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Abstract

We characterize rings over which every projective module is a direct sum of finitely generated modules,
and give various examples of rings with and without this property.
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1. Introduction

The study of finitely generated projective modules is a classical theme in module theory.
These modules occur in Morita-type theorems, but also provide rich connections with K-theory,
topology, and algebraic geometry. In contrast, non-finitely generated projective modules have
drawn little attention. Nevertheless, many classical theorems have something to say about the
general (not necessarily finitely generated) case. For instance, Kaplansky [27] showed that every
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projective module over a local ring is free. Later Bass [5] proved that every non-finitely generated
projective module over an indecomposable commutative noetherian ring is free. Therefore (and
partly due to Bass’s discouraging remark [5, p. 24]) the theory of non-finitely generated projective
modules has for a long time ‘invited little interest.’

It turns out that it is the opposite reason that may be somewhat discouraging the investigation
of non-finitely generated projectives, namely the existence of ‘very bad’ (i.e., interesting!) exam-
ples of such modules, that is, examples that are far from being free. This can happen even when
all finitely generated projectives are free. Indeed, this is the case over some classes of semilocal
rings, see e.g. [39, Ex. 14.27] or [40]. Another example of this kind (due to Kaplansky) is given
by the ring C([0,1]) of continuous real-valued functions on the interval [0,1]. Every finitely
generated projective module over this ring is free, and yet there is a non-finitely generated inde-
composable projective. See Section 9 for a complete decomposition theory of projective ideals
of C([0,1]).

The other extreme is better known—when non-finitely generated projectives are, though pos-
sibly not free, yet more transparent than the finitely generated ones. For example, Levy and
Robson [30] classified non-finitely generated projective modules over hereditary noetherian
prime rings.

Note that even free modules can be, from a decomposition theory point of view, highly non-
trivial. Indeed, passing from a module M to its endomorphism ring S, we obtain the free S-
module S with the same decomposition theory as M . Since direct sum decompositions of M can
be arbitrarily bad (see [14] for examples), it is a hopeless task to classify projective modules in
general (see also [36] for a different approach).

In this paper we investigate the question of when every projective right module is a direct sum
of finitely generated modules. An important result of this sort is due to Albrecht [3]: every pro-
jective right module over a right semihereditary ring is a direct sum of finitely generated modules
each isomorphic to a right ideal of the ring (and this is an essential ingredient in the aforemen-
tioned Levy and Robson classification). Bass [6] proved the same for projective left modules over
right semihereditary rings—with right ideals replaced by their duals. Later, Bergman [8] gener-
alized both theorems by proving that every projective module over a weakly semihereditary ring
is a direct sum of finitely generated modules.

Müller [35] showed that every projective module over a semiperfect ring is a direct sum of
finitely generated modules. Generalizing this, Warfield [50] proved that every projective right
module over an exchange ring is a direct sum of principal right ideals generated by idempotents,
cf. Fact 3.6 below.

We give a precise criterion, Theorem 4.2, for every projective right module to be a direct sum
of finitely generated modules. Roughly speaking, this criterion says that the set of idempotent
matrices over the underlying ring is ‘dense,’ that is, ‘meets’ every stable sequence of rectangular
matrices; see Section 4 for the precise formulations. Using this criterion we give a new proof of
Bergman’s aforementioned result, in Section 5. As another positive result, we prove, in Section 6,
that every projective module over a principal right ideal ring is a direct sum of finitely generated
modules.

All this rests on the fundamental observation (going back in part to Whitehead [51]) that every
stable sequence {A} of matrices leads to a countably generated projective module P {A}, and that,
conversely, every countably generated projective module has this form.

In general, the matrices occurring in the criterion may have arbitrarily large size. Corollary 7.5
shows that this problem is essential. Curiously, to prove this negative fact we have to invoke some
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positive results like the following. If a ring is embeddable in the endomorphism ring of a finite
length module, and {A} is a stable sequence with uniformly bounded sizes of matrices, then P {A}
is a direct sum of finitely generated modules. The same is true, Proposition 7.4, for projective
modules over rings with one-sided Krull dimension. (Note, this includes one-sided noetherian
rings.)

Even for noetherian rings, our general question is widely open. We know the answer is positive
in the commutative case and when the ring is simple, as can be derived from results of Bass, see
Section 3. Generalizing the former, we draw, among other things, the following corollary of a
result of Hinohara [23]: every projective module over a weakly noetherian commutative ring is a
direct sum of finitely generated modules, Fact 3.1.

On the other hand, it follows from Akasaki [2] and Linnell [31] that over the integral group
ring ZA5, there is a projective module with no finitely generated direct summands. Localizing
this ring, we obtain a semilocal noetherian ring finite over its center with a projective module
that is not a direct sum of finitely generated modules, Example 3.2. (It is this example that is
later used to show that one cannot, in general, restrict the size of matrices in Theorem 4.2 (the
criterion), see Corollary 7.5.)

Using a standard trick, the aforementioned example allows us to derive the existence of a
cyclic artinian module M and a direct summand N of M(ω) such that N has no finitely generated
direct summands, Proposition 3.3.

In Section 8 we show that over a left Bézout ring one does not have to deal with the grow-
ing size of matrices: it suffices to consider ring elements in the criterion. In Corollary 8.2 we
prove that every projective right module over a Bézout ring with one-sided Krull dimension is
a direct sum of principal right ideals generated by idempotents. In Proposition 8.4, we iden-
tify the commutative Bézout rings for which every projective module is a direct sum of finitely
generated modules as the so-called f -rings studied by Vasconcelos [49] and Jøndrup [25]. As
a corollary we deduce that every projective module over a commutative Bézout ring of finite
Goldie dimension is a direct sum of finitely generated modules. In contrast, we give an example
of an indecomposable commutative Bézout ring of weak dimension 1 with a projective module
without indecomposable direct summands, Example 9.21.

In general there are no implications (except the trivial ones) between the aforementioned
theorems of Warfield, Bergman, Bass, Albrecht, and Hinohara. Restricted to the rings C(X) of
continuous real valued functions on a topological space X, however, these results fall into a linear
hierarchy as follows.

Warfield’s theorem turns out to be the most general one in this context: every projective C(X)-
module is a direct sum of finitely generated modules iff C(X) is an exchange ring iff X is
strongly zero-dimensional. Bergman’s result is less general: in Proposition 9.13 we prove that
C(X) is weakly semihereditary iff X is a strongly zero-dimensional F -space. In turn, Albrecht’s
and Bass’ theorems are even more restrictive: a ring C(X) is semihereditary iff X is basically
disconnected. (For the special case of C(X), this is due independently to Brookshear [9] and
De Marco [13].) Finally, the least general one is Hinohara’s theorem: the ring C(X) is weakly
noetherian iff X is a finite discrete space.

We set the scene by listing, in Section 2, a number of preliminaries needed in the sequel and
by reviewing, in Section 3, some of the known results about our main question.

A number of open questions are scattered throughout the paper. For instance, we do not know
if every projective module over a commutative domain is a direct sum of finitely generated mod-
ules, Question 3.10.
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2. Preliminaries

Module, if not specified otherwise, means right module over a ring with unity. Endomorphisms
are written on the opposite side of scalars. So, a (right) module M will also be considered as a
left module over its endomorphism ring End(M).

A module is said to be projective if it is a direct summand of a free module. By Kaplansky
[27, Theorem 1], every projective module is a direct sum of countably generated (projective)
modules.

Let M be a right module over a ring R. Then Add(M) will denote the full subcategory of
the category of right R-modules whose objects are direct summands of direct sums of copies
of M . For instance, if M = RR , then Add(M) is the category of projective right R-modules. The
following fact shows how to convert Add(M) into a category of projective modules.

Fact 2.1. (See [15, Theorem 4.27].) Let M be a finitely generated right module and S = End(M).
Then there is a natural equivalence between Add(M) and the category of projective right S-
modules.

Applying this to the R-module eR, where e is an idempotent, we obtain an equivalence be-
tween Add(eR) and the category of projective right modules over End(eR) = eRe.

Let P be a right R-module. The trace of P , Tr(P ), is the sum of all images of morphisms
P → RR . Clearly Tr(P ) is a two-sided ideal of R. Note, if e ∈ R is an idempotent, then eR is
a projective right R-module, and Tr(eR) = ReR is the two-sided ideal of R generated by e, see
e.g. [29, 2.41].

Fact 2.2. (See [29, Proposition 2.40].) If P is a projective R-module, then T = Tr(P ) is an
idempotent ideal and P = PT .

Whitehead proved a weak converse of this.

Fact 2.3. (See [51].) Every idempotent ideal of a ring R which is finitely generated as a left ideal
is the trace ideal of a countably generated projective right R-module.

An R-module P is said to be a generator if Tr(P ) = R. This is the same as saying that, for
some k, there is a morphism from P k onto RR , that is, RR is a direct summand of P k . It is
immediate from what was said before Fact 2.2 that a right ideal eR generated by an idempotent
e is a generator iff ReR = R.

A submodule M of a right module N is said to be pure, if for every (finitely presented) left
module K , the induced map M ⊗ K → N ⊗ K is a monomorphism. Note, a right ideal I is pure
in the ring R iff for every r ∈ I there is s ∈ I such that sr = r .

Fact 2.4. Let R be a commutative ring.

(1) [49, pp. 269–270] If P is a projective R-module, then Tr(P ) is a pure ideal.
(2) [13, Proposition 1.14] If P is a projective ideal of R, then Tr(P ) is a projective and pure

ideal.
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These statements are no longer true in the non-commutative setting. For instance, if R is the
integral group ring of the alternating group A5, then the augmentation ideal, I , of R is idempotent
by [32]. Then Fact 2.3 shows that I is the trace of a countably generated projective right R-
module. If I were pure, it would be projective, for IR is finitely generated. Then it would be
generated by an idempotent, which is impossible, as R has no non-trivial idempotents.

Following Vasconcelos [49, p. 274], a commutative ring R is said to be an F -ring, if every
finitely generated flat R-module is projective. For instance, every commutative semilocal ring is
an F -ring, and so is every commutative ring of finite Goldie dimension. Note, the F -rings are
precisely the commutative S-rings from [41].

Fact 2.5. (See [48, Theorem 2.1].) A commutative ring R is an F -ring if and only if every pro-
jective ideal of R is finitely generated.

It is well known that the trace of a finitely generated projective module over a commutative
ring is generated by an idempotent, see [29, 2.43]. Over F -rings the same is true for arbitrary
projective modules, as the following lemma shows.

Lemma 2.6. Let P be a projective module over a (commutative) F -ring R. Then Tr(P ) = eR

for some idempotent e.

Proof. By Fact 2.4, Tr(P ) is a pure ideal of R, hence R/Tr(P ) is a flat cyclic module. By
hypothesis, R/Tr(P ) is projective, hence Tr(P ) is a direct summand of R. �

More on F -rings can be found at the end of Section 4.
A ring is said to be semilocal if the factor ring by its Jacobson radical is semisimple artinian.

In the commutative case, this is equivalent to having finitely many maximal ideals. Recall that
a ring is semiperfect iff it is semilocal and idempotents lift modulo the Jacobson radical. The
following is some sort of folklore (though not necessarily easy to find in the literature).

Fact 2.7. Every ring that is, as a right module, finitely generated over a semilocal subring, is
itself semilocal.

Proof. Let R be the ring in question and D a semilocal subring. By [15, Proposition 2.43], a
ring is semilocal iff, as a one-sided module, it has finite dual Goldie dimension. Hence DD has
finite dual Goldie dimension. Then, using the hypothesis and [15, Proposition 2.42], one infers
that RD has finite dual Goldie dimension. Since the lattice of submodules of RR is a sublattice
of that of submodules of RD , the module RR has finite dual Goldie dimension all the more so.
Consequently, R is semilocal, as desired. �

Often we consider projective modules from a model-theoretic point of view. For basic notions
in the model theory of modules, see [38] or [42]. In fact, all we need in this paper is the notion
of divisibility formula and that of pp-type. A (right) divisibility formula (over the ring R) is a
formula of the form ∃ȳ (ȳA = x̄), where A is an l × k matrix over R and x̄ = (x1, . . . , xk) and
ȳ = (y1, . . . , yl) are matching tuples of variables. (The xi are also known as the free variables
while the yi are the bound or existentially quantified variables of that formula.) We use the
shorthand A | x̄ (‘A divides x̄’) for this formula. In particular, if a ∈ R, then a | x is the formula
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∃y (ya = x). It may suffice for the purpose of this paper to define the pp-type ppM(m̄) of a tuple
m̄ in a module M as the collection of all divisibility formulae satisfied by m̄ in M .

The following fact explains why only divisibility formulae matter.

Fact 2.8. Let m̄ be a finite tuple of elements of a projective module P . Then the pp-type of m̄ in
P is generated by a divisibility formula (whose matrix has as many columns as m̄ has entries).

Proof. Let m̄ be a k-tuple and P ⊕ Q = F , where F is a free module. Then there is a tuple
ȳ = (y1, . . . , yl) of basis elements of F and an l × k matrix A over R such that m̄ = ȳA. By [42,
F. 2.4], the pp-type of m̄ in P is generated by A | x̄. �

Clearly, the solution set of a formula A | x̄ as above in a module M forms (one says ‘A | x̄

defines’) a subgroup of the additive group of Mk . (So a | x defines the subgroup Ma of M .) If āi

denotes the ith row of A, the subgroup defined by A | x̄ is the sum of the subgroups defined by
the formulae āi | x̄, for ȳA = ∑

i yi āi . Another way of saying this is that A | x̄ is equivalent to
the sum of the formulae āi | x̄, and one may write

∑
i (āi | x̄) instead of A | x̄. As an example, the

formula (a1, . . . , al)
t | x (where ‘t’ stands for transpose) is equivalent to the formula

∑
i (ai | x).

Thus, passing to sums, one can diminish the size of the matrix in a divisibility formula.

Lemma 2.9. Suppose every finitely generated submodule of the left R-module Rk is generated
by n elements. Then every divisibility formula in k free variables x̄ = (x1, . . . , xk) is equivalent
to a formula of the form B | x̄, where B is an n × k matrix over R.

Consequently, if P is a projective right R-module and m̄ = (m1, . . . ,mk) is a tuple of elements
of P , then the pp-type of m̄ in P is generated by such a formula B | x̄.

Proof. Let A be an l × k matrix over R. As mentioned, the formula A | x̄ is equivalent to the
formula

∑
i āi | x̄, where āi is the ith row of A. Consider each āi as an element of the left

R-module Rk .
By hypothesis, there are b̄j ∈ Rk , j = 1, . . . , n such that

∑k
i=1 Rāi = ∑n

j=1 Rb̄j . Clearly,
∑

i (āi | x̄) is equivalent to
∑

j (b̄j | x̄). Let B be the n × k matrix over R whose j th row is b̄j .
Then A | x̄ is equivalent to B | x̄. �

A ring R is said to be left Bézout if every finitely generated left ideal of R is principal, i.e. for
k = 1 in the previous lemma, n can be taken to be 1 as well. (Notice, every von Neumann regular
ring is left Bézout.) As an immediate consequence of the preceding result we have

Corollary 2.10. Let R be a left Bézout ring. Then every divisibility formula in one free variable
x is equivalent to a formula of the form b | x, where b ∈ R.

Consequently, if P is a projective right R-module and m ∈ P , then the pp-type of m in P is
generated by such a formula b | x.

3. The question

When is every projective right module over a given ring a direct sum of finitely generated
modules?
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To address this question is the main objective of this study. Before we turn, in the next section,
to a characterization of the rings where the answer is positive we have to state a few facts about
these without proof.

One of the first results in this direction is Bass’ theorem saying that non-finitely generated
projectives over connected commutative noetherian rings are free, see [5, Corollary 4.5] (which
contains also some generalizations of this). Immediately thereafter, Hinohara generalized this to
connected weakly noetherian rings [23]. Here connected means that the ring has no non-trivial
central idempotents, while weakly noetherian means that it is a commutative ring whose maximal
spectrum has the d.c.c. on closed subsets (where the maximal spectrum is the set of all maximal
ideals endowed with the Zariski (or hull–kernel) topology). First we draw an easy consequence
of Hinohara’s result generalizing all of these.

Fact 3.1. Every projective module over a weakly noetherian (commutative) ring is a direct sum
of finitely generated modules.

Proof. As every decomposition of the ring given by an idempotent gives rise, in the obvious
way, to a clopen partition of the maximal spectrum, the d.c.c. allows us to reduce the statement
to a connected ring. Further, we may assume that the projective module in question is not finitely
generated and therefore, by [23, Theorem], free. �

This is no longer true even for semilocal noetherian rings module-finite over their center, as
we show localizing ZA5. (For ZA5 itself, which is not semilocal, this follows from Akasaki [2]
and independently Linnell [31].)

Example 3.2. Let R be the localization of the ring ZA5 at the multiplicative closed set S =
Z \ (2Z ∪ 3Z ∪ 5Z). Then R is a semilocal noetherian ring module-finite over its center, and
there exists a projective right (and left) module P without (non-zero) finitely generated direct
summands.

Proof. If D = Z(S), then D is a semilocal principal ideal domain and R = DA5. Since DA5 is a
finitely generated D-module, R is semilocal by Fact 2.7.

As after Fact 2.4, one derives that the augmentation ideal of R is the trace of a countably
generated projective right R-module P . Then P is not a generator and can therefore not have
generators as direct summands either. So it suffices to prove that every finitely generated projec-
tive R-module Q is a generator.

Since |A5| = 60, no prime dividing the order of A5 is invertible in D. By Swan [46, Theo-
rem 8.1], Q⊗Q is a free QA5-module. By Corollary 7.2 of the same paper, Q/pQ is a non-zero
free (D/pD)A5 = (Z/pZ)A5-module for every maximal ideal pD of D (that is, for p = 2,3,5).

Now, as in Akasaki [1, Corollary 14], we conclude that Q is a generator. �
As a byproduct, we give an application of this example to artinian modules. For more on

‘strange’ behavior of direct sum decompositions of artinian modules see [15, Chapter 8].

Proposition 3.3. There is a cyclic artinian module M and a direct summand N of M(ω) such that
N has no non-zero finitely generated direct summands.
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Proof. Let R be the ring from Example 3.2, in particular, R is module-finite over a semilocal
commutative noetherian ring. By [15, Proposition 8.18], R is realized as the endomorphism ring
of a cyclic artinian right module M (over an appropriate ring). By Fact 2.1, Add(M) is equivalent
to the category of projective right R-modules.

If now N corresponds to a ‘bad’ projective R-module P as in Example 3.2, then N is a direct
summand of M(ω), but N has no non-zero finitely generated direct summands. �

In the same paper, Bass proved that also over simple right noetherian rings, non-finitely gen-
erated right projective modules are free. For purposes of reference we state this as

Fact 3.4. (See [5].) Every projective right module over a simple right noetherian ring is a direct
sum of finitely generated modules.

Question 3.5. Does the same hold for projective left modules (over a simple right noetherian
ring)?

Another class of rings with a positive answer to our main question is that of exchange rings,
where a ring R is said to be an exchange ring, if for every x ∈ R there exists an idempotent
e ∈ xR such that 1 − e ∈ (1 − x)R. For instance, every semiperfect ring is an exchange ring. By
Nicholson [37, Proposition 1.8], a commutative ring R is an exchange ring iff it is clean, that is,
every element of R is the sum of a unit and an idempotent.

Recall from the introduction that Warfield’s positive answer stated next generalizes an earlier
result of Müller on projective modules over semiperfect rings.

Fact 3.6. (See [50, Theorem 1].) Every projective module over an exchange ring R is isomorphic
to a direct sum of modules eiR, where the ei ∈ R are idempotents.

Next we see that the rings in question (pun intended) are right f -rings in the sense that every
pure right ideal is generated by idempotents. This class of rings was studied by Vasconcelos [49]
in the commutative case, and by Jøndrup [25] in general. Notice, the argument in the proof of
Lemma 2.6 shows that in a ring whose cyclic flat right modules are projective, every pure right
ideal is generated by an idempotent (and vice versa), hence such a ring is a right f -ring. In
particular, F -rings (and even right S-rings, cf. Section 2) are (right) f -rings.

Fact 3.7. If every projective right R-module is a direct sum of finitely generated modules, then R

is a right f -ring.

Proof. Follows from [25, L. 2.1, Corollary 2.2]. �
For rings of continuous functions, the full converse holds, as will be proved in Section 9.

There it will also become clear that we cannot strengthen f to F in the previous fact.
Jøndrup [25, Theorem 3.3] proves that, for commutative rings, being an f -ring can be char-

acterized by a topological property of the prime spectrum of the ring, which shows that a
commutative ring is an f -ring iff its factor ring modulo the prime radical is.

Here is a partial converse of Fact 3.7.

Fact 3.8. (See [25, Theorem 2.5], [49, Theorem. 3.1].) A commutative ring is an f -ring if and
only if every projective ideal is a direct sum of finitely generated ideals.

More on f -rings can be found at the end of the next section.
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Question 3.9. Is there a commutative f -ring with a projective module that is not a direct sum of
finitely generated modules?

Fuchs and Salce [18, p. 246, Problem 16] asked if there exists a projective module over a com-
mutative domain with no indecomposable direct summands. We do not even know the answer to
the following weaker

Question 3.10. Does there exist a projective module over a commutative domain which is not a
direct sum of finitely generated modules?

Among the commutative domains, Prüfer domains are ruled out by Albrecht’s result, while
semilocal domains and noetherian domains are by Hinohara’s: for them all the main question has
a positive answer.

4. The characterization

We use M(R) to denote the set of all finite rectangular matrices over R. Of course, matrix
multiplication is defined only partially on that set. But we can still speak of ideals, etc. For
instance, given A ∈ M(R), by AM(R) we mean the right ideal of M(R) generated by A, that is,
the set of rectangular matrices AB , where B ∈ M(R) has matching size (so that the product AB

is defined).
As usual, Mn(R) denotes the ring of all n × n matrices.
Let {A} = A1,A2, . . . be a sequence of rectangular R-matrices. We say that {A} is multi-

plicative, if all consecutive products Ai+1Ai , i � 1 are defined. A multiplicative sequence {A} is
said to be stable if, for every i � 1, there exists a matrix Ci such that CiAi+1Ai = Ai . The
term is motivated by the fact that, for a stable sequence as above, the descending chain of
left ideals, M(R)A1 ⊇ M(R)A2A1 ⊇ M(R)A3A2A1 ⊇ · · · stabilizes, even right at the first step,
whence all those ideals are the same. Similarly, the chain of implications of divisibility formu-
las, · · · → A3A2A1 | x̄ → A2A1 | x̄ → A1 | x̄, stabilizes as well, whence all those formulas are
equivalent (provided the sequence {A} is stable). The same is true when one starts from any i

instead of 1, both for the left ideals and the right divisibility formulas, which means that for these
one does not have to deal with products of terms in such sequences: single terms suffice.

Given a multiplicative sequence {A}, let P {A} be the right R-module with generators
x̄1, x̄2, . . . (of appropriate sizes) and relations x̄i+1Ai = x̄i . If Ai is an ni+1 × ni matrix, then

P {A} is isomorphic to the direct limit of the directed system Rn1
A1×−−−→ Rn2

A2×−−−→ · · · (a chain).
Here Rni is the free rank ni right R-module (considered as a set of column vectors), and Ai×
is the morphism given by left multiplication by Ai . Being a direct limit of free modules, P {A}
is flat. A module of this kind was used by Bass in his characterization of right perfect rings and
also in the alternative proof given in [42, Theorem 4.2], to which the proof of the next lemma is
very much related. The result is inspired by [51, Theorem 2.1].

Lemma 4.1.

(1) If A is a stable sequence of matrices, then P {A} is a countably generated projective right
module.

(2) If P is a countably generated projective right module, then P = P {A} for some stable se-
quence {A}.
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Proof. (1) As mentioned, P {A} is flat. Since {A} is stable, the pp-type of the tuple x̄i in P {A}
is generated by Ai | x̄i (see [42, L. 3.6]). So, by [42, Proposition 3.5], P {A} is pure-projective,
hence projective (as every pure-projective flat module is projective).

(2) Let x1, x2, . . . be a sequence of generators of P . Recursively we construct a new sequence
of generators x̄i ∈ P and a stable sequence of matrices {A} such that P = P {A}.

Set x̄1 = x1. As P is projective, by Fact 2.8, p1 = ppP (x̄1) is generated by a divisibility
formula A | x̄. This formula is already realized in a submodule P1 of P generated by x1, . . . , xi

for some i > 1. So there is m̄ ∈ P1 such that m̄A = x̄1. Set x̄2 = (x1, . . . , xi). Then there is
another matrix B such that m̄ = x̄2B , hence x̄2BA = x̄1. Setting A1 = BA, we have x̄2A1 = x̄1.
Clearly, p1 is generated also by A1 | x̄.

Similarly, p2, the pp-type of x̄2 in P , is realized in some submodule of P generated by
x1, . . . , xj for some j > i. Set x̄3 = (x1, . . . , xj ) and write x̄2 = x̄3A2 for some matrix A2, so
that p2 is generated by A2 | x̄.

From x̄3A2A1 = x̄1 it follows that A2A1 | x̄ is in p1. Since p1 is generated by A1 | x̄, we get
A1 | x̄ → A2A1 | x̄, hence (by the special case of Prest’s lemma [42, Remark 4.1]), there is a
matrix C1 such that C1A2A1 = A1.

Continuing in this manner, we obtain the desired representation of P . �
Note that the construction of (2) can be executed starting from any finite tuple of P instead

of x̄1.
Now we are in a position to characterize the rings in question.

Theorem 4.2. Given a ring R, the following are equivalent.

(1) Every projective right R-module is a direct sum of finitely generated modules.
(2) For every stable sequence of R-matrices, A1,A2, . . . , there is an index j and an idempotent

matrix E such that Aj · . . . ·A1M(R) ⊆ EM(R) ⊆ Aj M(R), i.e., there are matching matrices
F and G such that Aj · . . . · A1 = EF and E = AjG.

Proof. (1) ⇒ (2). Let {A} = A1,A2, . . . be a stable sequence of R-matrices. Consider the mod-
ule P = P {A} (with generators x̄1, x̄2, . . .) as introduced before the previous lemma. As, by
assumption, P is a direct sum of finitely generated modules, x̄1 is contained in a finitely gen-
erated direct summand P1 of P . Let m̄ ∈ P generate P1. By construction, m̄ = x̄jB for some
matrix B .

Let pj be the pp-type of x̄j in P . Then pj is generated by Aj | x̄, see the previous proof. By
[42, F. 2.4], the pp-type p of m̄ in P is generated by AjB | x̄. In particular, AjB | m̄ holds in P .
Since P1 is a pure in P , it also holds in P1, whence there is a matrix C such that m̄CAjB = m̄,
that is, m̄(CAjB − 1) = 0, where 1 stands for the (appropriate) identity matrix.

Because AjB | x̄ generates p, this formula implies x̄(CAjB − 1) = 0. By another special
case of Prest’s lemma, we obtain AjB(CAjB − 1) = 0,1 that is, AjBCAjB = AjB . It follows
easily that E = AjBC is an idempotent matrix such that EM(R) = AjBM(R).

Now, as x̄1 is in P1, there is a matrix D with x̄1 = m̄D, hence x̄1 = x̄jBD. But also x̄1 =
x̄jAj−1 · . . . · A1, which yields x̄j (Aj−1 · . . . · A1 − BD) = 0. Since pj is generated by Aj | x̄,
we conclude as before that Aj(Aj−1 · . . . · A1 − BD) = 0, that is, Aj · . . . · A1 = AjBD.

1 Here is an easy proof of this: assuming that A | x̄ implies x̄D = 0, consider the module that is freely generated by x̄;
then A | x̄A, hence, by assumption, x̄AD = 0, and so AD = 0 by freeness.
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Altogether we have Aj · . . . · A1 ∈ AjBM(R) = EM(R) and E = AjBC ∈ Aj M(R), as de-
sired.

(2) ⇒ (1). Let P be a projective right R-module. By Kaplansky’s theorem we may assume
that P is countably generated. Then, by Lemma 4.1, P = P {A} for some stable sequence of
matrices {A} = A1,A2, . . . .

We prove that P is a direct sum of finitely generated modules. By standard arguments, it suf-
fices to prove that any finite tuple m̄ in P can be included in a finitely generated direct summand
of P . Further, since the x̄i generate P , we may assume that m̄ = x̄i for some i, and even that
i = 1 (cf. remark after Lemma 4.1).

By assumption, there is an index j , an idempotent matrix E, and matrices F and G such that
E = AjG and Aj · . . . · A1 = EF . Set n̄ = x̄jG and let P1 be the submodule of P generated
by n̄. We show that P1 is a direct summand of P containing x̄1.

Indeed, as before, the pp-type of n̄ in P is generated by AjG | x̄, that is, by E | x̄. Since
E is an idempotent matrix, we have n̄ = n̄E, which is equally true in P as in P1, whence the
pp-type of n̄ in P is the same as that of n̄ in P1. Since n̄ generates P1, this implies that P1 is a
pure submodule of the projective module P . Being also finitely generated, it is therefore a direct
summand of P . Finally, x̄1 = x̄j+1Aj · . . . · A1 = x̄j+1EF = x̄j+1AjGF = x̄jGF = n̄F shows
that x̄1 is in P1, as desired. �

To conclude this section we describe f -rings (from Section 3) and F -rings (from Section 2)
in terms similar to the ones introduced before.

A sequence {a} = a1, a2, . . . of elements of a ring R is said to be a (right) a-sequence, if
ai+1ai = ai for every i. This leads to an ascending chain of right ideals, a1R ⊆ a2R ⊆ · · · . We
say that {a} converges, if there exists an index k such that ai+1R = aiR for every i � k. In this
case, aj is an idempotent for every j � k + 1, see [41, L. 2.3]. Clearly, every right {a}-sequence
is stable, hence the countably generated right R-module P {a} associated with {a} is projective.
In fact, P {a} is isomorphic to the pure right ideal

⋃
i aiR. If {a} converges, then P {a} is finitely

generated (by an idempotent).

Remark 4.3. By a result of Jøndrup [25], R is a right f -ring if and only if for every right
a-sequence {a}, the (projective) right ideal P {a} is generated by idempotents. By Mount [41,
F. 7.1], a commutative ring R is an F -ring iff every a-sequence of elements of R converges iff
P {a} is finitely generated.

5. Weakly semihereditary rings

Let A and B be rectangular matrices over a ring R such that AB = 0. This zero relation is
said to be trivial if there exists a (square) R-matrix X such that AX = 0 and XB = B . In this
case we say that X trivializes the relation AB = 0.

Replacing X by 1 − X we see that the relation AB = 0 is trivial iff there exists a (square)
matrix Y such that AY = A and YB = 0.

The following lemma is well known (see [47, L. 2]).

Lemma 5.1. A principal right ideal aR of a ring R is flat if and only if every zero relation ab = 0,
where b ∈ R, is trivial.
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Proof. Suppose that aR is a flat module and ab = 0 for some b ∈ R. Since flat modules are
torsion-free (see [29, Theorem 4.24]), there are r1, . . . , rn ∈ aR and s1, . . . , sn ∈ R such that
a = ∑

i risi and sib = 0 for every i. Write ri = ati where ti ∈ R and set y = ∑
i tisi . Then

a = ay and yb = 0, as desired.
The proof of the converse is similar. �
Next we characterize rings with trivial zero relations. Recall that the rings of weak dimension

zero are exactly the von Neumann regular rings.

Proposition 5.2. Every zero relation over a ring R is trivial if and only if R has weak dimension
� 1.

Proof. Suppose every zero relation over R is trivial. By [29, Ex. 5.62b] it suffices to prove that
every (finitely generated) right ideal of R is flat. So let I be such a right ideal and n the number of
its generators. The image of I via the Morita equivalence of categories of R and Mn(R)-modules
is In. Clearly In is a cyclic Mn(R)-module isomorphic to a principal right ideal of Mn(R). By
assumption and Lemma 5.1, this ideal is flat, hence I is flat.

The proof of the reverse implication is similar. �
Following Bergman (see [8, Definition 3.8] or Cohn [11, p. 13]) we say that a ring R is

n-weakly semihereditary if every zero relation between m×n and n× k matrices over R is trivi-
alized by an idempotent matrix. A ring is weakly semihereditary, if it is n-weakly semihereditary
for every n. Thus, a ring R is weakly semihereditary if for every zero relation AB = 0 over R

there exists an idempotent matrix E such that AE = 0 and EB = B . Switching from E to 1 − E

we see that this is equivalent to the existence of an idempotent matrix F such that AF = A

and FB = 0. In particular (see [8, p. 44]), the notion of weakly semihereditary ring is left–right
symmetric.

Corollary 5.3. Every weakly semihereditary ring has weak dimension � 1. Consequently, every
weakly semihereditary right noetherian ring is right hereditary.

Proof. The first part follows from Proposition 5.2. If R is right noetherian, then, by Auslan-
der’s theorem (see [29, Theorem 5.60]), the weak dimension of R coincides with its right global
dimension. Thus the right global dimension of R does not exceed 1, hence R is right heredi-
tary. �

In Section 9 we will give an example of a commutative ring of weak dimension one with a
projective module that is not a direct sum of finitely generated modules. By Proposition 5.4, this
ring is not weakly semihereditary.

It is easily shown (using [11, Ex. 0.3.1]) that every one-sided semihereditary ring is weakly
semihereditary. In Section 9 we will give an example of a commutative weakly semihereditary
ring which is not semihereditary.

We can now give the promised new proof of Bergman’s theorem. (As mentioned in the in-
troduction, it is a generalization of Albrecht’s theorem [3, Theorem] on right projective modules
over right semihereditary rings, and a theorem of Bass [6, Proposition 4.1] on right projective
modules over left semihereditary rings.)
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Proposition 5.4. (See Bergman [8], cf. [11, Theorem 3.7].) Every projective module over a
weakly semihereditary ring R is a direct sum of finitely generated modules.

Proof. Let A1,A2, . . . be a stable sequence of R-matrices. By Theorem 4.2, it suffices to find an
idempotent matrix E such that A2A1M(R) ⊆ EM(R) ⊆ A2M(R).

From C1A2A1 = A1 it follows that (1 − C1A2)A1 = 0. By hypothesis, there exists an idem-
potent matrix F such that (1 − C1A2)F = 0 (that is, F = C1A2F ), and FA1 = A1. Then it is
straightforward to check that E = A2FC1 ∈ A2M(R) is an idempotent matrix. Further,

E · A2A1 = A2FC1 · A2A1 = A2FC1A2FA1 = A2F
2A1 = A2A1

shows that A2A1 ∈ EM(R), and so A2A1M(R) ⊆ EM(R) ⊆ A2M(R), as desired. �
Since every one-sided semihereditary ring is weakly semihereditary, we obtain

Corollary 5.5. Every projective module over a one-sided semihereditary ring is a direct sum of
finitely generated modules.

To be fair to Albrecht: his theorem says more, namely that all the finitely generated direct
summands are isomorphic to finitely generated right ideals. Similarly, Bass’s theorem shows that
the finitely generated summands are in fact duals of finitely generated left ideals.

In the proof of Proposition 5.4 we were able to ‘catch’ the desired idempotent using just two
terms of a stable sequence. It remains to be investigated how general this phenomenon is. In
particular, we do not know the answer to the following

Question 5.6. Is there a ring, all of whose right projective modules are direct sums of finitely
generated modules, for which there is no uniform bound on the index j (of occurrence of an
idempotent matrix in a stable sequence) in Theorem 4.2?

6. Principal ideal rings

Recall that a principal right ideal ring is a ring all of whose right ideals are principal. This is
equivalent to being a right noetherian right Bézout ring.

Non-trivial examples can be obtained from the first Weyl algebra A1 over a field of charac-
teristic zero. Indeed, although A1 has a non-principal right (and left) ideal, every matrix ring
Mn(A1) with n � 2 is a prime principal ideal ring, cf. [33, 7.11.7–7.11.8].

For examples of (right uniserial) principal right ideal rings that are not principal left ideal
rings, see [11, Section 8.8].

The next goal is to show that every projective (left or right) module over a one-sided principal
ideal ring is a direct sum of finitely generated modules. For this we need some general auxiliary
results that will also be used in the next section.

Lemma 6.1. Let P be a projective right module over a ring R. Suppose that J is a nilpotent
ideal of R such that P/PJ is a direct sum of finitely generated modules. Then P is a direct sum
of finitely generated modules.

Proof. By [28, Theorem 23.16], MJ is small in M for every right R-module M . In particu-
lar, PJ is small in P , hence P is a projective cover of P̄ = P/PJ . Further, P̄ is a projective
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R̄ = R/J -module. By hypothesis, P̄ = ⊕
i∈I P ′

i , where P ′
i are finitely generated projective R̄-

modules. Then each P ′
i is a direct summand of a free R̄-module R̄n for some n, hence isomorphic

to the module E′
i R̄

n for an idempotent n × n matrix E′
i over R̄.

Since J is nilpotent, Mn(J ) is a nilpotent ideal of Mn(R), hence one can lift idempotents
modulo Mn(J ), see [28, Theorem 21.28]. Thus, there exists an idempotent n × n matrix Ei over
R such that Ēi = E′

i . Clearly Pi = EiR
n is a finitely generated projective right R-module such

that P ′
i
∼= P̄i = Pi/PiJ , hence Pi is a projective cover of P ′

i .
Then P ′ = ⊕

Pi is a projective cover of P̄ (since P̄ ∼= P ′/P ′J and J is nilpotent), whence
P ∼= P ′ by the uniqueness of projective covers. �

The main application of this lemma is when J is N(R), the prime radical of R. By [15,
Proposition 1.6], N(R) is nil for any ring R. Also, if R has a right or left Krull dimension, then
N(R) is nilpotent, see [15, Theorem 7.21]. In particular, this applies to right or left noetherian
rings.

Corollary 6.2. Let R be a ring such that the prime radical N(R) of R is nilpotent. Let P be a
projective right R-module. If the R/N -module P̄ = P/PN is a direct sum of finitely generated
modules, then the same is true for P .

If P = P {A} in this corollary, where {A} is a stable sequence of matrices, then P̄ = P {Ā},
where {Ā} is the stable sequence consisting of images of matrices of {A} in R/N .

Proposition 6.3. Every projective module over a one-sided principal ideal ring is a direct sum
of finitely generated modules.

Proof. By Corollary 6.2 (factoring out the prime radical) we may assume that the ring is semi-
prime. As in [33, Example 5.2.11], one can show that it is in fact right hereditary (hence right
semihereditary). It remains to apply Corollary 5.5. �

Recall that a ring is connected iff it has no non-trivial central idempotents. Smith [44, Corol-
lary 4.9] shows that over connected principal right ideal rings non-finitely generated projective
right modules are free. (And this yields, upon decomposing the ring into a finite direct sum of
connected right principal ideal rings as before, another proof of the previous proposition for the
case of projective right modules.) Next we extend this to left modules.

Recall, that if P is a finitely generated projective right R-module, then P ∗ = Hom(P,RR),
the dual of P , is a finitely generated projective left module. Moreover, if e ∈ R is an idempo-
tent, then eR∗ ∼= Re. Similarly, we can define the dual Q∗ of a finitely generated projective left
R-module Q. The operation ∗ gives rise to a duality between categories of finitely generated
projective right and left R-modules. In particular, if P is a finitely generated projective right or
left module, then P ∼= P ∗∗.

Corollary 6.4. Every non-finitely generated projective module over a connected one-sided prin-
cipal ideal ring is free.

Proof. Let R be a connected right principal ideal ring. As mentioned above, every non-finitely
generated projective right R-module is free. Suppose now that P is a countably (but not finitely)
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generated projective left R-module. By Proposition 6.3, P = ⊕
i∈I Pi , where Pi are non-zero

finitely generated projective left R-modules and I is infinite.
Using Eilenberg’s trick (see [5, p. 24] or [29, Corollary 2.7]), one can easily show that P is

free whenever it has RR(ω) as a direct summand. Partitioning I into infinitely many infinite sets,
one sees that it suffices to prove that P has just one copy of RR as a direct summand.

Since
⊕

i∈I P ∗
i is a free right R-module, it contains a copy of RR as a direct summand. Then

already some finite sum P ∗
i1

⊕ · · · ⊕ P ∗
ik

contains a free direct summand. Applying the above
duality we see that Pi1 ⊕ · · · ⊕ Pik contains a copy of RR as a direct summand, as desired. �

The question arises if something similar holds for higher uniform bounds on the number of
generators of right ideals. For example, in any simple right noetherian ring of Krull dimension n,
by [33, 6.7.8], every right ideal is generated by n + 1 elements. In this particular case, every
projective right module is a direct sum of finitely generated modules, as follows from Fact 3.4.
In general, however, this is not the case: we conclude this section with a counterexample. More
precisely, we exhibit a right noetherian ring with a uniform bound on the number of generators
of right ideals over which there is a projective right module which is not a direct sum of finitely
generated modules. The authors thank the referee for pointing out such a possibility and to Larry
Levy for explaining it to us.

Suppose Λ is an order of finite lattice type over a Dedekind domain D and let A be the Aus-
lander lattice over Λ (that is, the sum of all indecomposable Λ-lattices, one for each isomorphism
type). Let further E = End(A). It was proved in [10, Theorem 2.1] that the category of projec-
tive right E-modules is equivalent to the category of generalized Λ-lattices, that is, Λ-modules
which are projective as D-modules. Thus our original question for E-modules (when every pro-
jective right E-module is a direct sum of finitely generated modules) is equivalent to the question
whether every generalized Λ-lattice is a direct sum of Λ-lattices.

If Λ is an order in a separable K-algebra, where K is the field of quotients of D, the latter
question was completely answered in [43] in terms of the hypergraph of Λ. For instance, while,
as follows from [10], the answer is positive when Λ = ZCp , the group ring of the cyclic group
of prime order, this is not the case for the Z-order Z ⊕ Z · 5i in Q[i], see [43, Example 3]. In the
latter case, (E,+) is a free abelian group of finite rank. Therefore, there is a uniform bound on
the number of generators of one-sided ideals of E.

7. Restricting the size of matrices

We addressed the issue of bounds on the index j in Theorem 4.2, cf. Question 5.6. Another
such issue is that of bounds on the size of the matrices figuring in that theorem. For ease of
reference, we restate what the criterion says about stable sequences of matrices of uniformly
bounded size.

Remark 7.1. Let R be a ring such that every projective right R-module is a direct sum of finitely
generated modules. Suppose that A1,A2, . . . is a stable sequence of n × n matrices over R (that
is, for all i there is some n × n matrix Ci with CiAi+1Ai = Ai ). Then there exists an idempotent
n × n matrix E such that Aj · . . . · A1Mn(R) ⊆ EMn(R) ⊆ Aj Mn(R) for some j .

Considering the case n = 1 in this, let a ∈ R be such that ba2 = a for some b ∈ R. Then
the constant sequence a, a, a, . . . is stable, and we obtain that the corresponding module P {a} is
countably generated projective.
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Corollary 7.2. Let a, b ∈ R with ba2 = a. If the projective module P {a} is a direct sum of finitely
generated modules, then there is an idempotent e ∈ R such that anR ⊆ eR ⊆ aR for some n.

Note that the conclusion may fail even for semilocal rings. Indeed, let S be the (semilocal)
endomorphism ring of a uniserial module M as described in [40, Section 6]. Let a ∈ S be a
monomorphism of M which is not an epimorphism. Then Sa = Sa2, hence a = ba2 for some
b ∈ S. Suppose there is an idempotent e ∈ S as in the corollary. Since S has no non-trivial idem-
potents, e = 0 or e = 1. If e = 0, then an ∈ eS implies an = 0, a contradiction. If e = 1, then
e ∈ aS implies that a is a unit, a contradiction again.

The question arises if it suffices to consider stable sequences of matrices of uniformly bounded
size in the criterion. To answer this question, we first show that for such a bounded sequence of
matrices, over certain rings, the module P {A} is automatically a direct sum of finitely generated
modules. Then we point out an example of such a ring over which there are, nevertheless, projec-
tives that do not so decompose, which shows in turn that in general we may not restrict ourselves
to sequences of bounded size, Corollary 7.5.

Proposition 7.3. Let M be a finite length right module over an arbitrary ring, and let R be a
subring of the endomorphism ring of M acting on M on the left. Then, for every stable sequence
of n×n matrices, {A} = A1,A2, . . . over R, there exists an idempotent n×n matrix E such that
Aj · . . . · A1Mn(R) ⊆ EMn(R) ⊆ Aj Mn(R) for some j . Thus the corresponding projective right
R-module P {A} is a direct sum of finitely generated modules.

Proof. Since M is of finite length, the same is true for Mn. Further, Mn(R) is a subring of
End(Mn) = Mn(End(M)). So we may assume n = 1, that is, we have to consider only stable
sequences of elements of R. Let {a} = a1, a2, . . . be such a sequence. We may also assume that
ai �= 0 for every i, for otherwise, taking e = 0, we are done.

Let ci ∈ R be such that ciai+1ai = ai for every i. Setting bi = ciai+1, we have biai = ai .
Then bi acts on im(ai) as the identity, in particular, im(ai) ⊆ im(bi).

Now choose i such that im(ai) has maximal length. By the choice of bi , the length of im(bi)

does not exceed that of im(ai+1), which, in turn, does not exceed that of im(ai). Therefore we
must have im(ai) = im(bi). Then bi acts on its image as the identity, whence bi is an idempotent.

Note that (ai+1ci)
3 = ai+1b

2
i ci = ai+1bici = (ai+1ci)

2. It follows readily that e = (ai+1ci)
2

is an idempotent. Since e ∈ ai+1R, it suffices to check that ai+1 · . . . · a1 ∈ eR. But as biai = ai ,
we obtain this from e · ai+1 · . . . · a1 = ai+1b

2
i ai · . . . · a1 = ai+1 · . . . · a1, as desired. �

In particular, over a right noetherian ring that is embeddable in a right artinian ring (for in-
stance, over a semiprime noetherian ring), by Proposition 7.3, any projective module of the form
P {A} for {A} = A1,A2, . . . a stable sequence over R with uniformly bounded sizes of matrices
is a direct sum of finitely generated modules. The next goal is to extend this to any one-sided
noetherian (and even much more general) rings. The previous proposition seems not to yield this,
because there are noetherian rings that are not embeddable in a right artinian ring, e.g., there is
an example of a noetherian algebra over a field that is not embeddable into an artinian ring (see
[12]), which is therefore not embeddable in a right artinian ring either, cf. [45, Theorem 7.13].
But using Lemma 6.1 and Corollary 6.2, we may factor out the prime radical and then apply
Proposition 7.3 as follows.
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Proposition 7.4. Let R be a ring with right or left Krull dimension (e.g. a one-sided noetherian
ring). If {A} = A1,A2, . . . is a stable sequence of n × n matrices over R, then there exists an
idempotent n×n matrix E such that Ai · . . . ·A1Mn(R) ⊆ EMn(R) ⊆ AiMn(R) for some i. Thus
the countably generated projective right R-module P {A} is a direct sum of finitely generated
modules.

Proof. By Corollary 6.2, we may assume that R is semiprime. By [15, Corollary 7.19], R is a
right (or left) Goldie ring, that is, R has finite right (left) Goldie dimension and the a.c.c. on right
(left) annihilators.

Then, by Goldie’s theorem, R is a subring of its right (left) quotient ring Q(R) which is a
semisimple artinian ring. It remains to apply Proposition 7.3. �

So, to construct a ‘bad’ example of a projective module of the form P {A} over a ring with
one-sided Krull dimension, the size of the corresponding matrices has to go to infinity.

Corollary 7.5. Let R be the ring of Example 3.2. Then every projective right R-module of the
form P {A}, for {A} a stable sequence of matrices of bounded size, is a direct sum of finitely
generated modules, and yet there is a projective right R-module that is not a direct sum of finitely
generated modules.

Consequently, one cannot, in general, restrict the criterion in Theorem 4.2 to stable sequences
whose matrices have uniformly bounded size.

Using [15, Propositions 10.6, 10.7], the same proof shows that Proposition 7.4 is true if R

is the endomorphism ring of an artinian module (over any ring). Again, Example 3.2 serves as
an example of such a ring over which not every projective module is a direct sum of finitely
generated modules.

We conclude with an application to idempotent ideals (see Section 2 about the role of idem-
potent ideals in connection with traces). Note, first of all, that any idempotent e ∈ R gives rise to
an idempotent ideal, ReR. But there are others. For instance, the augmentation ideal of the uni-
versal enveloping algebra Usl2(k) over a field k of characteristic zero is idempotent (and being
a domain, this ring has no idempotents). Note that this idempotent ideal is 2-generated both as
a right ideal and as left ideal. As an application of the previous proposition, we show that ‘2’ is
best possible here.

Corollary 7.6. Let R be a ring with one-sided Krull dimension and with no non-trivial idempo-
tents. Then no non-zero proper idempotent ideal of R is cyclic as a left ideal.

Proof. Suppose that I = Ra is an idempotent ideal of R. Then a ∈ I 2 implies a = ∑
i riasia

for some ri , si ∈ R. From asi ∈ I it follows that asi = tia for some ti ∈ R. If b = ∑
i ri ti ,

then ba2 = a. By Proposition 7.4 and Corollary 7.2, there is an idempotent e ∈ R such that
anR ⊆ eR ⊆ aR. By hypothesis, e = 0 or e = 1, the latter of which leads to the contradiction
I = R. If, on the other hand, e = 0, then an = 0, which upon successive application of ba2 = a

yields the contradiction a = 0. �
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8. Bézout rings

Recall that a ring R is left Bézout if every finitely generated left ideal of R is principal. It
may not be all that surprising that over such rings one may indeed restrict the size of matrices
in the criterion of Theorem 4.2, even to just ring elements, as we show first. (For left Bézout
domains, this follows from Albrecht’s theorem: every projective right (and left) module is free in
that case.)

Proposition 8.1. Given a left Bézout ring R, the following are equivalent.

(1) Every projective right R-module is a direct sum of finitely generated modules.
(2) If a1, a2, . . . is a stable sequence of elements of R, then there is an idempotent e ∈ R such

that ai · . . . · a1R ⊆ eR ⊆ aiR for some i.
(3) Every projective right R-module is isomorphic to a direct sum of right ideals eiR, where the

ei ∈ R are idempotents.

Proof. (3) ⇒ (1) is trivial.
(1) ⇒ (2) follows from Remark 7.1.
(2) ⇒ (3). Let P be a projective right R-module. By Kaplansky’s theorem, we may assume

that P is countably generated. It suffices to prove that every m ∈ P is contained in a direct
summand of P isomorphic to eR, for some idempotent e ∈ R.

The following construction is similar to the proof (2) ⇒ (1) of Theorem 4.2.
Since P is projective and R is left Bézout, the pp-type p1 of m = m1 in P is generated

by a divisibility formula a1 | x for some a1 ∈ R, see Corollary 2.10. Take m2 ∈ P such that
m2a1 = m1. The pp-type of m2 in P is generated by a2 | x for some a2 ∈ R. Continuing this way,
we obtain a sequence {a} = a1, a2, . . . of elements of R, and a sequence m1,m2, . . . of elements
of P such that mi+1ai = mi for every i � 1.

As in Lemma 4.1, one can check that the sequence {a} is stable. By assumption, there is an
idempotent e ∈ R such that e = aif and ai · . . . · a1 = eg for some index i and some f,g ∈ R.
Now, similarly to the proof of Theorem 4.2, the pp-type of n = mif is generated by e | x, and
m1 ∈ nR. Thus, nR is a direct summand of P isomorphic to eR, as desired. �
Corollary 8.2. Let R be a left Bézout ring which has one-sided Krull dimension or is embeddable
into the endomorphism ring of a finite length module. Then every projective right R-module is a
direct sum of right ideals eiR, where the ei ∈ R are idempotents.

Proof. By Propositions 8.1, 7.3, and 7.4. �
Corollary 8.2 applies, for instance, to semiprime left Bézout right Goldie rings, since they have

semisimple artinian quotient rings. (Recall that right Goldie means finite right Goldie dimension
and a.c.c. on right annihilators.)

Question 8.3. Is every projective right module over a left Bézout right Goldie ring a direct sum
of finitely generated modules?

The ring S mentioned after Corollary 7.2 is (left and right) Bézout, has (left and right) Goldie
dimension 1, and, see [40, Section 6], possesses indecomposable non-finitely generated projec-



472 W.Wm. McGovern et al. / Journal of Algebra 315 (2007) 454–481
tive modules on both sides. But it fails to have the a.c.c. on right or left annihilators, and is thus
neither right nor left Goldie.

For commutative rings, the aforementioned criterion admits further simplification.

Proposition 8.4. Given a commutative Bézout ring R, the following are equivalent.

(1) Every projective R-module is a direct sum of finitely generated modules.
(2) If b1, b2, . . . is an a-sequence (that is, bk+1bk = bk for every k), then there exists an idempo-

tent e ∈ R such that b1R ⊆ eR ⊆ biR for some i.
(3) R is an f -ring, that is, every pure ideal of R is generated by idempotents.

Proof. (1) ⇒ (2). By Proposition 8.1, there is an idempotent e such that bi · . . . ·b1R ⊆ eR ⊆ biR.
But, by the definition of a-sequence, bi · . . . · b1 = b1.

(2) ⇒ (1). Let a1, a2, . . . be a stable sequence of elements of R. By Proposition 8.1, it suffices
to find an idempotent e ∈ R such that ai · . . . · a1R ⊆ eR ⊆ aiR for some i. Let b1 = a1, and
set bi = ci−1ai for i � 2, where the ci witness stability, that is, ciai+1ai = ai . We claim that
b1, b2, . . . is an a-sequence. Indeed, b2b1 = c1a2a1 = a1 = b1. Also, if i � 2, then bi+1bi =
ciai+1ci−1ai = ci−1ciai+1ai = ci−1ai = bi .

By assumption, there is an idempotent e, and elements f,g ∈ R such that eg = b1 and e = bif

for some i. If i = 1, then b1R = eR, hence a1R = b1R = eR, as desired. Otherwise, i > 1. Then
e = bif = ci−1aif ∈ aiR, and a1 = b1 = eg implies ai · . . . · a1 = ai · . . . · a2eg ∈ eR, as desired.

The equivalence (2) ⇔ (3) follows from [25, L. 2.1]. �
The first equivalence says that every projective module over a commutative Bézout ring is a

direct sum of finitely generated modules iff idempotents are ‘dense’ in a-sequences. We now see
what all this means when the ring has only trivial idempotents.

Corollary 8.5. Given a commutative Bézout ring R without non-trivial idempotents, the follow-
ing are equivalent.

(1) Every projective R-module is a direct sum of finitely generated modules.
(2) Every projective module is free.
(3) R is an F -ring, that is, every cyclic (or finitely generated) flat R-module is projective.

Proof. (2) ⇒ (1) is obvious, and (3) ⇒ (1) follows from Proposition 8.4 (since every F -ring is
an f -ring).

(1) ⇒ (2). By Proposition 8.1, every projective R-module is a direct sum of modules eiR,
where ei ∈ R are idempotents. Since R has no non-trivial idempotents, ei = 1, and so eiR = R.

(1) ⇒ (3). Suppose that R/I is a flat non-zero R-module. Then I is a pure ideal of R, and
so there is an a-sequence {a} consisting of elements of I . Further, the corresponding projective
ideal P {a} is pure in R. By hypothesis, it contains a finitely generated direct summand P1. Then
also P1 is pure in, hence a direct summand of R. Since R has no non-trivial idempotents, P1 = R,
and so I = R, contrary to its choice. �

Since the existence of Krull dimension implies finite Goldie dimension (but not vice versa),
the following is a partial generalization of Corollary 8.2 for commutative Bézout rings.
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Proposition 8.6. If R is a commutative Bézout ring of finite Goldie dimension, then every pro-
jective R-module is isomorphic to a direct sum of modules eiR, where ei ∈ R are idempotents.

Proof. Since R has finite Goldie dimension, we may assume that R has no non-trivial idempo-
tents. Then, by [26, Remarks], R is an F -ring. It remains to apply Corollary 8.5. �

The boolean ring corresponding to an atomless boolean algebra is von Neumann regular
(hence Bézout) and has superdecomposable projective modules (e.g. the ring as a module over
itself). Below we will give such an example without idempotents, Example 9.21.

9. Rings of continuous functions

In this section we consider the ring C(X), that is, the ring of all real-valued continuous func-
tions on a topological space X. As is customary we assume that X is a Tychonoff space, i.e., X

is completely regular and Hausdorff. For more information on rings of continuous functions the
reader is referred to [20].

The contents of this final section can (up to some more equivalences that we derive) be sum-
marized by Fig. 1.

Given f ∈ C(X), the zero set of f , denoted zer(f ), is the closed set {x ∈ X | f (x) = 0}, while
the cozero set of f , coz(f ), is the open set {x ∈ X | f (x) �= 0}. Since X is Tychonoff, cozero
sets form a base for the open topology on X. As is easily seen, pos(f ) = {x ∈ X | f (x) > 0}
and neg(f ) = {x ∈ X | f (x) < 0} are cozero sets. Further, every cozero set can be represented as
neg(g) and as pos(h) for appropriate g,h ∈ C(X).

We are going to characterize the ring theoretic properties of C(X) that have arisen above by
topological properties of the underlying spaces.

A topological space X is said to be strongly zero-dimensional if disjoint zero sets of X can be
separated by disjoint clopen sets. Every strongly zero-dimensional space is zero-dimensional in
the sense that it has a base of clopen sets. By [20, Theorem 16.17], X is strongly zero-dimensional
iff the Stone–Čech compactification of X, β(X), is zero-dimensional. (The reader should be
warned that in the older literature, including [20], the term zero-dimensional is used for what is
here called strongly zero-dimensional.)

First we give a complete answer to our original question for C(X).

Proposition 9.1. The following are equivalent.

(1) Every projective C(X)-module is a direct sum of finitely generated modules.
(2) C(X) is an f -ring.
(3) X is strongly zero-dimensional.
(4) C(X) is an exchange ring.
(5) Every projective C(X)-module is a direct sum of modules eiR, where ei ∈ R are idempotents.

Proof. Trivially, (5) implies (1). (2) is equivalent to (3) by De Marco [13, Corollary 2.4]. Further,
(1) ⇒ (2) follows from Fact 3.7, and (3) ⇔ (4) follows from [34, Theorem 13] and [4]. The rest
follows from Fact 3.6. �



474 W.Wm. McGovern et al. / Journal of Algebra 315 (2007) 454–481
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f -rings
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• 1

• N

• Q • βN \ N
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[0,1] • 9.23 •

Fig. 1.

Example 9.2. Being a countable zero-dimensional space, Q with the usual topology is a strongly
zero-dimensional space, hence C(Q) is an exchange (and an f -) ring. Thus, all projective C(Q)-
modules are direct sums of finitely generated modules.

More on this ring will be said in Corollary 9.15.

Example 9.3. Another extreme can be observed over the ring C([0,1]). As the interval [0,1]
is connected, it has no non-trivial clopen sets. But there are many disjoint zero sets (e.g. {0}
and {1}), which can therefore not be separated by clopen sets. Thus, C([0,1]) is not an ex-
change ring, and hence some projective C([0,1])-module does not decompose into a direct sum
of finitely generated modules. In fact, the ideal P of all f ∈ C([0,1]) vanishing on some open
neighborhood of 0 is an indecomposable countably, but not finitely generated projective and pure
ideal, which is of the form P {a} for some a-sequence {a}, see [29, Example 2.12.D]. More on
projectives over C([0,1]) can be found in Proposition 9.6 below and in [36].
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We are going to have to elaborate somewhat on [13]. Suppose that X is a compact topological
space. Then there is a one-to-one correspondence between pure ideals of C(X) and the closed
subsets of X. Namely, if I is a pure ideal, then zer(I ) = ⋂

f ∈I zer(f ) is a closed subset of
X, and conversely, if Y is a closed subset of X, then the set, OY , of functions vanishing on
some open neighborhood of Y is a pure ideal of C(X). There is also a description of direct sum
decompositions of pure ideals. Indeed, since X is compact, we can identify X with the maximal
spectrum of C(X). Then the direct sum decompositions of I are in one-to-one correspondence
with open partitions of X \ zer(I ):

Fact 9.4. (See [13, Proposition 1.9 and Theorem 1.13].) Let I be a pure ideal of C(X) with X

compact.

(1) If I = ⊕Ii , then X \ zer(I ) = ⋃
Ui is an open partition, where Ui = X \ zer(Ii).

(2) If X \ zer(I ) = ⋃
Ui is an open partition, then I = ⊕

Ii , where Ii is the pure ideal OX\Ui

corresponding to the closed set X \ Ui .
(3) In particular, any two direct sum decompositions of I have a common refinement, for this is

obvious on the side of open partitions.
(4) If I is, in addition, projective, any direct sum decomposition of I has a refinement of the

form I = ⊕
Ozer(fi ) with fi ∈ C(X).

Suppose P is a projective ideal of C(X). Then, by Fact 2.4, its trace I is projective and pure,
so the above applies. Furthermore, there is one-to-one correspondence between decompositions
of I and P .

Fact 9.5. (See [13, Proposition 1.14].) Let P be a projective ideal of C(X) and I = Tr(P ).

(1) If P = ⊕
Pi , then I = ⊕

Tr(Pi).
(2) If I = ⊕

Ii , then P = ⊕
PIi .

(3) P is finitely generated if and only if I is finitely generated, and P and I have the same
(infinite) cardinality of generators otherwise (and the same applies to the Pi and Ii , respec-
tively).

Note that f ∈ C(X) is a not zero divisor if and only if coz(f ) is dense in X.
We can now describe direct sum decompositions of projective ideals of C([0,1]).

Proposition 9.6. Let P be a projective ideal of C([0,1]).

(1) If P is finitely generated, then it is free of rank 1 with P = f C([0,1]) where coz(f ) is a
dense subset of [0,1].

(2) If P is not finitely generated, then it uniquely decomposes into a direct sum of countably
many indecomposable countably, but not finitely generated (projective) ideals.

Proof. (1) Since [0,1] is contractible, every finitely generated projective C([0,1])-module is
free. In particular, P is free, hence P = ⊕n

i=1 Pi where Pi are free rank 1 ideals of C([0,1]).
Clearly Pi = fiC([0,1]) where fi is a non-zero divisor (hence coz(fi) is dense in [0,1]). If now
n > 1, then 0 �= fifj ∈ Pi ∩ Pj for some i �= j , a contradiction.
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(2) Assume P is not finitely generated. Then I = Tr(P ) is a pure and projective ideal of
C([0,1]) that is not finitely generated. Fact 9.4 shows that I is uniquely determined by the
closed subset zer(I ) of [0,1], and the direct sum decompositions of I are in one-to-one corre-
spondence with open partitions of the open set [0,1] \ zer(I ). But every open subset of [0,1] is
uniquely represented as a disjoint union of at most countably many open intervals (ai, bi). Thus
I uniquely decomposes into a direct sum of ideals Ii = O[0,1]\(ai ,bi ) that are pure and projective.
Since (ai, bi) is connected, Ii is indecomposable. As Ii is pure and proper, it cannot be finitely
generated (otherwise this would give rise to non-trivial idempotents). It remains to apply Fact 9.5
and Kaplansky’s theorem to get the desired decomposition of P . �

If f = x −x2, then coz(f ) = (0,1) is dense in [0,1], hence f C([0,1]) is an example of a free
rank 1 proper ideal of C([0,1]), which is not pure and a non-trivial example of part (1) above.

It seems there should be an abundance of non-finitely generated projective ideals of C([0,1])
that are not pure. However, we do not know any particular example.

If X is a compact metric space, by [13, Corollary 3.4], every pure ideal of C(X) is projective
and countably generated. This applies in particular to C([0,1]).

A module M is said to be superdecomposable if M has no indecomposable direct summands.
(We consider 0 as a decomposable module!)

Question 9.7. Is there a non-zero superdecomposable projective C([0,1])-module?

After the next result we will see that C([0,1]) is not a Bézout ring.
The next task is to topologically describe weakly semihereditary rings of continuous func-

tions. For this we have to prepare by a detour via a larger class of rings (respectively spaces)
whose intersection with that of f -rings (respectively strongly zero-dimensional spaces) will yield
the desired class of weakly semihereditary rings, see Proposition 9.13.

Two subsets A and B of a topological space X are completely separated, if there is an f ∈
C(X) such that f (A) = 0 and f (B) = 1. Observe that completely separated sets have disjoint
closures. The space X is called an F -space, if for every f ∈ C(X), the sets neg(f ) and pos(f )

are completely separated. It follows that X is an F -space precisely when every pair of disjoint
cozero sets is completely separated.

Fact 9.8. (See [20, Theorem 14.25].) The ring C(X) is Bézout if and only if X is an F -space.

Remark 9.9. There are connected F -spaces, but [0,1] is not an F -space. Indeed, if f (x) = x− 1
2 ,

then neg(f ) = [0, 1
2 ) and pos(f ) = ( 1

2 ,1] are disjoint cozero sets which are not completely
separated. In fact, a metric space is an F -space exactly when it is discrete (see [20, Ex. 14M3]).
It follows that C([0,1]) is not a Bézout ring.

Recall, a commutative ring R is a valuation ring, if the lattice of ideals of R is a chain, and R

is arithmetical, if the lattice of ideals of R is distributive. By Jensen [24, L. 1], a commutative
ring is arithmetical iff every localization of R at a prime ideal (equivalently, maximal ideal) is a
valuation ring.

Fact 9.10. (See [24, Theorem].) A commutative ring has weak dimension � 1 if and only if R is
arithmetical and reduced (that is, has no nilpotent elements).
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For the convenience of the reader we include the following known result with a self-contained
proof.

Lemma 9.11. (See [17].) The following are equivalent.

(1) C(X) has weak dimension � 1.
(2) C(X) is Bézout.
(3) C(X) is arithmetical.
(4) X is an F -space.

Proof. (1) ⇒ (4). We need to show that disjoint cozero sets are completely separated. Suppose
that coz(g) ∩ coz(h) = ∅. This means that gh = 0. Since C(X) has weak dimension � 1, the
principal ideal gC(X) is flat. Proposition 5.2 yields u ∈ C(X) with gu = g and uh = 0. Then
u|coz(g) = 1 and u|coz(h) = 0, whence coz(g) and coz(h) are completely separated.

(2) and (4) are equivalent by Fact 9.8 above. (2) implies (3), because every Bézout ring is
arithmetical. Finally, (3) ⇒ (1) follows from Fact 9.10, for C(X) is always reduced. �

A topological space X is said to be a P -space, if every zero set of X is open. By [20, Theo-
rem 14.29], C(X) is a von Neumann regular ring iff X is a P -space. Since von Neumann regular
rings are exactly the rings of weak dimension zero, we derive the following

Corollary 9.12. A ring C(X) has weak dimension 1 if and only if X is an F -space that is not a
P -space.

Now we are able to characterize weakly semihereditary rings of continuous functions.

Proposition 9.13. The following are equivalent.

(1) C(X) is weakly semihereditary.
(2) C(X) is a Bézout f -ring.
(3) X is a strongly zero-dimensional F -space.

Proof. (2) and (3) are equivalent by Proposition 9.1 and Fact 9.8.
(1) ⇒ (2). That C(X) is Bézout follows from Corollary 5.3 and Lemma 9.11; that it is an

f -ring, from Propositions 5.4 and 9.1.
(2) ⇒ (1). To prove that C(X) is weakly semihereditary, by Bergman [7, Proposition 6.2 and

thereafter], it suffices to prove that C(X) is 1-weakly semihereditary and that every localization
of C(X) at a maximal ideal is a valuation domain. That every such localization is a valuation ring
follows from the Bézout property. But C(X) is reduced, so none of these contain zero-divisors.

To show that C(X) is 1-weakly semihereditary, let f1, . . . , fn, g1, . . . , gm ∈ C(X) be such
that figj = 0 for all i, j , that is, AB = 0, where A is the column (f1, . . . , fn)

t and B is the row
g1, . . . , gm. We have to find an idempotent e ∈ C(X) such that fie = fi and egi = 0 for every i.

First of all, C(X) being Bézout allows us to reduce the matter to the case n = m = 1 as
follows. Write

∑
i fiR = f R and

∑
j gjR = gR for appropriate f,g ∈ R. Then figj = 0 for all

i, j iff fg = 0 (for C(X) is commutative). Further, f e = f and eg = 0 would imply fie = fi

and egj = 0 for all i, j .
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From f1g1 = 0 we get coz(f1) ∩ coz(g1) = ∅. Since X is an F -space, these cozero sets are
completely separated, that is, they have disjoint zero set neighborhoods. But X is also strongly
zero-dimensional, hence two disjoint zero sets have disjoint clopen neighborhoods U and V . If
e is the projection onto U , then e is an idempotent, and f1e = f1 and eg1 = 0. �
Corollary 9.14. If X is connected with more than one point, then C(X) is not weakly semihered-
itary.

Corollary 9.15. The exchange ring C(Q) from Example 9.2 is not weakly semihereditary. (Hence
one can apply Warfield’s, but not Bergman’s theorem to conclude the decomposition of projective
C(Q)-modules as direct sums of finitely generated modules.)

Proof. Since a metric F -space is discrete it follows that C(Q) is not Bézout, and thus not weakly
semihereditary. �

Other interesting Tychonoff spaces are basically disconnected spaces, that is, spaces all of
whose cozero sets have clopen closure. It turns out that these give rise to semihereditary rings
of continuous functions, and vice versa. This was first proved, independently, by Brookshear [9]
and De Marco [13].

Fact 9.16. The ring C(X) is semihereditary if and only if X is basically disconnected.

Example 9.17. Let N∗ = βN \ N, where N is the set of natural numbers carrying the discrete
topology. Then C(N∗) is a weakly semihereditary ring which is not semihereditary. (Hence one
can apply Bergman’s, but neither Albrecht’s nor Bass’ theorems to conclude the decomposition
in question.)

Proof. As N is locally compact and σ -compact, N∗ is a compact F -space by [20, Theo-
rem 14.27]. By [20, Exercise 6S 4], N∗ is also (strongly) zero-dimensional. So C(N∗) is weakly
semihereditary. On the other hand, by [20, Exercise 6W], N∗ is not basically disconnected, hence
C(N∗) is not semihereditary. �

Finally, we characterize weakly noetherian rings of continuous functions topologically.

Proposition 9.18. The following are equivalent.

(1) C(X) is (weakly) noetherian.
(2) C(X) is hereditary.
(3) C(X) is an F -ring.
(4) X is a finite discrete space.

Proof. (1) ⇒ (4). If C(X) is weakly noetherian, Max(C(X)) has the d.c.c. on closed subsets.
Being homeomorphic to this space, β(X) has the d.c.c. on closed subsets too. But β(X) is com-
pact, Hausdorff, and completely regular. It is not difficult to derive that β(X), and hence also X,
is a finite discrete space.

The converse being trivial, (1) and (4) are equivalent. By [13, Corollaries 3.4(a) and 2.3], (4) is
also equivalent to (2) and to (3). �



W.Wm. McGovern et al. / Journal of Algebra 315 (2007) 454–481 479
Example 9.19. If X is an infinite discrete space (N, for example), then C(X) = RX is a von Neu-
mann regular (and thus semihereditary) ring that is not weakly noetherian. (Hence one can apply
Abrecht’s and Bass’s, but not Hinohara’s theorem to conclude the decomposition in question.)

Next we give an example of a Bézout ring C(X) whose projective ideals show a decomposi-
tion theory completely opposite to that of C([0,1]).

Recall that a commutative ring R is an elementary divisor ring if, for every n × n matrix
A over R, there are invertible R-matrices U and V such that UAV = diag(a1, . . . , an) with
ai+1 ∈ aiR for every i. Notice, every elementary divisor ring is Bézout.

Remark 9.20. Let R be an elementary divisor ring. Then all finitely presented R-modules are
direct sums of cyclically presented modules, i.e. modules of the form R/rR. If such a cyclically
presented module is projective, rR must split in RR , and so rR is generated by an idempotent.
Hence, finitely generated projective R-modules are direct sums of principal ideals generated by
idempotents. Consequently, if R has no non-trivial idempotents, finitely generated projective
R-modules are free.

Example 9.21. (Gillman–Henriksen) Let H = [0,∞) be the half-line and set H∗ = βH\H. Then
C(H∗) is a non-weakly semihereditary elementary divisor ring of weak dimension 1 without
non-trivial idempotents, all of whose proper projective ideals are superdecomposable.

Proof. By [20, Theorem 14.27], H∗ is a compact F -space and so, by Lemma 9.11, C(H∗) is a
Bézout ring of weak dimension � 1. Clearly H∗ is not a P -space, hence the weak dimension of
C(H∗) is exactly 1 (Corollary 9.12). The fact that C(H∗) is an elementary divisor ring can be
derived from [19, Example 4.9]. Furthermore, by [19, p. 92], H∗ is connected, hence C(H∗) is
not weakly semihereditary, by Corollary 9.14, and has no non-trivial idempotents (as idempotents
in C(X) correspond to clopen subsets of X).

Then, by Remark 9.20, every finitely generated projective C(H∗)-module is free. Arguing
as in Proposition 9.6 we see that, if P is a finitely generated projective ideal of C(H∗), then
P = f C(H∗), where coz(f ) is dense. But it is well known (see [16]) that H∗ has no proper
dense cozero sets, hence P = C(H∗).

It remains to verify that C(H∗) has no non-zero proper indecomposable projective ideal. If
there were such an ideal, P , it would have to be non-finitely generated by what we have already
proved. Then I = Tr(P ) is a pure and projective ideal of C(H∗) which is not finitely generated, in
particular I is proper and non-zero. By Fact 9.5, it suffices to prove that I is not indecomposable.

Otherwise, since H∗ is compact, using part (4) of Fact 9.4 we see that I = OZ , where Z =
zer(f ) for some f ∈ C(H∗). Clearly zer(f ) is a non-empty proper subset of H∗, hence the
same is true for coz(f ). Since direct sum decompositions of I correspond to open partitions
of coz(f ), it suffices to prove that coz(f ) is not connected. By way of contradiction, suppose
coz(f ) is connected. Then its closure V in H∗ is a connected closed, hence compact subspace
of H∗.

Theorem 4.2 of [21] states that H∗ is an indecomposable continuum. This means that
every proper compact, connected subspace is nowhere dense (hence has empty interior). Since
coz(f ) ⊆ V is open and non-empty, we conclude that V = H∗, hence coz(f ) is dense in H∗. But
we have already noticed that H∗ has no proper dense cozero sets.

(Interestingly, [20, Ex. 6L4] shows that every proper zero set of H∗ is also disconnected.) �
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Question 9.22. Is there an indecomposable non-finitely generated projective C(H∗)-module?

We conclude with another curious example of a ring of continuous functions, one that is in
none of the classes under investigation. For an example of a zero-dimensional space that is not
strongly zero-dimensional, see [20, 16M].

Example 9.23. If X is a zero-dimensional space that is not strongly zero-dimensional, then every
non-zero ideal of C(X) contains an idempotent, but C(X) has a projective and pure ideal which
is not a direct sum of finitely generated ideals and not generated by idempotents.

Proof. By Proposition 9.1, C(X) is not an f -ring, and by [34, Proposition 18] each of its non-
zero ideals contains an idempotent. By Fact 3.8, it has a countably generated projective ideal
which is not a direct sum of finitely generated ideals. By Fact 9.5, the same is true for its trace
ideal. So there is a countably generated projective and pure ideal of the same kind. If it were
generated by idempotents, it would split into a direct sum of principal ideals generated by those
idempotents. �
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