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Abstract

Girard’s Geometry of Interaction (GoI) develops a mathematical framework for modelling the dynamics of
cut-elimination. In previous work we introduced a typed version of GoI, called Multiobject GoI (MGoI)
for multiplicative linear logic [22]. This was later extended to cover the exponentials by the first author
[23]. Our development of MGoI depends on a new theory of partial traces, as well as an abstract notion of
orthogonality (related to work of Hyland and Schalk.) In this paper we recall the MGoI semantics for MLL,
and discuss how it relates to denotational semantics of MLL in certain *-autonomous categories. Finally,
we prove characterization theorems for the MGoI interpretation of MLL in partially traced categories with
an orthogonality, and for the original untyped GoI interpretation of MLL in a traced unique decomposition
category.

Keywords: Geometry of Interaction, Linear Logic, Traced Categories, Unique Decomposition Categories,
Characterization Theorems.

1 Introduction

Geometry of Interaction (GoI) is an interpretation of linear logic, introduced by
Girard in a fundamental series of papers beginning in the late 80’s [13,11,14] and
continued recently in [15], and [16]. One striking feature of this work is that it
provides a mathematical framework for modelling cut-elimination (normalization)
as a dynamical process of information flow, independent of logical syntax. Girard
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introduces methods from functional analysis and operator algebras to model proofs
and their dynamical behaviour. wires

In Girard’s Geometry of Interaction, the dynamics of cut-elimination is captured
in a solution of a system of feedback equations, summarized in an operator EX(u, σ)
(the Execution Formula). We remark that our general categorical framework (based
on partial traces) permits a structured approach to solving such feedback equations
and deriving properties of the Execution formula. The main feature is that for
the GoI interpretation θ(Π) of proofs of appropriate sequents in multiplicative,
exponential linear logic (MELL) [13,20], and proofs in System F [13], EX(θ(Π), σ)
is an invariant of cut-elimination.

Categorical foundations of GoI were initiated in the 90’s in lectures by M. Hyland
and by S. Abramsky. An early categorical framework was given in [4]. Recent work
has stressed the role of Joyal-Street-Verity’s traced monoidal categories [25] (with
additional structure). For example, Abramsky’s GoI Situations [1,18,3] provide a
basic algebraic foundation for GoI interpretation of MELL. We used a special kind
of GoI Situation (with traced unique decomposition categories) to axiomatize the
details of Girard’s original GoI 1 paper [20].

In our previous papers, we emphasized several important aspects of Girard’s
early GoI papers, especially from the categorical viewpoint:

(i) The original Girard framework is essentially untyped: there is a reflexive object
U in the underlying model (with various retractions and/or domain isomor-
phisms, e.g. U ⊗ U � U).

(ii) Cut-elimination is interpreted by feedback, which can be naturally represented
in traced monoidal categories. The execution formula can be defined via a
trace and provides an invariant for cut-elimination.

(iii) Girard introduced an orthogonality operation ⊥ on endomaps of U together
with the notion of types (as sets of endomaps equal to their biorthogonal) to
interpret the formulas of logic. More recently, orthogonalities have been studied
abstractly by Hyland and Schalk [24].

(iv) Proofs with cuts are thought-of as algorithms. One runs these algorithms
by applying the Execution formula, a formal power series representing the
dynamics of cut-elimination. The convergence of this execution/trace formula
leads to cut-free proofs, thought-of as data.

(v) We also emphasize that Girard’s GoI, and MGoI in this paper, form a novel
interpretation of proofs: one which explicitly incorporates the cuts. For us,
the associated mathematical models of MGoI, and their theory of dynamical
invariants, form a fundamental structure separate from the denotational lit-
erature. However, one can make meaningful comparisons with this literature.
We include some basic results of such a comparison here. We show the de-
notational versus GoI interpretations (when defined) in certain ∗-autonomous
“GoI” categories are quite different in general, although in a precise sense they
agree on cut-free proofs.
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Points (i) and (ii) above were already emphasized in the Abramsky program, as well
as in the work of Danos and Regnier [1,3,20,7]. The points (i)–(v), especially the last
two, are crucial to our overall program of axiomatizing Girard’s GoI categorically
in [20,21].

The contributions of this paper can be summarized as follows:

• We compare (M)GoI interpretations to denotational interpretations in appropri-
ate GoI (or Int) categories.

• We prove a characterization theorem for our MGoI interpretation of MLL in
arbitrary partially traced categories with an appropriate orthogonality relation.

• We prove a characterization theorem for the untyped GoI semantics of MLL
(fully described in [20]) in a traced UDC-based GoI Situation.

2 Trace Class

The notion of categorical trace was introduced by Joyal, Street and Verity in an
influential paper [25]. The motivation for their work arose in algebraic topology
and knot theory, although there have been many applications recently in Computer
Science. For references and history, see [1,3,20].

In [22] we went one step further and looked at partial traces. The idea of
generalizing the abstract trace of [25] to the partial setting is not new. For example,
partial traces were already studied in work of Abramsky, Blute, and Panangaden
[2], in unpublished lecture notes of Gordon Plotkin [28], work of Blute, Cockett,
and Seely [5], and others. For a comparative account, see [22].We shall briefly recall
the notion of partial trace from [22].

Recall, following Joyal, Street, and Verity [25], a (parametric) trace in a sym-
metric monoidal category (C,⊗, I, s) is a family of maps

TrU
X,Y : C(X ⊗ U, Y ⊗ U) → C(X, Y ),

satisfying various well-known naturality equations. A partial (parametric) trace
requires instead that each TrU

X,Y be a partial map (with domain denoted T
U
X,Y ) and

satisfy various closure conditions.

Definition 2.1 (Trace Class) Let (C,⊗, I, s) be a symmetric monoidal category.
A (parametric) trace class in C is a choice of a family of subsets, for each object U

of C, of the form

T
U
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X, Y of C

together with a family of functions, called a (parametric) partial trace, of the form

TrU
X,Y : T

U
X,Y → C(X, Y )

subject to the following axioms. Here the parameters are X and Y and a morphism
f ∈ T

U
X,Y , by abuse of terminology, is said to be trace class.
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• Naturality in X and Y : For any f ∈ T
U
X,Y and g : X ′ → X and h : Y → Y ′,

(h ⊗ 1U )f(g ⊗ 1U ) ∈ T
U
X′,Y ′ ,

and TrU
X′,Y ′((h ⊗ 1U )f(g ⊗ 1U )) = h TrU

X,Y (f) g.

• Dinaturality in U : For any f : X ⊗ U → Y ⊗ U ′, g : U ′ → U ,

(1Y ⊗ g)f ∈ T
U
X,Y iff f(1X ⊗ g) ∈ T

U ′
X,Y ,

and TrU
X,Y ((1Y ⊗ g)f) = TrU ′

X,Y (f(1X ⊗ g)).
• Vanishing I: T

I
X,Y = C(X ⊗ I, Y ⊗ I), and for f ∈ T

I
X,Y

TrI
X,Y (f) = ρY fρ−1

X .

Here ρA : A ⊗ I → A is the right unit isomorphism of the monoidal category.

• Vanishing II: For any g : X ⊗ U ⊗ V → Y ⊗ U ⊗ V , if g ∈ T
V
X⊗U,Y ⊗U , then

g ∈ T
U⊗V
X,Y iff TrV

X⊗U,Y ⊗U (g) ∈ T
U
X,Y ,

and TrU⊗V
X,Y (g) = TrU

X,Y (TrV
X⊗U,Y ⊗U (g)).

• Superposing: For any f ∈ T
U
X,Y and g : W → Z,

g ⊗ f ∈ T
U
W⊗X,Z⊗Y ,

and TrU
W⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrU

X,Y (f).
• Yanking: sUU ∈ T

U
U,U , and TrU

U,U (sU,U ) = 1U .

A symmetric monoidal category (C,⊗, I, s) with such a trace class is called a
partially traced category, or a category with a trace class.

If we let X and Y be I (the unit of the tensor), we get a family of operations
TrU

I,I : T
U
I,I → C(I, I) defining what we call a non-parametric (scalar-valued) trace.

2.1 Examples of Partial Traces

(a) Finite Dimensional Vector Spaces

The category Vecfd of finite dimensional vector spaces and linear transformations
is a symmetric monoidal, indeed an additive, category (see [26]), with monoidal
product taken to be ⊕, the direct sum (biproduct). Hence, given f : ⊕IXi → ⊕JYj

with |I| = n and |J | = m, we can write f as an m × n matrix f = [fij ] of its
components, where fij : Xj → Yi (notice the switch in the indices i and j).

We give a trace class structure on the category (Vecfd,⊕,0) as follows. We shall
say an f : X ⊕ U → Y ⊕ U is trace class iff (Id − f22) is invertible, where Id is the
identity matrix, and Id and f22 have size dim(U). In that case, we write

TrU
X,Y (f) = f11 + f12(Id − f22)−1f21(1)
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This definition is motivated by a generalization of the fact that for a matrix A, (Id−
A)−1 =

∑
i Ai, whenever the infinite sum converges. Clearly this sum converges

when the matrix norm of A is strictly less than 1, or when A is nilpotent, but in
both cases the general idea is the desire to have (Id − A) invertible. If the infinite
sum for (Id − f22)−1 exists, the above formula for TrU

X,Y (f) becomes the usual
“particle-style” trace in [1,3,20]. One advantage of formula (1) is that it does not a
priori assume the convergence of the sum, nor even that (Id−f22)−1 be computable
by iterative methods.

Proposition 2.2 (Vecfd,⊕,0) is partially traced, with trace class as above.

The proof of Proposition 2.2 uses the following standard facts from linear algebra,
a connection which we find very interesting:

Lemma 2.3 Let M =

⎡
⎣ A B

C D

⎤
⎦ be a partitioned matrix with blocks A (m × m),

B (m × n), C (n × m) and D (n × n). If D is invertible, then M is invertible iff
A − BD−1C (the Schur Complement of D) is invertible.

Lemma 2.4 Given A (m×n) and B (n×m), (Idm−AB) is invertible iff (Idn−BA)
is invertible. Moreover (Idm − AB)−1A = A(Idn − BA)−1.

The category (Vecfd,⊕) is not partially traced in the sense of [2].

(b) Metric Spaces

Consider the category CMet of complete metric spaces with non-expansive maps.
Define f : (M,dM ) → (N, dN ) to be non-expansive iff dN (f(x), f(y)) ≤ dM (x, y), for
all x, y ∈ M . Note that the tempting collection of complete metric spaces and con-
tractions (dN (f(x), f(y)) < dM (x, y), for all x, y ∈ M) is not a category: there are
no identity morphisms! CMet has products, namely given (M,dM ) and (N, dN ) we
define (M × N, dM×N ) with dM×N ((m,n), (m′, n′)) = max{dM (m,m′), dN (n, n′)}.

We define the trace class structure on CMet (where ⊗ = × ) as follows. We
say that a morphism f : X ×U → Y ×U is in T

U
X,Y iff for every x ∈ X the induced

map π2λu.f(x, u) : U → U has a unique fixed point; in other words, iff for every
x ∈ X, there is a unique u, and a y, such that f(x, u) = (y, u). Note that in this
case y is necessarily unique. Also, note that contractions have unique fixed points,
by the Banach fixed point theorem.

Suppose f ∈ T
U
X,Y . We define TrU

X,Y (f) : X → Y by TrU
X,Y (f)(x) = y, where

f(x, u) = (y, u) for the unique u. Equivalently, TrU
X,Y (f)(x) = π1f(x, u) where u is

the unique fixed point of π2λt.f(x, t).

Proposition 2.5 (CMet,×, {∗}) is a partially traced category with trace class as
above.

(c) Total Traces

Of course, all (totally-defined) traces in the usual definition of a traced monoidal
category yield a trace class, namely the entire homset is the domain of Tr.
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Remark 2.6 (A Non-Example) Consider the structure (CMet,×). Defining
the trace class morphisms as those f such that π2λu.f(x, u) : U → U is a contrac-
tion, for every x ∈ X, does not yield a partially traced category: all axioms are true
except for dinaturality and Vanishing II.

3 Orthogonality Relations

Girard introduced orthogonality relations into linear logic for several reasons; one
was to model formulas (or types) as sets equal to their biorthogonal (see [9], [11]).
Recently M. Hyland and A. Schalk gave an abstract approach to orthogonality
relations in symmetric monoidal closed categories [24]. They also point out that
an orthogonality on a traced symmetric monoidal category C can be obtained by
first considering their axioms applied to Int(C), the compact closure of C, and then
translating them down to C. We follow our treatment in [22].

An axiom involving a partial trace should be read with the proviso: “whenever
all traces exist”. Finally hereafter, without loss of generality and for readability we
consider strict monoidal categories. It is well known that every monoidal category
is equivalent to a strict one.

Definition 3.1 Let C be a traced symmetric monoidal category. An orthogonality
relation on C is a family of relations ⊥UV between maps u : V → U and x : U → V

V
u−→ U ⊥UV U

x−→ V

subject to the following axioms:

(i) Isomorphism : Let f : U ⊗ V ′ → V ⊗ U ′ and f̂ : U ′ ⊗ V → V ′ ⊗ U be such that
TrV ′

(TrU ′
((1⊗1⊗sU ′,V ′)α−1(f⊗f̂)α)) = sU,V and TrV (TrU ((1⊗1⊗sU,V )α−1(f̂⊗

f)α)) = sU ′,V ′ . Here α = (1⊗ 1⊗ s)(1⊗ s⊗ 1) with s at appropriate types. Note
that this simply means that f : (U, V ) → (U ′, V ′) and f̂ : (U ′, V ′) → (U, V ) are
inverses of each other in G(C).

Then for all u : V → U and x : U → V,

u ⊥UV x iff TrU
V ′,U ′(sU,U ′(u ⊗ 1U ′)fsV ′,U ) ⊥U ′V ′ TrV

U ′,V ′((1V ′ ⊗ x)f̂);

that is, orthogonality is invariant under isomorphism.

(ii) Precise Tensor : For all u : V → U , v : V ′ → U ′ and h : U ⊗ U ′ → V ⊗ V ′,

(u ⊗ v) ⊥U⊗U ′,V ⊗V ′ h

iff

u ⊥UV TrU ′
U,V ((1V ⊗ v)h) and v ⊥U ′V ′ TrU

U ′,V ′(sU,V ′(u ⊗ 1V ′)hsU ′,U ).

(iii) Identity : For all u : V → U and x : U → V ,

u ⊥UV x implies 1I ⊥II TrV
I,I(xu).
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(iv) Symmetry : For all u : V → U and x : U → V ,

u ⊥UV x iff x ⊥V U u.

In the context of GoI, we will be working with orthogonality relations on endo-
morphism sets of objects in the underlying categories. Biorthogonally closed subsets
(i.e. X = X⊥⊥) of certain endomorphism sets are important as they define types
(the GoI interpretation of formulae.) We have observed that all the orthogonality
relations that we work with in this paper can be characterized using trace classes.
This suggests the following, which seems to cover many known examples.

Example 3.2 [Orthogonality as trace class] Let (C,⊗, I, T r) be a partially traced
category where ⊗ is the monoidal product with unit I, and Tr is the partial trace
operator as in Section 2. Let A and B be objects of C. For f : A → B and g : B → A,
we can define an orthogonality relation by declaring f ⊥BA g iff gf ∈ T

A
I,I . Axioms

can be checked easily, which we omit. It turns out that this is a variation of the
notion of Focussed orthogonality of Hyland and Schalk [24].

Hence, from our previous discussion on traces, we obtain the following examples:

• Vecfd . For A ∈ Vecfd , f, g ∈ End(A), define f ⊥ g iff Id − gf is invertible.
Here Id is the identity matrix of size dim(A).

• CMet. Let M ∈ CMet. For f, g ∈ End(M), define f ⊥ g iff gf has a unique
fixed point.

4 The MGoI Interpretation of MLL

We quickly review the Multiobject Geometry of Interaction (MGoI) semantics for
multiplicative linear logic without units (MLL) in a partially traced symmetric
monoidal category (C,⊗, I, T r,⊥) equipped with an orthogonality relation ⊥ as in
the previous section. Here ⊗ is the monoidal product with unit I and Tr is a
partial trace operator as in Section 2. We do not require that the category C have
a reflexive object U , so uni-object GoI semantics ([13,20]) may not be possible to
carry out in C.

The MGoI semantics, denoted θ, interprets formulas and proofs inductively in
a structure (C,⊗, I, T r,⊥). The ideas below were inspired by Girard’s original uni-
object GoI semantics referred to above.

Interpreting formulas:

Let A be an object of C and let f, g ∈ End(A). We say that f is orthogonal to
g, denoted f ⊥ g, if (f, g) ∈⊥. Also given X ⊆ End(A) we define

X⊥ = {f ∈ End(A) | ∀g ∈ X, f ⊥ g}.

We now define an operator on the objects of C as follows: given an object A,
T (A) = {X ⊆ End(A) |X⊥⊥ = X}. Elements of T (A) are often called types.
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We first define a “compact” interpretation map − on the formulas of MLL
as follows. Given the value of − on the atomic propositions as objects of C, we
extend it to all formulas by:

• A⊥ = A

• A
.................................................

............
.................................. B = A ⊗ B = A ⊗ B .

We then define the MGoI-interpretation θ for formulas as follows.

• θ(α) ∈ T ( α ), where α is an atomic formula.
• θ(α⊥) = θ(α)⊥, where α is an atomic formula.
• θ(A ⊗ B) = {a ⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥

• θ(A .................................................
............
.................................. B) = {a ⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

Easy consequences of the definition are: (i) for any formula A, (θA)⊥ = θ(A⊥), (ii)
θ(A) ⊆ End( A ), and (iii) θ(A)⊥⊥ = θ(A). Hence, θ interprets formulas as types.

Interpreting proofs:

We define the MGoI interpretation for proofs of MLL without units, as in [22]
(cf. also [20]). Every MLL sequent will be of the form � [Δ], Γ where Γ is a sequence
of formulas and Δ is a sequence of cut formulas that have already been made in the
proof of � Γ (see [13,20]). This device is used to keep track of the cuts in a proof of
� Γ. A proof Π of � [Δ], Γ is represented by a morphism θ(Π) ∈ End(⊗ Γ ⊗ Δ ).
With Γ = A1, · · · , An, ⊗ Γ stands for A1 ⊗ · · · ⊗ An , similarly for Δ. We
drop the double brackets wherever there is no danger of confusion. We also define
σ = s⊗ · · ·⊗ s (m-copies) where s is the symmetry map at different types (omitted
for convenience), and |Δ| = 2m. The morphism σ represents the cuts in the proof
of � Γ, i.e. it models Δ. In the case where Δ is empty (that is for a cut-free proof),
we define σ : I → I to be 1I where I is the unit of the monoidal product in C.

Let Π be a proof of � [Δ], Γ. We define the MGoI interpretation of Π, denoted
by θ(Π), by induction on the length of the proof as follows.

(i) Π is an axiom � A,A⊥, θ(Π) := sV,V where A = A⊥ = V .
(ii) Π is obtained using the cut rule on Π′ and Π′′ that is,

Π′
....

� [Δ′],Γ′, A

Π′′
....

� [Δ′′], A⊥,Γ′′

� [Δ′, Δ′′, A, A⊥],Γ′,Γ′′ cut

Define θ(Π) = τ−1(θ(Π′) ⊗ θ(Π′′))τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗ Δ′ ⊗ Δ′′ ⊗ A ⊗ A⊥ τ−→ Γ′ ⊗ A ⊗ Δ′ ⊗ A⊥ ⊗ Γ′′ ⊗ Δ′′.

(iii) Π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ′. That
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is Π is of the form
Π′
....

� [Δ], Γ′

� [Δ], Γ
exchange

where Γ′ = Γ′
1, Ai, Ai+1,Γ′

2 and Γ = Γ′
1, Ai+1, Ai,Γ′

2. Then,
θ(Π) = τ−1θ(Π′)τ , where τ = 1Γ′

1
⊗ s ⊗ 1Γ′

2⊗Δ.
(iv) Π is obtained using an application of the par rule, that is Π is of the form:

Π′
...

� [Δ], Γ′, A, B

� [Δ], Γ′, A .................................................
............
.................................. B

.................................................
............
..................................

. Then θ(Π) = θ(Π′).

(v) Π is obtained using an application of the times rule, that is Π is of the form:

Π′
....

� [Δ′],Γ′, A

Π′′
....

� [Δ′′],Γ′′, B
� [Δ′,Δ′′],Γ′, Γ′′, A ⊗ B

⊗

Then θ(Π) = τ−1(θ(Π′) ⊗ θ(Π′′))τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗ A ⊗ B ⊗ Δ′ ⊗ Δ′′ τ−→ Γ′ ⊗ A ⊗ Δ′ ⊗ Γ′′ ⊗ B ⊗ Δ′′.

When Δ′ and Δ′′ are empty sequences, this corresponds to the definition of
tensor product in Abramsky’s G(C) (see [1,18].)

Example 4.1 (a) Let Π be the following proof:

� A,A⊥ � A,A⊥

� [A⊥, A], A, A⊥ cut

Then the MGoI semantics of this proof is given by

θ(Π) = τ−1(s ⊗ s)τ = sV ⊗V,V ⊗V

where τ = (1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1) and A = A⊥ = V .
(b) Now consider the following proof

� B, B⊥ � C, C⊥

� B, C, B⊥ ⊗ C⊥

� B, B⊥ ⊗ C⊥, C

� B⊥ ⊗ C⊥, B, C

� B⊥ ⊗ C⊥, B
.................................................

............
.................................. C .
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Its denotation is sV ⊗W,V ⊗W , where B = B⊥ = V and C = C⊥ = W .

Interpreting cut-elimination (dynamics):
Dynamics is at the heart of the GoI interpretation as compared to denotational

semantics and it is hidden in the cut-elimination process. The mathematical model
of cut-elimination is given by the so called execution formula defined as follows:

EX(θ(Π), σ) = Tr⊗Δ
⊗Γ,⊗Γ((1 ⊗ σ)θ(Π))(2)

where Π is a proof of the sequent � [Δ], Γ, σ = s⊗ · · ·⊗ s (m times) models Δ, and
2m is the number of formulas in Δ. Note that EX(θ(Π), σ) is a morphism from
⊗Γ → ⊗Γ, when it exists. By Theorem 5.4 below, the execution formula always
exists for any MLL proof Π.

Example 4.2 Consider the proof Π in Example 4.1(a) above. Recall also that
σ = s in this case (m = 1). Then EX(θ(Π), σ) = Tr((1⊗ sV,V )sV ⊗V,V ⊗V ) = sV,V .
Note that we obtain the MGoI interpretation of the cut-free proof of � A,A⊥,
obtained by applying Gentzen’s Hauptsatz to the proof Π (cf. Theorem 5.5 below).

4.1 MGoI versus Denotational Semantics

In the original paper on traced monoidal categories [25], those authors construct a
notion of “free compact closure” of a traced monoidal category, Int(C), in which
composition is given by the trace. An isomorphic notion (in the symmetric case)
was introduced by Abramsky, in his construction G(C). For an exposition, see [3].
In this subsection we assume the reader is familiar with these constructions, which
we call “Int” constructions.

There have been several works interpreting various logics in Int-like “GoI” cat-
egories, beginning with the Abramsky-Jagadeesan paper [4] as well as unpublished
lectures of Hyland, to more recent (and interesting) interpretations of classical logic
by Fuhrman and Pym [8]. In all cases, cut is interpreted as composition in an Int

category.
Let us see to what extent we can compare two obvious kinds of GoI interpreta-

tions in a category G(C): denotational − vs our GoI interpretation θ. We shall
roughly follow Abramsky and Jagadeesan [4].

Denotational interpretation of formulas in G(C):
Formulas will be interpreted as diagonal objects in G(C), that is as pairs of

objects in C of the form (V, V ). We shall indicate the denotational semantics in
G(C) as − D to distinguish it from − , which is used in the MGoI interpretation
θ of formulas given above. We assign arbitrary objects to atomic formulas: p D =
(V, V ), where V is an object in C. Relative to such an assignment, we define
A⊥

D = A ⊥
D. Also, we define A ⊗ B D = A

.................................................
............
.................................. B D = A D ⊗ B D. Note

that A⊥
D = A D for every formula A; indeed suppose A D = (V, V ), then

A⊥
D = (V, V )⊥ = (V, V ).

Remark 4.3 Notice that if we choose p D = ( p , p ) for atomic formulas p,
then A D = ( A , A ) for any formula A, (see Proposition 4.4 below.) This is as
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far as the resemblance goes, however, since the MGoI interpretation of the formula
A is θ(A) (a type), not A .

Interpreting proofs: In the denotational semantics into the category G(C) we
shall ignore the information collected in Δ. Let Π be a proof of � [Δ], Γ, with
Γ = A1, · · · , An. Then Π D : I → ⊗ Ai D in G(C); in other words, Π D :
V1 ⊗ V2 ⊗ · · · ⊗ Vn → V1 ⊗ V2 ⊗ · · · ⊗ Vn in C, where Ai D = (Vi, Vi). For a
morphism h : A ⊗ B → C in G(C), let Λ(f) : A → B⊥ ⊗ C denote its transpose.

• Axiom � A,A⊥. Then Π D = Λ(1 A D
). Let A D = (V, V ). Then, when

translated into C, we have Π D = sV,V .
• Cut: Suppose Π is obtained by applying the cut rule on A,A⊥ to proofs Π′ and

Π′′. Suppose also that Π′
D = f : I → ⊗ Γ′

D ⊗ A D and Π′′
D = g : I →

A⊥
D ⊗ Γ′′

D. Then

Π D : I → Γ′
D ⊗ Γ′′

D = Λ(Λ−1(g)Λ−1(f)) .

Let Γ′ = A′
1, · · · , A′

n and Γ′′ = A′′
1, · · · , A′′

m, A′
i D = (V ′

i , V ′
i ) and A′′

i D =
(V ′′

i , V ′′
i ), and A D = (V, V ). When translated into C we get:

Λ−1(f) : V ′
1 ⊗ · · · ⊗ V ′

n ⊗ V → V ′
1 ⊗ · · · ⊗ V ′

n ⊗ V and
Λ−1(g) : V ⊗ V ′′

1 ⊗ · · · ⊗ V ′′
m → V ⊗ V ′′

1 ⊗ · · · ⊗ V ′′
m. So

Π D = TrV ⊗V ((1Γ′ ⊗ 1Γ′′ ⊗ sV,V )ρ−1(Λ−1(f) ⊗ Λ−1(g))ρ)

where ρ is the permutation, ρ : Γ′
D⊗ Γ′′

D⊗V ⊗V → Γ′
D⊗V ⊗V ⊗ Γ′′

D

• Exchange: Given Π′
D : I → ⊗ Γ′

D with Γ′ = Γ′
1, Ai, Ai+1, Γ′

2, Γ′
1 =

A1, · · · , Ai−1, Γ′
2 = Ai+2, · · · , An, and Ai D = (Vi, Vi) for all i. We define

Π D = (1Γ′
1
⊗ sVi,Vi+1 ⊗ 1Γ′

2
) Π′

D. When we translate this into C we get:
given Π′

D : V1 ⊗ · · · ⊗ Vi ⊗ Vi+1 ⊗ · · · ⊗ Vn → V1 ⊗ · · · ⊗ Vi ⊗ Vi+1 ⊗ · · · ⊗ Vn,
Π D = ρ−1 Π′

Dρ where ρ = 1Γ′
1
⊗ sVi+1,Vi ⊗ 1Γ′

2
.

• Tensor: Given Π′
D = f : I → ⊗ Γ′

D ⊗ A D and Π′′
D = g : I →

⊗ Γ′′
D ⊗ B D, then we define

Π D : I → ⊗ Γ′
D ⊗ Γ′′

D ⊗ A D ⊗ B D = ρ(f ⊗ g)

where ρ is the permutation ρ : ⊗ Γ′
D ⊗ Γ′′

D ⊗ A D ⊗ B D → Γ′
D ⊗

A D ⊗ Γ′′
D ⊗ B D. Let Γ′ = A′

1, · · · , A′
n and Γ′′ = A′′

1, · · · , A′′
m, A′

i D =
(V ′

i , V ′
i ) and A′′

j D = (V ′′
j , V ′′

j ), A D = (V, V ), and B D = (W, W ). When
translated into C we get f : V ′

1 ⊗ · · · ⊗ V ′
n ⊗ V → V ′

1 ⊗ · · · ⊗ V ′
n ⊗ V and g :

V ′′
1 ⊗ · · · ⊗ V ′′

m ⊗ W → V ′′
1 ⊗ · · · ⊗ V ′′

m ⊗ W . Then

Π D = ρ−1(f ⊗ g)ρ

where ρ is the permutation, ρ = 1Γ′ ⊗ sΓ′′,V ⊗ 1W

• Par: Given Π′
D : I → ⊗ Γ′

D ⊗ A D ⊗ B D, define Π D = Π′
D.
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Proposition 4.4 Let Π be an MLL proof of � [Δ], Γ and σ model the cuts Δ.
Suppose p D = ( p , p ) for all atomic formulas p. Then,

(i) A D = ( A , A ), for any formula A.

(ii) EX(θ(Π), σ) = Π D. In particular, if Π is cut-free, (i.e., |Δ| = 0, σ = 1I)
then θ(Π) = Π D.

Example 4.5 Observe that even at the simple level of two axioms joined by a
cut, the MGoI and denotational interpretations differ. For let Π be the proof ob-
tained by applying the cut rule to two axioms � A,A⊥, as in Example 4.1(a) above,
and suppose A D = (V, V ) with V = A an object of C. Then the denota-
tional semantics of Π is Π D = sV,V . On the other hand, for the MGoI seman-
tics of Π, θ(Π) = sV ⊗V,V ⊗V . Note however that we do have: EX(θ(Π), sV,V ) =
EX(sV ⊗V,V ⊗V , sV,V ) = sV,V = Π D, as in Proposition 4.4(ii) above.

Remark 4.6 (Comparing Interpretations) As we have seen above, the two se-
mantics are entirely different regarding the way they interpret the formulas, and the
interpretations of proofs are related by the Execution formula as in Proposition 4.4
above. In particular, for cut-free proofs, the MGoI and Denotational interpretations
into the Int category G(C) coincide.

There are, however, more general ∗-autonomous categories we might consider
for such a comparison. For example, in our paper [21] we discussed a noncompact
*-autonomous category whose objects are Girard types and whose morphisms arise
from the GoI interpretation of proofs. The same construction could be done here.
This might be a more natural domain for a denotational modelling than the compact
category G(C) which we worked with above. We shall examine this in the full version
of this paper

In summary, denotational semantics does not normally keep track of cuts and has
no separate formulation (interpretation) for the removal of cuts (e.g. the execution
formula): the removal of cuts is hidden in the composition in the model category.
In this paper we wanted to have cut-elimination steps incorporated directly into the
interpretation, while still being able to compare this with the denotational view, as
in Proposition 4.4 above.

5 Soundness of the MGoI Interpretation

In this section we recall, without proof, one of the main results of [22]: the sound-
ness of the MGoI interpretation. We show that if a proof Π is reduced (via
cut-elimination) to another proof Π′, then EX(θ(Π), σ) = EX(θ(Π′), τ); that is,
EX(θ(Π), σ) is an invariant of reduction. In particular, if Π′ is cut-free (i.e. a nor-
mal form) we have EX(θ(Π), σ) = θ(Π′). Intuitively this says that if one thinks of
cut-elimination as computation then θ(Π) can be thought of as an algorithm. The
computation takes place as follows: if EX(θ(Π), σ) exists then it yields a datum (cf.
cut-free proof). This intuition will be made precise below (Theorems 5.4 & 5.5).

The next fundamental lemma (also in several of Girard’s papers) is a version of
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the Church-Rosser theorem. It follows directly from the axioms of trace.

Lemma 5.1 (Associativity of cut) Let Π be a proof of � [Γ,Δ],Λ and let σ and
τ be the morphisms representing the cut-formulas in Γ and Δ respectively. Then

EX(θ(Π), σ ⊗ τ) = EX(EX(θ(Π), τ), σ) = EX(EX((1 ⊗ s)θ(Π)(1 ⊗ s), σ), τ),

whenever all traces exist.

The next definitions are analogous to concepts arising in realizability and Girard’s
method of candidats (cf . [10]). We work in a partially traced symmetric monoidal
category equipped with an orthogonality relation. We suppress mentioning the use
of the Symmetry axiom of the orthogonality relation.

Definition 5.2 Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗iVi → ⊗iVi such that for any ai ∈ θ(A⊥
i ),

we have ⊗iai ⊥ M and both M .a1 and M .̂(a2 ⊗ · · · ⊗ an) below exist,

M .a1 := TrV1(s−1
⊗i�=1Vi,V1

(a1 ⊗ 1V2 ⊗ · · · ⊗ 1Vn)Ms⊗i�=1Vi,V1)

M .̂(a2 ⊗ · · · ⊗ an) := TrV2⊗···⊗Vn((1 ⊗ a2 ⊗ · · · ⊗ an)M)

• An algorithm of type θΓ is a morphism M : ⊗iVi ⊗ Δ → ⊗iVi ⊗ Δ for
some Δ = B1, B2, · · · , B2m with m a nonnegative integer and B2i = B⊥

2i−1 for
i = 1 · · · , m, such that if σ : ⊗2m

j=1 Bj → ⊗2m
j=1 Bj is ⊗m

j=1s B2j−1 , B2j
,

EX(M,σ) exists and is a datum of type θΓ. (Here σ is defined to be 1I for
m = 0, that is when Δ is empty.)

Lemma 5.3 Let Γ̃ = A2, · · · , An and Γ = A1, Γ̃. Let Vi = Ai , and M : ⊗iVi →
⊗iVi, for i = 1, · · · , n. Then, M is a datum of type θ(Γ) iff for all ai ∈ θ(A⊥

i ),
M .a1 and M .̂(a2 ⊗ · · · ⊗ an) (defined as above) exist and are in θ(Γ̃) and θ(A1),
respectively.

Theorem 5.4 (Proofs as algorithms) Let Π be an MLL proof of a sequent
� [Δ], Γ. Then, θ(Π) is an algorithm of type θ(Γ).

Theorem 5.5 (EX is an invariant) Let Π be an MLL proof of a sequent
� [Δ], Γ. Then,

• If Π reduces to Π′ by any sequence of cut-eliminations, then EX(θ(Π), σ) =
EX(θ(Π′), τ). So EX(θ(Π), σ) is an invariant of reduction.

• In particular, if Π′ is any cut-free proof obtained from Π by cut-elimination, then
EX(θ(Π), σ) = θ(Π′).

6 Proofs as Polynomials

6.1 Proofs as Permutations in MGoI

In this section we prove a characterization theorem for the MGoI interpretations
of proofs as special permutations. This is similar to familiar representations of
proofs in MLL via permutations, [12] although the details here will be used in the
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next section to give a characterization of MLL proofs in untyped GoI via formal
polynomials.

Proposition 6.1 Let Π be an MLL proof of � [Δ], Γ where |Δ| = 2m and |Γ| = n

(counting occurrences of propositional variables). Then θ(Π) is a fixed-point free
involutive permutation on n + 2m objects of C. That is θ(Π) : V1 ⊗ · · · ⊗ Vn+2m →
V1 ⊗ · · · ⊗ Vn+2m induces a permutation π on {1, 2 · · · , n + 2m} and

• π2 = 1
• For all i ∈ {1, 2, · · · , n + 2m}, π(i) �= i.
• For all i ∈ {1, 2, · · · , n + 2m}, Vi = Vπ(i).

Proof. By induction on the length of the proof Π.
�

So the above Proposition 6.1 shows that the denotation of a proof θ(Π) induces
a fixed-point free involutive permutation. We now seek a converse.

Theorem 6.2 (Characterization) Let M be a fixed-point free involutive permu-
tation from V1⊗· · ·⊗Vn → V1⊗· · ·⊗Vn (induced by a permutation μ on {1, 2, · · · , n})
where n > 0 is an even integer, Vi = Ai , and Vi = Vμ(i) for all i = 1, · · · , n. Then
there is a provable MLL formula φ built from the Ai, with a cut-free proof Π such
that θ(Π) = M .

Proof. We define a formula φ out of the Ai and A⊥
i = Aμ(i) and show that it

is provable by constructing a proof net for it. The proof Π in sequent calculus is
then completely determined by φ. Here is the algorithm for the construction of the
formula φ.

(i) Initialize φ := A1

(ii) For i := 2 to n do

(iii) If μ(i) < i then φ := (φ .................................................
............
.................................. Ai),

(iv) else, φ := (φ ⊗ Ai)

In order to construct the proof structure for φ, we first arrange the Ai in increas-
ing order of their indices. Note that the proof structure for φ is uniquely determined:
given the permutation μ, the axiom links are uniquely specified by connecting Ai

to A⊥
i = Aμ(i). In the full paper we show that it is a proof net.

The proof Π is cut-free by construction. It remains to show that θ(Π) = M .
Note that θ(Π) is an endomorphism on V1 ⊗ · · · ⊗ Vn as the variables in φ occur in
increasing order from A1 to An. The permutation induced by θ(Π) on {1, · · · , n} is
uniquely determined by the location of formulas (as they occur in φ) connected by
axiom link specifications, which are given by μ. Thus we have that θ(Π) = M . �

Let’s consider an example:

Example 6.3 Suppose μ is given by (1, 4)(2, 3) on the set {1, 2, 3, 4}. Then, fol-
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lowing the algorithm above we get

φ(A1, A2, A3, A4) = φ(A1, A2, A
⊥
2 , A⊥

1 ) = ((A1 ⊗ A2)
.................................................

............
.................................. A⊥

2 ) .................................................
............
.................................. A⊥

1

and one possible Π is (ignoring exchange):

� A1, A
⊥
1 � A2, A

⊥
2

� A1 ⊗ A2, A
⊥
1 , A⊥

2

� (A1 ⊗ A2)
.................................................

............
.................................. A⊥

2 , A⊥
1

� ((A1 ⊗ A2)
.................................................

............
.................................. A⊥

2 ) .................................................
............
.................................. A⊥

1

As an application of this result, in the next section we prove a characterization
theorem for MLL in any traced Unique Decomposition Category with a reflexive
object U , under (uni-object) GoI semantics [20].

6.2 A Characterization Theorem For Uni-GoI Semantics

Theorem 6.2 in Section 6.1 above may be applied to give a characterization theorem
for the untyped (i.e. uni-object) GoI semantics for MLL, as discussed in our papers
[20,21]. The theorem below is related to work of Danos and Regnier on path-based
computing [7]. We hope in future work to detail these connections. We shall recall
only the definitions that we use in the theorem below and refer the reader to [20]
for details about GoI semantics in UDCs.

Let C be a traced UDC and U be a reflexive object in C with retraction pair
(j, k), that is U⊗U �U (j, k). We shall use j1, j2, k1, k2 to denote the components of
j and k respectively, (In Girard’s terminology [13] j1 = p, j2 = q, k1 = p∗, k2 = q∗.)

Definition 6.4 Formal polynomials are defined as the set E of expressions built on
the set A = {0, 1, j1, j2, k1, k2} using binary operations + and · (which we shall omit
writing) subject to the axioms:

(i) (E ,+, ·, 0, 1) is a commutative semiring, and

(ii) k1j1 = 1, k2j2 = 1, k2j1 = 0, and k1j2 = 0.

Note that these are formal expressions and when interpreted in C(U, U), for some C
and U , 0 and 1 are interpreted as 0UU (the zero morphism in C(U, U)) and 1U (the
identity morphism on U), respectively. Also j1, j2, k1, and k2 are interpreted by their
namesakes (as morphisms in C(U, U)). It should be noted that given a polynomial
ψ ∈ E , its interpretation in C(U, U) may not exist, that is the summands in the
polynomial ψ may not form a summable family in the Σ-monoid C(U, U) (see [20]
for the definition of a Σ-monoid.)

We next define an operation, ( )∗ on E , as follows: 0∗ = 0, 1∗ = 1, j∗1 = k1, j
∗
2 =

k2, k
∗
1 = j1 and k∗

2 = j2 and we extend ( )∗ to words by induction: (wα)∗ = α∗w∗,
(w + v)∗ = w∗ + v∗ for w, v ∈ E and α ∈ A. In a word w = uv we say that v occurs
before u, or equivalently that u occurs after v. Note that words w on A cannot have
k’s occurring after j’s because of equations k1j1 = k2j2 = 1 and k2j1 = k1j2 = 0.
Thus words w on A are of the form w = uv where v is a word on A consisting of
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k1, k2 only and u a word on A consisting of j1, j2 only (either u or v can be 1). We
call v the k-part and u, the j-part of w. For example, the k part of j1j2k2k

2
1 is k2k

2
1

and its j-part is j1j2.
Given a polynomial ψ ∈ E we define a k-tree which gives a tree representation

of the k-parts of summands in ψ, as follows: given a summand w in ψ, we associate
a path (from the root to a leaf) in the k-tree to w, such that the path corresponds
to the k-part of w, when read from right to left. Similarly we define a j-tree, except
that each path in the j-tree corresponds to the respective j-part, when read from
left to right. Trees are grown upwards, at every branching point in a j-tree, the left
branch is labelled j1 and the right branch j2, similarly in a k-tree, the left branch
is labelled k1 and the right branch k2. For this representation to be well-defined
one requires that the k-parts be mutually incomparable with respect to the prefix
ordering relation, a similar requirement is demanded for the j-parts.

Here is an example : consider the polynomial ψ = j3
1k2 + j2k

3
1 + j1j2k2k

2
1 +

j2
1j2k2k1, the j and k trees are shown below.

j
1

j
1

j
1

j
2

j
2

j
2

k1

k1

k1

k
2

k
2

k
2

j and k-trees

Note that a k-tree will have the same number, n, of leaves as the number of
summands in ψ with nonempty k-parts. A similar argument holds for a j-tree.

Note that by construction every path from the root of the k-tree to the root of
the j-tree is a term built out of j1, j2, k1, k2. Not all such terms will be summands
in a given ψ, however every summand in ψ can be obtained in this way.

Theorem 6.5 Let C be a traced UDC, U a reflexive object in C and U⊗U�U (j, k).
Consider a polynomial ψ ∈ E. Then, ψ is the denotation of an MLL proof iff

• ψ has an even number n > 0 of summands,
• For each summand w, w2 = 0 and w∗ is a summand in ψ,
• The k-tree of ψ is a binary tree with n leaves.

The proof of Theorem 6.5 below uses the Characterization Theorem 6.2 and the
following lemma:

Lemma 6.6 Let � Γ be a provable MLL sequent of length (counting the variable
occurrences) n and Π be a proof of � Γ. Then Π G = Jθ(Π)K, where Π G is the
GoI interpretation of Π and θ(Π) is the MGoI interpretations of Π restricted to the
single reflexive object U . Here J : Un → U is a morphism built from j and 1U by
tensoring and composition whose tree representation is a binary tree with n leaves,
and K = J∗. Here ( )∗ is as defined above and U ⊗ U � U (j, k).

Proof. By induction on proofs. We refer the reader to [20] for the untyped GoI
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interpretation of proofs. The difference is that in that work, as in [13], we used
matrices to interpret proofs. Here, instead we view those matrices as morphisms
from U → U , using appropriate morphisms built from j and k that we denote by
Ĵ and K̂ respectively, below.We give two cases; the remaining cases will appear in
the full journal version.

(i) Suppose Π is an axiom (we restrict to propositional variables), then Π G =
ĴsU,UK̂ = jsU,Uk = jθ(Π)k.

(ii) Suppose Π is obtained by an application of the cut rule to subproofs Π′ and
Π′′.

Π G = Ĵ(τ−1( Π′
G ⊗ Π′′

G)τ)K̂ by definition of GoI semantics

= Ĵ(τ−1(J ′θ(Π′)K ′ ⊗ J ′′θ(Π′′)K ′′)τ)K̂ by ind. hypothesis

= Ĵ(τ−1(J ′ ⊗ J ′′)(θ(Π′) ⊗ θ(Π′′))(K ′ ⊗ K ′′)τ)K̂

= Ĵ(J̃(τ−1(θ(Π′) ⊗ θ(Π′′))τ)K̃)K̂

= Ĵ(J̃(θ(Π))K̃)K̂
= Jθ(Π)K

where J̃ and K̃ are appropriate morphisms Un → U built from j’s (resp. k’s)
and 1U by tensoring and composition.

�

Proof. (of Theorem 6.5) We shall give a sketch of the full proof that will appear
in the journal version. Recall that as we are working in a traced UDC, the MGoI
interpretations of proofs restricted to a single object U can be represented by ma-
trices of their components. As such they are symmetric permutation matrices with
zero diagonal entries, by Proposition 6.1.

Let Π be an MLL proof and M denote θ(Π) where θ(Π) is as defined in Lemma
6.6. Suppose ψ is the denotation of Π, note that ψ = JMK. Recall that M is
n × n permutation matrix with n even, and all n entries of J (as a 1 × n matrix)
are nonzero; thus there will be n summands in ψ. The k-tree of ψ is just the tree
representation of the morphism K which by Lemma 6.6 is a binary tree with n

leaves. Hereafter we shall use J and K to refer to their tree representations.
Every summand in ψ can be obtained by following a path u in K from root to

a leaf and continuing on with a path, (specified by M) in J from a leaf to the root
of J .

Let w be a summand in ψ, then so will be w∗, because K = J∗ and M is
symmetric. Finally, it can be shown that any path w in ψ, has the property that
w2 = 0.

Conversely, suppose ψ ∈ E satisfies the properties stated in the theorem. We can
show that ψ = JMK, with M a symmetric permutation matrix with zero diagonal
entries and K = J∗. Then by Theorem 6.2 and Lemma 6.6, we conclude that it is
the denotation of a proof in MLL.

�
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We shall illustrate the proof of Theorem 6.5 by some examples. In all our
examples we choose to arrange the axioms in increasing index order of the Ai.)

Example 6.7 Let ψ = j3
1k2 + j2k

3
1 + j1j2k2k

2
1 + j2

1j2k2k1, then

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Moreover, following the construction in the proof above, J : U4 → U =
[j3

1 , j2
1j2, j1j2, j2] = j(j ⊗ 1)(j ⊗ 1 ⊗ 1) and K = J∗ = (k ⊗ 1 ⊗ 1)(k ⊗ 1)k.

The permutation above is μ = (1, 4)(2, 3) on {1, 2, 3, 4} and using Theorem 6.2,
and the discussion in Example 6.3, we see that ψ is the denotation of the proof
(ignoring exchange)

� A1, A
⊥
1 � A2, A

⊥
2

� A1 ⊗ A2, A
⊥
1 , A⊥

2

� (A1 ⊗ A2)
.................................................

............
.................................. A⊥

2 , A⊥
1

� ((A1 ⊗ A2)
.................................................

............
.................................. A⊥

2 ) .................................................
............
.................................. A⊥

1

Example 6.8 Let ψ = j2j1k
4
1+j2

2k2k
3
1+j1j2k2k

2
1+j2

1j2k2k1+j4
1k1k2+j3

1j2k
2
2. Then

we have μ = (1, 5)(2, 6)(3, 4), J = j(j⊗1)(j⊗1⊗1)(j⊗1⊗1⊗j) and K = J∗. Then by
Theorem 6.2, we get that ψ(A1, A2, A3, A4, A5, A6) = ψ(A1, A2, A3, A

⊥
3 , A⊥

1 , A⊥
2 ) =

((((A1 ⊗ A2) ⊗ A3)
.................................................

............
.................................. A⊥

3 ) .................................................
............
.................................. A⊥

1 ) .................................................
............
.................................. A⊥

2 and Π (ignoring exchange rule) is:

� A1, A
⊥
1 � A2, A

⊥
2

� A1 ⊗ A2, A
⊥
1 , A⊥

2 � A3, A
⊥
3

� (A1 ⊗ A2) ⊗ A3, A
⊥
1 , A⊥

2 , A⊥
3

� ((A1 ⊗ A2) ⊗ A3)
.................................................

............
.................................. A⊥

3 , A⊥
1 , A⊥

2

� (((A1 ⊗ A2) ⊗ A3)
.................................................

............
.................................. A⊥

3 ) .................................................
............
.................................. A⊥

1 , A⊥
2

� ((((A1 ⊗ A2) ⊗ A3)
.................................................

............
.................................. A⊥

3 ) .................................................
............
.................................. A⊥

1 ) .................................................
............
.................................. A⊥

2

Example 6.9 Let ψ = j2j1k
3
1 + j1j2j1k

2
2 + j2

1j2k
2
2k1 + j1j

2
2k2k

2
1 + j2

2k1k2k1 + j3
1k1k2.

Incidentally this is the definition of combinator B in the linear combinatory algebra
C(U, U) where C is a traced UDC. See [3] for the development of such algebras.

In this case, we have μ = (1, 5)(2, 4)(3, 6), J = j(j ⊗ 1)(j ⊗ j ⊗ j) and
K = J∗. Then by Theorem 6.2, we get that ψ(A1, A2, A3, A4, A5, A6) =
ψ(A1, A2, A3, A

⊥
2 , A⊥

1 , A⊥
3 ) = ((((A1 ⊗ A2) ⊗ A3)

.................................................
............
.................................. A⊥

2 ) .................................................
............
.................................. A⊥

1 ) .................................................
............
.................................. A⊥

3 and Π
(ignoring exchange rule) is:
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� A1, A
⊥
1 � A2, A

⊥
2

� A1 ⊗ A2, A
⊥
1 , A⊥

2 � A3, A
⊥
3

� (A1 ⊗ A2) ⊗ A3, A
⊥
1 , A⊥

2 , A⊥
3

� ((A1 ⊗ A2) ⊗ A3)
.................................................

............
.................................. A⊥

2 , A⊥
1 , A⊥

3

� (((A1 ⊗ A2) ⊗ A3)
.................................................

............
.................................. A⊥

2 ) .................................................
............
.................................. A⊥

1 , A⊥
3

� ((((A1 ⊗ A2) ⊗ A3)
.................................................

............
.................................. A⊥

2 ) .................................................
............
.................................. A⊥

1 ) .................................................
............
.................................. A⊥

3

7 Conclusion and Future Work

In this work we recalled a new semantical interpretation called Multiobject Geome-
try of Interaction (MGoI), from [22]. This semantics, while inspired by GoI, differs
from it in significant points: (i) it is defined on endomorphism monoids of objects
(and there is no reflexive object U); (ii) the execution formula is based on a new
theory of partial traces and trace classes. Moreover, there is an orthogonality rela-
tion linked to the notion of trace class, which allows us to develop Girard’s theory
of types, data and algorithms in our setting. This permits a structured approach
to Girard’s concept of solving feedback equations [15], and an axiomatization of
the critical features needed for showing that the execution formula is an invariant
of cut-elimination. Computationally, GoI provides a kind of algorithm for normal-
ization based on the execution formula. In future work, we hope to explore the
algorithmic and convergence properties of the execution formula in various models,
independently of the syntax.

An obvious direction for future research is to extend our MGoI interpretation
to the exponentials and additives of linear logic. First steps in this program, at
the level of exponentials, are in [23]. As mentioned above, we are also examining
the intrinsic ∗-autonomous category of types and terms from our [21] in this new
multiobject setting as perhaps a better “target” for a denotational semantics.

It is natural to seek examples of traces that are induced by more general notions
of orthogonalities, especially those arising in functional analysis. We hope this may
lead to new classes of MGoI models, perhaps connected to von Neumann algebras
and general solutions to feedback equations, as in [15,16].
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