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ABSTRACT: A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary 
boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined 
by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's 
equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of 
stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding 
plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different 
stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are 
analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed 
procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings. 

KEY WORDS: Stiffened panels; Openings; Vibration analysis; Energy approach; Arbitrary boundary conditions; Assumed 
mode method. 

INTRODUCTION 

Stiffened panels are primary design members in all fields of engineering: civil, mechanical, aerospace, naval, ocean, etc. 
Stiffening of a plate is done to increase its loading capacity and to prevent buckling (Sapountzakis and Mokos, 2008; Cho et al., 
2014). Moreover, stiffened panels are often made with openings of different shapes and sizes to reduce structural weight and to 
provide passage ways. This is particularly emphasized in the case of ships and offshore structures where stiffened panels with 
oval openings can be found. At the same time, stiffening and plate openings significantly affect the dynamic properties of such 
structures. 

The Finite Element Method (FEM) is nowadays an advanced and widespread numerical tool and gives a complete solution 
to the vibration analysis of stiffened panels with openings. However, the preparation of a model is a rather time-consuming task 
which makes its reasonable to be applied usually at the end of the detail design stage after all the structural members, their di-
mensions and boundary conditions have been completely defined. In this sense, at the preliminary design stage when the prin-
cipal dimensions are being selected, it is useful to have some simplified method at hand. 
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A short overview of methods for the vibration analysis of plates with openings is presented by Cho et al. (2013), where the 
advantages and drawbacks of different methods, for instance the finite difference method (Paramasivam, 1973; Aksu and Ali, 
1976), the Rayleigh-Ritz (Kwak and Han, 2007) and the optimized Rayleigh-Ritz (Grossi et al., 1997) method, FEM (Monahan 
et al., 1970), etc., are discussed. Moreover, Kwak and Han (2007) presented an extensive literature survey on vibration analysis 
of rectangular plates with openings, with particular emphasis on the application of the Rayleigh-Ritz method. They proposed a 
Rayleigh-Ritz based method with different coordinate systems for a plate and opening with the particular aim to simplify the 
integration process in the determination of total energy. In the case of stiffened panels, there is extensive literature on the static 
analysis of stiffened panels using FEM, the element method or a combination of these methods, as discussed by Sapountzakis 
and Mokos (2008). However, to the authors' knowledge, there is a rather limited number of references to the dynamic analysis 
of stiffened panels. Generally, the most common methods applied to the vibration analysis of stiffened plates can be classified 
into closed-bound solutions, energy methods and other numerical methods (Samanta and Mukhopadhyay, 2004). 

In the case of the vibration analysis of stiffened panels with openings, only a few references, based on the application of the 
finite element method, are available. Sivasubramonian et al. (1997) studied the effect of curvature and cut-outs on square panels 
with different boundary conditions applying the shell element having seven degrees of freedom per node. Sivasubramonian et al. 
(1999) also applied the same finite element to both stiffened and unstiffened plate with openings and presented comparative 
results. Recently, Srivastava (2012) applied the finite element method to the vibration analysis of stiffened panels with a single 
opening and different boundary conditions, under partial edge loading. 

In order to provide a simple and efficient procedure, this paper presents the application of the assumed mode method to the 
problem of natural vibration analysis of stiffened plates with openings. Namely, the assumed mode method has already been 
successfully applied to the vibration analysis of solid plates (Chung et al., 1993; Kim et al., 2012), plates with openings (Cho et 
al., 2013) and stiffened panels (Cho et al., 2014). In that sense, its application to the dynamic analysis of stiffened panels with 
openings represents an extension, achieved by combining the former two approaches. The effect of stiffeners is taken into 
account by adding their strain and kinetic energy to the strain and kinetic energy of the plate, respectively. Similarly to this 
strain and kinetic energies of the openings are subtracted from the corresponding energies of plate, respectively. Illustrative 
numerical examples include an analysis of the natural vibrations of stiffened panels with different stiffening, opening types, 
sizes and various values of plate thickness. In addition, different combinations of boundary conditions are examined. A com-
parison of the results with those obtained by the FEM is also provided and commented on. The developed procedure based on 
the assumed mode method is shown to be very simple and fast and, from an engineering point of view, accurate enough. It is 
therefore recommended for practical use in the preliminary design phase of stiffened panel structures with openings. 

OUTLINE OF MATHEMATICAL MODEL 

A mathematical model for the vibration analysis of stiffened panels with openings actually represents a generalization of the 
procedures for the vibration analysis of thick plates with openings and stiffened panels, presented by Cho et al. (2013; 2014). 

The Mindlin thick plate theory which takes shear influence and rotary inertia into account (Mindlin et al., 1956) is adopted 
in this mathematical model. The Mindlin theory operates with three general displacements, i.e. plate deflection w, and angles of 
cross-section rotation about the x and y axes, ψx and ψy, respectively. From the equilibrium of sectional forces (bending mo-
ments, torsional moments and shear forces) and inertia forces, the equations of motions yield: 
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where ρ  is plate density, h is plate thickness, k is shear coefficient, while ν is Poisson’s ratio. Further, D represents plate 
flexural rigidity ( )( )3 2/ 12 1D Eh ν= − , while E and ( )( )2 1G E ν= +  are Young’s and shear moduli, respectively. 

Based on the above-described idea to include an opening and stiffener effect, one can write for the strain and kinetic energy 
of a stiffened panel with openings: 

= + −p s oV V V V , (4) 

= + −p s oT T T T . (5) 

where Vp is the plate strain energy, Vs represents the strain energy of stiffeners and Vo is the strain energy of an opening. 
Similarly, Tp is the plate kinetic energy and Ts and To are the kinetic energies of the stiffeners and opening, respectively. 

Energy of a rectangular plate 

By introducing the non-dimensional parameters /x aξ = , /y bη = , /a bα =  and /S kGh D=  for a rectangular plate 
of length a and breadth b  with arbitrary boundary conditions, one can write for the strain and kinetic energy of a rectangular 
plate without openings, V and T, respectively (Kim et al., 2012): 
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where ( )1 1 /Tx TxK k a kGh= , ( )2 2 /Tx TxK k a kGh= , ( )1 1 /Ty TyK k b kGh=  and ( )2 2 /Ty TyK k b kGh=  are non-dimensional 
stiffness at 0x = , x a= , 0y =  and y b= , respectively, and correspond to the translational spring constants per unit 
length 1Txk , 2Txk , 1Tyk  and 2Tyk  (Kim et al., 2012; Cho et al., 2013). In the same manner, ( )1 1 /Rx RxK k a D= , 

( )2 2 /Rx RxK k a D= , ( )1 1 /Ry RyK k b D=  and ( )2 2 /Ry RyK k b D=  are for the rotational spring constants per unit length 1Rxk , 

2Rxk , 1Ryk  and 2Ryk at boundaries, respectively. The following quantities are related to the x direction: a, 1Txk , 2Txk , 1Rxk  
and 2Rxk . Other quantities (b, 1Tyk , 2Tyk  1Ryk  and 2Ryk ) are relevant for the y direction (Cho et al., 2013). 

Energy of openings 

In similar way, as for a plate without openings, one can write for the strain and kinetic energy of the rectangular opening 
shown in Fig. 1(a), respectively: 
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(a)                         (b)                         (c) 

Fig. 1 Rectangular plates with different opening shapes; (a) Rectangular, (b) Elliptic, (c) Oval. 

 
In Fig. 1(a), xro and yro denote the longitudinal and transverse coordinates of the rectangular opening centre of gravity, and 

aro and bro  are one half of its length and breadth. 
Analogously to the rectangular opening, the strain and kinetic energies of the elliptical opening shown in Fig. 1(b) yield: 
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If one introduces eo eox y=  in the Eqs. (10) and (11), the strain and kinetic energies of the circular opening is obtained. As 
in previous case, in Fig. 1(b), xeo and yeo denote the longitudinal and transverse coordinates of the elliptic opening centre of 
gravity, while aeo and beo are the major and minor semi-axes of the opening, respectively. An oval opening, which can often be 
found in ships and offshore structures, can be treated as a combination of rectangular and semi-circular openings, Fig. 1(c), 
where xoo and yoo are the longitudinal and transverse coordinates of the oval opening centre of gravity, while aoo and boo are 
equal to one half of its length and breadth, respectively. 

In this way, its strain and kinetic energies can be written in the following form: 

1 2 1 2,= + + = + +     oo co ro co oo co ro coT T T T V V V V  (12) 
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and can be calculated with the above-listed formulae. 
In addition, the procedure can be applied to multiple openings, but then the opening strain and kinetic energies have to be 

calculated separately, and subtracted from the corresponding energies of the plate without openings. 

Energy of stiffeners 

The strain and kinetic energy of stiffeners placed in longitudinal and transverse directions yield: 
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where nx and ny represent the number of stiffeners in the x and y direction, respectively. K is the shear coefficient, and A and IR 
are the cross-sectional area and the rotary moment of inertia of the stiffener cross-section, respectively. Further, GJ is torsional 
rigidity while EI is the bending rigidity of the stiffener, considering the plate flange contribution of effective width s as shown in 
Fig. 2. 

 

Fig. 2 Stiffener cross-section. 

Outline of the assumed mode method 

In the assumed mode method, lateral displacement and rotational angles are expressed by superposing the products of the 
orthogonal polynomials: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1

, , , , , , , ,ξ ηξ η ξ η ψ ξ η ξ η ψ ξ η ξ η
= = = = = =

= = =∑∑ ∑∑ ∑∑      
M N M N M N

mn m n mn m n mn m n
m n m n m n

w t a t X Y t b t Θ Y t c t X Φ

  (15) 

where Xm(ξ), Yn(η), Θm(ξ) and Φn(η) are the orthogonal polynomials satisfying the specified elastic edge constraints with respect 
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to ξ and η. Furthermore, amn(t), bmn(t) and cmn(t) are the influence coefficients of orthogonal polynomials. Also, M and N are the 
number of orthogonal polynomials used for an approximate solution in the ξ and η directions, respectively. Eq. (15) can be 
alternatively written in matrix form: 

( ){ } ( ) ( ){ }, , ,z t H q tξ η ξ η⎡ ⎤= ⎣ ⎦  (16) 

where 

( ){ } ( ) ( ) ( ){ }, , , , , , , , , ,
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⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
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, (18) 

( ){ } { }11 11 11... ... ... T
MN MN MNq t a a b b c c=         . (19) 

By substituting Eqs. (4) and (5) into Lagrange's equation of motion below 

d 0
d i i i

T T V
t q q q
⎛ ⎞∂ ∂ ∂

− + =⎜ ⎟
∂ ∂ ∂⎝ ⎠&

, (20) 

the discrete matrix equation with 3xMxN degrees of freedom can be obtained as the following equation: 

[ ] ( ) [ ] ( ){ }
2

2 0
q t

M K q t
t

⎧ ⎫∂⎪ ⎪+ =⎨ ⎬∂⎪ ⎪⎩ ⎭
, (21) 

where [M] and [K] are the mass and the stiffness matrix, respectively. Their structure using characteristic orthogonal poly-
nomials is described in detail by Kim et al. (2012). The procedure for the formulation of the stiffness and mass matrices of the 
attached stiffeners using the same polynomials can also be found in Cho et al. (2014). 

If harmonic vibrations are assumed, i.e. 

( ){ } { } ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , ,j t j t j t j tq t Q e w t W e t Ψ e t Ψ eω ω ω ω
ξ ξ η ηξ η ξ η ψ ξ η ξ η ψ ξ η ξ η= = = =                 (22) 

Eq. (21) leads to an eigenvalue problem which gives the natural frequencies and eigenvectors of the system, where j is the 
imaginary unit and ω represents the angular frequency. The mode shape corresponding to each natural frequency is obtained 
from the following equation: 

( ) ( ) ( ){ } ( ) { }, , , , , , ,
T

ll
W Ψ Ψ H Qξ ηξ η ξ η ξ η ξ η⎡ ⎤= ⎣ ⎦   (23) 

where l represents the order of the mode. It should be noted here that when using the assumed mode method, the orthogonal 
polynomials corresponding to the property of the target model should be applied to achieve accurate analysis. For this purpose, 
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the characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies the specified edge 
constraints are used. Their complete derivation is presented by Kim et al. (2012). 

In addition, it should be mentioned that developed procedure is not fully physically consistent, since generally in the 
Rayleigh-Ritz method all of the assumed shape function should satisfy at least the geometric boundary conditions (Szilard, 
2004), which is not unconditionally the case in the presented procedure at the opening boundaries. Namely, it is necessary to 
say that a difference exists in the real boundary conditions at the free opening edge and remains after excluding that part. In the 
former case, the boundary forces are zero, while in the latter case they are equal to the sectional forces (Cho et al., 2013). Al-
though the developed procedure is primarily aimed for stiffened panels with small openings, but at the same time it is quite 
good approximation in the case of panel with relatively large openings, as shown in the following section of the paper. The in-
clusion of stiffeners in the mathematical model is fully consistent. 

NUMERICAL RESULTS 

The developed procedure is verified with several numerical examples, where different stiffening, plate thicknesses, ope-
nings of different shapes (rectangular, oval, circular) and sizes are included. In the numerical examples, different boundary 
conditions are also applied. In all the calculations, the values of Young's modulus, material density and Poisson's ratio are set 
to 2.1x1011 N/m2, 7,850 kg/m3 and 0.3, respectively. Furthermore, the value of the shear factor k is adjusted to 5/6 and the 
number of polynomials has been set to 13, for both ξ and η directions, respectively. It should also be mentioned that in all the 
calculations the stiffeners are modelled as beam elements in the FE analysis, since a comparison of the results in that case is 
the most realistic. Namely, in the proposed procedure, the beam theory is applied in order to take into account the effect of the 
stiffeners. 

The natural vibration analysis of a stiffened panel with 3 rectangular openings and 4 equidistant transverse stiffeners (uni-
directionally stiffened panel) shown in Fig. 3 is performed first. The panel length and breadth is 4.0 m and 3.0 m, respectively, 
and the stiffeners are I profiles with a height of 150 mm and a web thickness of 10 mm. Two values of plate thickness are taken 
into account to verify the applicability of the method to the panels with both thin and thick plating. Table 1 shows the results of 
the natural vibration analysis of the simply supported (SSSS) stiffened panel, the clamped (CCCC) stiffened panel and the sti-
ffened panel with mixed boundary conditions (FCSC), i.e. with one free longitudinal edge and clamped transverse edges. The 
results obtained by the proposed procedure are denoted with PS (Present Solution). The natural frequencies calculated using 
NASTRAN (MSC, 2010) are also included in Table 1, where quite good agreement can be noticed. This is especially true for 
the lowest natural frequencies that are actually most relevant for structural design from the viewpoint of vibration. The corres-
ponding FE model in Table 1 consists of 1,476 plate and 120 beam finite elements, respectively, and the number of degrees of 
freedom varies depending on the selection of boundary conditions. The natural modes obtained by the proposed method and 
NASTRAN are almost the same, as shown in Fig. 4. 

 
Table 1 Natural frequency f (Hz) of a transversally stiffened panel with rectangular openings. 

Mode 
no. h (mm) 

Boundary conditions 

SSSS CCCC FCSC 

PS FEM Diff., % PS FEM Diff., % PS FEM Diff., %

1 
25 23.04 22.97 0.30 49.91 48.37 3.18 9.08 8.97 1.23 

50 25.71 25.43 1.10 51.48 50.61 1.72 18.42 18.12 1.66 

2 
25 29.62 29.42 0.68 55.85 54.46 2.55 24.34 23.93 1.71 

50 47.27 45.20 4.58 74.21 72.37 2.54 42.50 42.04 1.09 

3 
25 44.98 43.46 3.50 71.46 68.73 3.97 36.51 36.31 0.55 

50 85.05 78.94 7.74 114.68 110.78 3.52 49.95 48.46 3.07 
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Fig. 5 Model of a transversally stiffened 
panel with oval openings; (a) PS, (b) FEM.

   Fig. 6 Mode shapes of a transversally stiffened  
     panel with oval openings, FCSC. 

 
Furthermore, the developed procedure is applied to a transversally stiffened panel with oval openings as shown in Fig. 5. 

Oval openings are actually used very often in ships and offshore structures, and here the dimensions of the openings are 800× 
600 mm. The panel length and breadth is 4.0 m and 3.2 m, respectively. Three equidistant stiffeners are I profiles with a height 
of 250 mm and a width of 10 mm, while the thickness of the panel plate is 15 mm. In this case the corresponding FE model 
consists of 1,150 elements (1,072 plates and 78 beams). The natural frequencies and mode shapes for the selected representative 
boundary conditions are shown in Table 2 and Fig. 6, respectively, which are within acceptable tolerances. 

(a) 

 

(b) 
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  2 

 

  3 

 
Fig. 3 Model of a transversally stiffened panel 
with rectangular openings; (a) PS, (b) FEM. 

     Fig. 4 Mode shapes of transversally stiffened panel with 
rectangular openings, h=50 mm, CCCC. 
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Table 2 Natural frequency f (Hz) of a transversally stiffened panel with oval openings. 

Mode no. 

Boundary conditions 

FCSC FFCC 

PS FEM Diff., % PS FEM Diff., % 

1 5.05 4.95 2.02 7.15 6.92 3.32 

2 13.66 13.05 4.67 15.83 15.48 2.26 

3 25.79 24.22 6.48 17.61 17.23 2.21 

 
In the next numerical example, a stiffened panel with a length of 14.0 m and breadth of 10.0 m, longitudinal framing 

(I300×15) and six circular openings is considered, Fig. 7. The thickness of the plate is 50 mm and the opening diameter is equal 
to 1,000 mm. The FE model of the longitudinally stiffened panel consists of 4,100 plate and 280 beam finite elements. Two 
combinations of boundary conditions are considered, i.e. a clamped stiffened panel (CCCC) and a stiffened panel with a free 
transverse edge and the other edges clamped (CFCC). The natural frequencies of a stiffened panel with circular openings and 
longitudinal stiffeners are presented in Table 3, and the mode shapes are shown in Fig. 8. The agreement of the results is also 
good, as is the case in the previous numerical examples. 
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 PS FEM 

  1

  2

  3

Fig. 7 Model of a longitudinally stiffened 
panel with circular openings; (a) PS, (b) FEM.

   Fig. 8 Mode shapes of a longitudinally stiffened  
    panel with circular openings, CFCC. 

 
Table 3 Natural frequency f (Hz) of a longitudinally stiffened panel with circular openings. 

Mode no. 

Boundary conditions 

CCCC CFCC 

PS FEM Diff., % PS FEM Diff., % 

1 4.78 4.79 -0.21 2.90 2.89 0.35 

2 9.09 8.73 4.12 4.97 4.99 -0.40 

3 10.94 10.63 2.92 7.89 7.53 4.78 
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The developed method can also be applied to the vibration analysis of stiffened panels with relatively large openings, as 
shown in the case of a cross-stiffened panel with a large rectangular opening. The dimensions of the panel and the rectangular 
opening are shown in Fig. 9, and, for the sake of simplicity, only the SSSS boundary condition is considered. As shown in Fig. 10, 
the natural frequencies and the mode shapes are in acceptable agreement with the FE solutions. 

 

 
Fig. 9 Cross-stiffened panel with a large rectangular opening. 

 
 PS FEM 

1 

 
8.60 Hz 8.41 Hz 

2 

 
19.02 Hz 17.76 Hz 

3 

 
25.87 Hz 25.12 Hz 

Fig. 10 Mode shapes of a cross-stiffened panel with a large rectangular opening, SSSS. 

8.60 Hz 8.41 Hz 8.41 Hz Hz

19.02 Hz 17.76 Hz 17.76 Hz Hz

Downloa 50 AM



Int. J. Nav. Archit. Ocean Eng. (2014) 6:763~774 773 

CONCLUSION 

A simple and efficient procedure for the vibration analysis of stiffened panels with openings of different shapes and arbi-
trary edge constraints is presented. The assumed mode method (energy method) is applied and the effect of the stiffeners and 
openings is taken into account in a very simple way, i.e. by adding and subtracting their strain and kinetic energies to the 
corresponding plate energies, respectively. The procedure is validated through comparisons with finite element results obtained 
with general purpose FE software. Various combinations of stiffener spacing, stiffened number and orientation together with 
various opening shapes and dimensions are considered. It is shown that a good agreement of natural frequencies and mode 
shapes is achieved for all combinations of boundary conditions. Despite its simplicity, there are no limitations in the appli-
cability of the presented method concerning plate thickness bounds or stiffener dimensions and types. It can also be applied to 
plates with carlings or partial stiffeners which are frequently arranged near the opening or below heavy equipment in ship struc-
tures. Thus, the proposed procedure can be used as a reliable alternative to the widely used FEM, especially in the initial design 
stage where the principal structural dimensions are being defined. This makes the procedure advantageous when the vibration 
performances of stiffened panels with different topologies are investigated. Future investigations will be oriented to the exten-
sion of the developed procedure to the vibration analysis of orthotropic plates assuming different materials, and to more com-
plex structural parts of ships and offshore structures, such as, for instance, stiffened panels with additional attachments such as 
lumped inertia and stiffness elements, and stiffened panels partially or fully immersed in the water, etc. 
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