in the semantic web requires the transformation of
XML to an ontology language. OWL [13] is just a language of ontology because it offers a wider vocabulary and a
real formal semantics. This transformation can be achieved by creating a mappings between XML constructs (
element , attribute, ...) and OWL constructs (classes , data property , object property , ...).

The big majority of approaches of transformation XML documents into OWL ([3], [4], [5], [6], [7], [8], [9], [10])
make a transformation from XSD schema. Other approaches proposed ([1], [2]) a direct transformation from XML
instances. The objective of the transformation is to reuse the XML documents existed in the Semantic Web. These
documents can be validated by the XSD schemas, as they can be validated by the DTD schemas. Then it is
important to focus on the transformation of the two schemes (XSD and DTD).

The aim is to develop and expand the DTD2OWL approach [11], in order to give a complete transformation
aimed at addressing all of the DTD schema structure.

In the rest of this paper, we begin with a brief overview of the approaches focus on the generation of OWL
ontology from XML documents, second, the principle of DTD2OWL approach, in the third step, we give our
detailed proposal, finally, the conclusion of our work.

2. Related Work

Mapping approaches are classified in terms of robustness and complete treatment of all constructions document
(XML or XSD), and the ability to add more semantics to the XML document.

The approach proposed in [4], called XML2OWL was extended by the approach [9]. This approach treat imports
(inclusion schemes), manages internal references in XSD schema construction, and offers controls on ontology
generated. Both approaches have the meaning to generate the OWL model from the XSD schema that can be
generated automatically, if it does not exist. The schemes automatically generated are not complete, for instance the
lack of typing and options of attributes (required, optional, fixed value). Therefore, the generated ontologies are not
semantically rich.

The approaches [1] and [2] add more semantics for the exiting XML schema, they manipulated the XML
documents directly no need to sound their schema. They define notations to specify the mapping between XML and
OWL. The problem arises when the mapped XML documents have a large size and it have a very long overlaps
which make the notations longer and more complicated.

The most of approaches have proposed methods to mapped XML or XML-schemas with OWL. The approach
[11] provides the mapping between the DTD and OWL. This approach aims to create mapping rules between the
constructions of the DTD and OWL constructs, but it has not considered all constructions of the DTD, as: sequence,
choice, enumeration…

These different approaches are distinguished by:

 The established correspondences between: XML instances and OWL, or between validation schema constructs
and OWL constructs.

 The ontology generated from the XSD schema or DTD.
 The profile used OWL: OWL Lite, OWL-DL, OWL-FULL.
 The generation process of ontology and the generation process instances that can run things: parallel, sequential

or independent.
According to these distinctions, we classify the approaches discussed in the following table:

459 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

Table1. Approaches classification of transforming XML to OWL.

Approach Use of instance/schema XML Generation schema OWLlanguage profile Generation model of
ontology and individual

XML2OWL [4] Validation schema XSD DL Sequential

EXCO [9] Validation schema XSD DL Parallel

JXML2OWL [1] XML instances XPath expression DL Sequential

Martin et Amar [2] XML instances XPath expression +
XML-Manchester

DL Sequential

DTD2OWL [11] Validation schema DTD DL Sequential

3. DTD2OWL approach

The method DTD2OWL opted for XML document transformation to an OWL ontology by making two phases.
The transformation at the DTD level is trying to convert all the elements and attributes of a DTD to classes or
predicates in the target ontology. XML instances are transformed to individuals.

In the following table, we summarize the transformation rules of DTD constructs to OWL constructs:

Table 2. Mapping rules of DTD2OWL approach.

DTD Constructions OWL Constructions

<!ELEMENT elt x> : x is the sequence of elements or
"elt" have a lists of attributes.

<owl:class rdf:about="#elt">

 <owl:disjointWith> <-- declaration of other classes> </owl:disjointWith>

</owl:class>

<!ELEMENT elt1 (elt2)>

<owl:objectProperty rdf:ID="has_elt2">

 <rdf:domain rdf;ressource="#elt1">

 <rdf:range rdf;ressource="#elt2">

</owl:objectProperty>

<!ELEMENT elt2 (#PCDATA)> : the ancestor element
of elt2 is elt1.

<owl:DataProperty rdf="elt2">

 <rdf:domain rdf;ressource="#elt1">

 <rdf:range rdf;ressource="#String">

</owl:DataProperty>

<!ATTLIST elt att CDATA> <owl:DataProperty rdf="att">

 <rdf:domain rdf;ressource="#elt">

 <rdf:range rdf;ressource="#String">

</owl:DataProperty>

Constraints mapping

#FIXED value, <!ENTITY entity-name "entity-value"> owl:haseValue

#REQUIRED owl;minCardinality (=1)

#IMPLID owl:cardinality (=0)

NOTATION rdfs:Comment

+ owl;minCardinality (=1)

? owl;minCardinality (=0)

* owl;minCardinality (=0) owl;maxCardinality (=undounded)

460 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

4. Contribution

4.1. Global schema of DTD2OWL²

The DTD2OWL² approach is an extension of the DTD2OWL approach. In Fig. 1, we present the two modules
(mixedDTD to simpleDTD and DTD2OWL² transforming) incorporated in the process of the method DTD2OWL
[11]. The first step is to generate the DTD, if it does not exist, then, transform it on OWL ontology. Our contribution
in this step is to add a very important phase before transforming the DTD. This phase is introduced when the DTD
to be transformed is mixed type. For this type of DTD, a process is started to reorganize it to give a not-mixed DTD
and ready to turn on OWL. The reorganization of the DTD consists to fusing the internal part of the DTD with the
external part, by taking into account the redefined constructions. At the end, the mapping process transforms all
DTD constructs to OWL ontology. Our contribution in this stage is to consider other constructions that were not
treated with DTD2OWL. Once the ontology is created, the method DTD2OWL generates the individuals of this
ontology from XML instances.

Fig. 1. Global architecture of DTD2OWL².

4.2. Transforming DTD schema to OWL ontology

The method DTD2OWL is simple and easy to implement. Conserving specific transformations for basic DTD
constructs. However, there are other important constructions which are not considered by this method.
Our work extends the DTD2OWL approach to treating the following questions:
 How to transform a mixed DTD: internal DTD referenced to an external one?
 How to express enumerations in OWL?
 How to express Choice/ Sequence elements in OWL?

What are the OWL constructs that express the type of attribute: ID and IDREF?

G
en

er
at

e
D

TD
 if

it

is
n'

t a
va

ila
bl

e
re

or
ga

ni
ze

 D
TD

if

it
is

 m
ix

ed
 ty

pe

DTD DTD2OWL²
ontology

OWL
ontology

XML
instances

OWL
instances

XML2OWL

mixedDTD to
simpleDTD

simple
DTD

461 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

4.2.1. Sequences of elements
A sequence of elements is an ordered list of elements that should appear in the same order in the XML document.

In a full declaration, the children must also be declared. However, even in OWL, the property "owl:intersectionOf"
links a class to a group of classes declared in the same document OWL. [14]

We transform the DTD fragment defined in Fig. 2 by the OWL specification represented in Fig. 3.

<!ELEMENT elt (elt1, elt2,)>

Fig. 2. Definition of sequence in DTD.

<owl:class rdf:about="#elt1"/>
<owl:class rdf:about="#elt2"/>
<owl:class rdf:about="#elt">

<owl:IntersectionOf rdf:ParseType="#Colection">
<owl:class rdf:resource="#elt1">
<owl:class rdf:resource="#elt2">

</owl:IntersectionOf>
</owl:class>

Fig. 3. Transforming of sequence into OWL.

4.2.2. Choice of elements
The construction of the choices in the DTD gives a choice from a list of several possible elements. However, in

OWL there is a property "owl:unionOf" which allows to define a class as the union of other classes. This class can
take the description of at least one of the classes in the list. Fig. 4 shows the structure of choice in the DTD. The
OWL specification corresponding is given in Fig. 5.

<!ELEMENT elt2 (elt3| elt4)>

Fig. 4. Definition of choice in DTD.

<owl:class rdf:about="#elt3"/>
<owl:class rdf:about="#elt4"/>
<owl:class rdf:about="#elt2">

<owl:UnionOf rdf:ParseType="#Collection">
<owl:class rdf:resource="#elt3">
<owl:class rdf:resource="#elt4">

</owl:UnionOf>
</owl:class>

Fig. 5. Transforming of choice into OWL.

4.2.3. Attribute types: enumeration, ID and IDREF
Before dealing with these types of attributes, we don’t forget that in DTDT2OWL approach, the attributes are

conversed in OWL by "DatatypeProperty". This transformation can be maintained in the case where the attribute
type is "CDATA". But when the type of attributes is: enumerate, ID and IDREF, the transformation will be changed.

Enumeration type. The attribute that limited by a list of possible attribute values is defined in OWL as a class.
"ObjectProperty" is derived as follows: "has_name_of_attribute". Their domain is the class corresponds to the
element containing this attribute. The range is the class itself. Class corresponds to the attribute is defined as an item
listed with the construct "owl:oneOf".

In Fig. 6, the attribute "alt" can take one of the values: "val1" or "val2", otherwise the default value "val2". OWL
construction corresponding to this DTD construction is given by Fig. 7.

462 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

<!ATTLIST elt att (val1, val2) “val2”>

Fig. 6. Definition of enumerated attribute in DTD.

<owl:class rdf:about="#elt"/>
<owl:class rdf:about="#att">

<owl:OnOf rdf:ParseType="#Colection">
<owl:Thing rdf:about="#val1">
<owl:Thing rdf:about="#val2">

</owl:OnOf>
</owl:class>
<owl:objectProperty rdf:ID="has_att">
 <rdf:domain rdf;ressource="#elt">
 <rdf:range rdf;ressource="#att">
</owl:objectProperty>

Fig. 7. Transforming of enumerated attribute in OWL.

ID type. An attribute of type "ID" allows to identify uniquely an element of the XML document. We define this
attribute in OWL as a class. "ObjectProperty" is derived as follows: "has_name_of_l'attribut". This property is
characterized by the specific property "FunctionalProperty". The domain of this property is the class corresponding
to the element containing this attribute. The range is the class itself.

The structure of the ID attribute type is given by the Fig. 8. The transformation of this structure to OWL is
presented in Fig. 9.

<!ATTLIST elt att ID>

Fig. 8. Definition of the ID attribute in DTD.

<owl:class rdf:about="#elt"/>
<owl:class rdf:about="#att"/>
<owl:objectProperty rdf:ID="has_att">
 <rdf:domain rdf;ressource="#elt">
 <rdf:range rdf;ressource="#att">
 <rdf:type rdf;ressource="&owl;FunctionalProperty">
</owl:objectProperty>

Fig. 9. Transforming of ID attribute into OWL.

IDREF type. An XML document can have a links between their data. The attributes of ID and IDREF type is
jointly used to realize these links in a document. ID type attribute can be referenced by other elements through
IDREF attributes. The value of IDREF attribute must bean XML name. This name must also be the value of an ID
type attribute of an (or other) element.

We transform the attribute of IDREF type with the same monitoring mechanism for the transformation of the
attribute ID, without the characterization of the property. To express the relationship between the type of ID and
IDREF attributes in OWL, we use the restriction "owl:allValuesFrom". This restriction impose, for each instance of
the class with instances of the specified property, that property values are all members of the class designated by the
clause "owl:allValuesFrom" [15]. However, the element containing the IDREF type attribute is converted to a class
defined as a subclass of an anonymous class defined by the universal quantifier.

Fig. 10 shows an example of an element declaration "elt2" contained an attribute "att2" of type IDREF. We
believe that this declaration is fined with the example shown in Fig. 2. The OWL construction corresponding to this
statement is given in Fig. 11.

<!ATTLIST elt2 att2 IDREF>

Fig. 10. Definition of IDREF type in DTD

463 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

<owl:classrdf:about="#elt2"/>
<owl:classrdf:about="#att2"/>
 <owl:objectPropertyrdf:ID="has_att2">
 <rdf:domainrdf;ressource="#elt2">
 <rdf:rangerdf;ressource="#att2">
</owl:objectProperty>
<owl:classrdf:about="#elt2">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onPropertyrdf:resource="#has_att2" />
 <owl:allValuesFromrdf:resource="#att" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

 Fig. 11. Transforming of IDREF construction into OWL.

4.2.4. Reorganization of mixed DTD
The Mixed DTD is formed by internal declarations followed by external declarations. It is possible to declare

new elements in the mixed DTD, but it is forbidden to redefine elements of the external part in the internal part. We
can redefine the entities and attributes in the internal part. Since this part is before the external part , then the
redefined attribute is in priority. The following figure shows a recorded DTD under the name "library.xml". This
DTD reference to another fragment of an external DTD registered under the name "biblio.dtd" (see Fig. 13).

InternalDTD: library.xml

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!DOCTYPE library SYSTEM "biblio.dtd" [
<!—modification of entity-->
<!ENTITY %dtp ", datePublication?">
<!—Redefining of the element: datePublication -->
<!ELEMENT datePublication (#PCDATA)>
<!—Redefining of the attribute : name -->
<!ATTLIST author name CDATA #REQUIRED>]>

Fig. 12. Declaration of mixed DTD.

ExternalDTD: biblio.dtd
<?xml version="1.0" encoding="iso-8859-1"?><!ENTITY %dtp"">
<!ELEMENT library (book)>
<!ELEMENT book (author %dtp;)>
<!ELEMENT author (#PCDATA)>
<!ATTLIST author name CDATA #IMPLID>

Fig. 13. External DTD declarations.

Conversing mixed DTD to OWL ontology cannot do directly. Then we propose a new method called
"reorganization of the mixed DTD". This method executed on the mixed DTD before the transformation. It unfolds
in three phases; each phase is piloted by a pseudo algorithm. the main algorithm which calls for these algorithms is:

Fig. 14. Main algorithm of mixed DTD reorganization.

Algorithm mixedDTDReorganisation(mixedDTDFile)
 externalDTD = returneExternalDTD(mixedDTDFile)
 externalDTDCleaned = cleanexternalDTD(externalDTD, internalDTD)
 internalDTDCleaned = cleaninternalDTD(mixedDTDFile)
 simpleDTD = consolidateDTD(externalDTDCleaned, internalDTDCleaned)
end algorithm

464 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

Step 1: Recovery of external DTD file. The process of this step makes a copy of the file containing the fragment

of external DTD. The location of this file is returned from the URL that comes after the keyword "SYSTEM" in the
internal DTD or in the second string after the word "PUBLIC". In the following example, the file to be recovered up
is placed locally under the name "biblio.dtd":

Example:
1st case : <!DOCTYPE library SYSTEM "biblio.dtd"
2ed case : <!DOCTYPE library PUBLIC "FPI" "biblio.dtd"
The following fig. 15 shows the algorithm corresponding to this phase:

Fig. 15. Algorithm to return the external DTD.

Steps 2: Cleaning DTD. Once the process of the first phase recovers a copy of the external DTD, the process of
the second phase makes another copy on the internal DTD. We make these copies to preserve the autonomy of the
source. Entities and attributes redefined in the inner part are a priority. For this, the cleaning process removes this
constructs from the external part. In the same part, the header is deleted. Another Cleaning process runs on the copy
of the internal file. Their header is modified to become a non-mixed DTD, so the standalone = "no" is changed by
standalone = "yes". The party "SYSTEM" "URL" is then deleted. Both algorithms given by Fig. 16 summarizes the
treatments provided in this phase:

Fig. 16. Cleaning algorithm.

Algorithm cleanExternalDTD(externalDTD, internalDTD)
 delete header from externalDTD
 entitiesExt = all entities contained in the externalDTD
 entitiesInt = all entities contained in the internalDTD
 attributesExt = all attributes contained in the externalDTD
 attributesInt = all attributes contained in the internalDTD
 for each entity of entitiesExt
 if entity is different to entity of entitiesInt

delete entity from externalDTD
 end for
 for each attribute of attributesExt
 if type or option of attribute are is different to type or option of attributesInt
 delete attribute from externalDTD
 end if
 end for
 returnexternalDTD
end algorithm

algorithm cleanInternalDTD(internalDTD)
 standaloneValue = value of standalone of internalDTD; standalone = "yes"
 delete “SYSTEM "URL" construct from internalDTD
 returninternalDTD
end algorithm

Algorithm returnExternalDTD(mixedDTD)
 fileURL = String that contained an URL
 externalDTDFile = file that contained external construct
 if DTD type is private
 fileURL is after "SYSTEM" keyword
 else if DTD type is public
 fileURL is the second String after "PUBLIC" keyword
 end if
 returnexternalDTDFile from fileURF
 returnexternalDTDFile
end algorithm

465 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

We apply the cleaning algorithms above on the files represented by Fig. 12 and 13, we obtain as a result two
cleaned files and ready to be merged:

Simple DTD : library.xml
<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<!DOCTYPE library [
<!ENTITY %dtp ", datePublication?">
<!ELEMENT datePublication (#PCDATA)>
<!ATTLIST author name CDATA #REQUIRED>]>

Fig. 17. The internal DTD after cleaning.

ExternalDTD: biblio.dtd
<!ELEMENT library (book)>
<!ELEMENT book (author %dtp;)>
<!ELEMENT author (#PCDATA)>

Fig. 18. The external DTD after cleaning.

Steps 3: Fusion of DTDs. After the cleaning process, the process of the fusion copies the declarations of the
external part in the internal file after their declarations before the closing"])". The following algorithm of fig. 19 is
supported by the treatment of this phase:

Fig. 19. Consolidate algorithm.

 This final algorithm gives a result as a simple DTD, non-mixed and ready to be transformed into OWL. We
apply this algorithm (fig. 20) on two resulting file of the preceding phase, we obtain the following DTD:

Simple DTD: library.xml
<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<!DOCTYPE library [
<!ENTITY %dtp ", datePublication?">
<!ELEMENT datePublication (#PCDATA)>
<!ATTLIST author name CDATA #REQUIRED>
<!ELEMENT library (book)>
<!ELEMENT book (author %dtp;)>
<!ELEMENT auteur (#PCDATA)>]>

Fig. 20. The DTD ready for transformation into OWL.

5. Conclusion

We have seen in this article how to transform the elements of the DTD to the OWL elements. The transformation
of the basic elements already provided by the DTD2OWL method. We made an extension of this approach to
complete the transformation of other elements, such as: typing attributes (ID, IDREF and enumeration), the choice
and sequence of elements. We also provide a method named by the reorganization of the mixed DTD. It aims to
retrieve the fragment of an external DTD, clean both DTD (internal, external) and fuse the internal DTD with the

algorithm consolidateDTD(externalDTD, internalDTD)
 constructs = all constructs contained in externalDTD
 {copy function permits to copy a constructs in the internalDTD after their constructs }
 copy (constructs, internalDTD)
 returninternalDTD
and algorithm

466 Mokhtaria Hacherouf and Safi a Nait Bahloul / Procedia Computer Science 62 (2015) 457 – 466

external DTD in order to give a single DTD file ready for the transformation into OWL. With DTD2OWL2
approach, any DTD file can be completely transformed into OWL file. Such that the most methods focus on
generating ontologies from XSD schema, we have opted in this paper an approach using the DTD whose interest is
to use XML documents already validated by the DTD schema for ultimate integration.

References

1. Rodrigues T, Rosa P, Cardoso J. Mapping XML to Existing OWL ontologies. Proc. of the International Conference on WWW/Internet; 2006;
72-77.

2. O'Connor M J, Das A K. Acquiring OWL Ontologies from XML Documents. Proc. of the 6th International Conference on Knowledge
Capture (K-CAP); 2011; 17-24.

3. Ferdinand M, Zirpins C, Trastour D., Lifting XML Schema to OWL. Proc. of the 4th International Conference on Web Engineering (ICWE);
2004; 354-358.

4. Bohring H, Auer S. Mapping XML to OWL Ontologies. Leipziger Informatik-Tage; 2005; 72:147-156.
5. Tsinaraki C, Christodoulakis S. Interoperability of XML Schema Applications with OWL Domain, Knowledge and Semantic Web Tools. On

the Move to Meaningful Internet Systems, Lecture Notes in Computer Science; 2007; 4803: 850-869.
6. Cruz C, Nicolle N. Ontology Enrichment and Automatic Population From XML Data. Proc. of the 4th International VLDB Workshop on

Ontology-based Techniques for DataBases in Information Systems and Knowledge Systems, ODBIS; 2008; 17-20.
7. Ghawi R, Cullot N. Building Ontologies from XML Data Sources. Proc. of the 1st International Workshop on Modelling and Visualization of

XML and Semantic Web Data (MoViX '09), held in conjunction with DEXA; 2009; 480-484.
8. Bedini I, Matheus C, Peter F. and Nguyen B. Transforming XML Schema to OWL Using Patterns. Proc. of the 5th IEEE International

Conference on Semantic Computing; 2011; 102-109.
9. Lacoste D, Sawant K P, Roy S. An efficient XML to OWL converter. Proc. of the 4th International Conference on Software Engineering;

2011; 145-154.
10. Yahia N, Mokhtar S A, Ahmed A. Automatic Generation of OWL Ontology from XML Data Source. International Journal of Computer

Science Issues; 2012; 9:1694-0814.
11. Pham T T T, Lee Y. and Lee S. DTD2OWL: Automatic Transforming XML Documents into OWL Ontology. Proc. of the 2nd International

Conference on Interaction Sciences: Information Technology, Culture and Human; 2009; 125-131.
12. Fallside D, Walmsley P. XML Schema Part 0: Primer. W3C Recommendation 2001. http://www.w3.org/TR/xmlschema-0/.
13. Smith M, Welty C, McGuinness D. OWL Web Ontology Language Guide. W3C Recommendation 2004. http://www.w3.org/TR/owl-guide/.
14. Mike Dean. Guus Schreiber. OWL Web Ontology LanguageReference. W3C Recommendation 200. http://www.w3.org/TR/owl-

ref/#intersectionOf-def.

