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Here we describe mechanisms regulating area patterning of developing mammalian neocortex, re-
ferred to as arealization. Current findings indicate an interplay between intrinsic genetic mechanisms
and extrinsic information relayed to cortex by thalamocortical input. Intrinsic mechanisms are based
on morphogens and signaling molecules secreted by patterning centers, positioned at the perimeter
of dorsal telencephalon, that generate across nascent cortex the graded expression of transcription
factors in cortical progenitors. Two major patterning centers are the commissural plate, which
expresses Fgf8 and Fgf17, and the cortical hem, which expresses Bmps and Wnts. Four transcription
factors, COUP-TFI, Emx2, Pax6, and Sp8, with graded expression across the embryonic cortical
axes, are shown to determine sizes and positions of cortical areas by specifying or repressing
area identities within cortical progenitors. They also interact to modify their expression, as well as
expression of Fgf8. We review these mechanisms of arealization and discuss models and concepts
of cortical area patterning.
Introduction
The cerebral cortex is the largest and most complex com-

ponent of the mammalian brain, and more so than any

other brain structure has been affected by evolutionary

processes. The result is a tremendous increase in size

and complexity across phylogeny, reaching a pinnacle in

humans and other primates, cetaceans (e.g., dolphins

and whales), and elephants, which have the largest brains

among all species (Purves, 1988). The cerebral cortex

arises from the dorsal telencephalon, a major subdivision

of the differentiated forebrain. The forebrain, positioned at

the anterior end of the neural tube, is one of the three ma-

jor brain vesicles, in addition to the midbrain and hind-

brain, that forms early in embryonic development. The

dorsolateral forebrain later evaginates to generate the

telencephalic vesicles, with the diencephalon (thalamus/

hypothalamus) comprising the remainder of the forebrain.

The telencephalon is subsequently subdivided into the

ventral telencephalon, which gives rise to the striatum

and basal ganglia, and the dorsal telencephalon (Ruben-

stein et al., 1998).

The cerebral cortex itself is divided into regions. The

neocortex is the largest region, and is positioned between

two other regions of the cerebral cortex, the archicortex

(including entorhinal cortex, retrosplenial, subiculum,

and hippocampus) and paleocortex (olfactory piriform

cortex). In addition, the neocortex accounts for much of

the increase in overall brain size and complexity in more

advanced species, as well as arguably the most distinct

phylogenetic specializations (Krubitzer and Kaas, 2005).

Among the many features that distinguish the neocortex

from other regions of the cerebral cortex is its laminar pat-

terning characterized by six major, radially organized

layers, which themselves are often substratified, each

containing a heterogeneous population of neurons that

are morphologically, connectionally, and functionally dis-
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tinct from those of other layers. In its tangential dimension,

the neocortex is organized into ‘‘areas;’’ these are func-

tionally unique subdivisions distinguished from one an-

other by differences in cytoarchitecture and chemoarchi-

tecture, input and output connections, and patterns of

gene expression (O’Leary and Nakagawa, 2002; Sur and

Rubenstein, 2005; Rash and Grove, 2006). In the adult,

the transition from one neocortical area to another is typ-

ically abrupt, with borders that can be sharply defined by

area differences in architecture, and in some instances by

the distributions of projection neurons, input projections,

or gene expression patterns. These properties determine

the functional specializations that characterize and distin-

guish areas in the adult.

In this article we discuss the mechanisms that operate

during development to generate areas of the neocortex,

with a focus on genetic mechanisms that operate predom-

inantly within the cortex or around its perimeter to deter-

mine the area identities or fates of cortical progenitors

and their progeny. Morphogens and signaling molecules

expressed in early patterning centers help establish the

expression patterns of individual transcription factors

(TFs) or combinations of TFs that correlate with morpho-

logic boundaries within the telencephalon (Puelles et al.,

2004). These TFs play a prominent role in regionalization

of the telencephalon, including establishing and maintain-

ing the identities of the ventral and dorsal telencephalon,

and the general characteristics of specific cell types gen-

erated within them (Rallu et al., 2002; Schuurmans and

Guillemot, 2002). This general genetic theme is reiterated

to pattern the neocortex into areas, with an additional con-

tribution from thalamocortical axon (TCA) input that relays

sensory input from the periphery to the cortex (Figure 1).

Area patterning is a critical development event, and

varies substantially across individuals. For example, the

sizes of primary areas in human neocortex vary by 2- to
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Figure 1. Mechanisms of Specification and Differentiation of Neocortical Areas
The initial, tangential axial gradients of transcription factors (TFs) in the ventricular zone (VZ) are likely established by signaling molecules or morpho-
gens (or both) secreted from localized patterning centers. This figure illustrates four such patterning centers. Fgf8 and Fgf17 are secreted from the
anterior patterning center, the anterior neural ridge (ANR), which later becomes the commissural plate (CoP). Wnts and Bmps are secreted from
the posterior-medial-located cortical hem. Sonic hedgehog (Shh) is secreted from a ventral domain. In addition, a lateral putative patterning center,
termed the anti-hem, also might contribute to graded TF expression. In turn, the graded expression of certain TFs, such as Pax6, Emx2, COUP-TFI,
and Sp8, conveys positional or area identities to cortical progenitors, which are then imparted to their neuronal progeny, which form the cortical plate
(CP). The CP also initially exhibits gradients of gene expression that are gradually converted to distinct patterns with sharp borders. Coincident with
this process, distinct cortical layers (2–6), and the anatomically and functionally distinct areas seen in the adult (M1, S1, A1, V1), differentiate from the
CP. Genes that are differentially expressed across the cortex are often expressed in different patterns in different layers, suggesting that area-specific
regulation of such genes is modulated by layer-specific properties, which challenges the definition of area identity. Although the initial establishment
of graded gene expression in the embryonic CP is controlled by mechanisms intrinsic to the telencephalon, the much more complex differentiation
patterns established postnatally, often both spatially and temporally in parallel with the development of TCA input, suggest that these later events
might well be regulated by influences that arise extrinsic to the cortex, such as TCAs. Future studies are required to determine and clarify these mech-
anisms. The figure is modified from O’Leary and Nakagawa (2002).
3-fold within the normal population (Stensaas et al., 1974;

White et al., 1997a, 1997b; Dougherty et al., 2003). In

mice, the sizes of primary areas can also vary significantly

(Airey et al., 2005). Such variations in area size can have

dramatic effects on behavior (Leingartner et al., 2007).

For example, genetic manipulations during embryonic de-

velopment that result in relatively modest decreases or in-

creases in the sizes of somatosensory and motor areas in

adults result in significant deficiencies at tactile and motor

behaviors. Such findings suggest that areas have an opti-

mal size, influenced by parameters of their neural system,

for maximum behavioral performance (Leingartner et al.,

2007). They also underscore the importance of mech-

anisms that operate during development to determine

appropriate area sizes (Rakic, 1988; O’Leary, 1989) and

thereby influence behavior later in life.

Background
Basic Organization of Neocortex

and Thalamic Connections

The neocortex has four ‘‘primary’’ areas; each is the cor-

nerstone of clusters of functionally related areas that in-

clude scores of higher-order areas that act as specialized

processing centers. Three of the primary areas are sen-

sory: the primary visual (V1), somatosensory (S1), and

auditory (A1) areas, which process primary information re-

ceived from the eye/retina (vision), body (somatosensa-

tion), and inner ear/cochlea (audition), respectively. The

fourth primary area is motor (M1), which controls voluntary

movement of body parts.
The relationship between a primary cortical area and

nuclei in dorsal thalamus are critical for both adult function

and the developmental differentiation of areas. Dorsal

thalamus has four principal thalamic nuclei that function-

ally and connectionally parallel the four primary cortical

areas (Jones, 2007). Each primary cortical area receives

TCA inputs from a principal thalamic nucleus that termi-

nate primarily in layer 4, and sends outputs from layer 6

neurons to the same nucleus, thereby generating the

reciprocal area-specific/nuclei-specific relationships be-

tween cortex and thalamus: the ventrolateral (VL) nucleus

with M1, the ventroposterior (VP) nucleus with S1, the dor-

sal lateral geniculate nucleus (dLGN) with V1, and the ven-

tral part of the medial geniculate nucleus (MGv) with A1.

The primary sensory areas receive their major sensory

inputs from dorsal thalamic nuclei that define an area’s

functional modality. The principal sensory thalamic nu-

clei receive modality-specific sensory information either

directly or indirectly from peripheral sense organs or

receptors.

The general spatial relationship between the primary

areas is largely conserved across mammals, although

some animals with unusual or large and atypical peripheral

appendages/sense organs (e.g., the platypus’ bill or the

echolocation system in bats) have modifications on this

general geometrical scheme of area patterning (Krubitzer

and Kaas, 2005). Historically, areas, or functional fields, of

the cortex have also been related to the skull bones that

cover them, and in mice the primary areas make up a large

proportion of these fields. From anterior (A) to posterior

(P), these relationships in mice are as follows: M1 is
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 253
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covered by the frontal bone and is part of frontal cortex;

S1, the parietal bone for the parietal cortex; and V1, the

occipital bone for the occipital cortex.

Origins of General Classes of Cortical Neurons

Most neocortical neurons, including all glutamategic neu-

rons and all projection neurons, which are a subset of

glutamatergic neurons, are generated in the ventricular

zone (VZ) of the dorsal aspect of the lateral ventricle, or

at later stages, a second germinal zone, the subventricular

zone (SVZ) (Mione et al., 1994; Gorski et al., 2002; Krieg-

stein and Noctor, 2004). The VZ generates deeper-layer

neurons, including subplate (SP) and layer 6 and layer 5

projection neurons; the SVZ is a prominent source of

superficial-layer neurons (Kriegstein and Noctor, 2004;

Molyneaux et al., 2007). The SVZ is substantially larger in

primates than in other mammals, and differences in prolif-

eration in posterior occipital cortex have been reported to

contribute to the major increase in the numbers of super-

ficial-layer neurons in V1 compared with adjacent higher-

order visual areas (e.g., V2) (Dehay and Kennedy, 2007).

Cortical interneurons, which account for about 20% of

all cortical neurons, are GABAergic and also typically ex-

press distinct neuropeptides that help define subclasses

(Cherubini and Conti, 2001; Krimer and Goldman-Rakic,

2001; Kawaguchi and Kondo, 2002; Butt et al., 2005;

Wonders and Anderson, 2006). In mice, they are gener-

ated primarily within the medial and caudal ganglionic

eminences of ventral telencepahlon and migrate along

multiple pathways to reach the cortex (Nery et al., 2002;

Ang et al., 2003; Marin and Rubenstein, 2003). Once within

the cortex, they migrate along tangentially aligned path-

ways in the marginal zone (MZ) and intermediate zone

(IZ), and eventually turn and migrate radially into the corti-

cal plate (CP), perpendicular to their original tangential

path (Nadarajah and Parnavelas, 2002). In primates, a sig-

nificant number of interneurons are generated within the

cortical VZ (Letinic et al., 2002).

A third but proportionally very small general category of

cortical neurons are Cajal-Retzius neurons, which popu-

late the MZ (layer 1) and express Reelin, a large secreted

protein thought to be required to establish appropriate

cortical layering by influencing the radial migration and

patterning of cortical neurons (Feng and Walsh, 2001;

Ross and Walsh, 2001; Tissir and Goffinet, 2003). Cajal-

Retzius neurons are also generated external to the cortical

VZ, primarily within the cortical hem but additionally at

other sites in the subpallium and septum (Yamazaki

et al., 2004; Bielle et al., 2005; Yoshida et al., 2006;

Zhao et al., 2006).

Extrinsic Influences on Area Patterning
Although once an intensely debated issue (Rakic, 1988;

O’Leary, 1989), it is now widely held that the specification

and differentiation of neocortical areas is controlled by

an interplay between intrinsic mechanisms, i.e., genetic

mechanisms that operate within the cortex, and extrinsic

mechanisms such as the sensory periphery and TCA input

or information relayed by it (Figure 1). However, until re-
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cently, roles for extrinsic mechanisms in controlling area

patterning were emphasized for various reasons. One rea-

son is that evidence for intrinsic genetic mechanisms was

simply lacking, with the first direct evidence coming only

a few years ago with the demonstrations of roles for the

TFs Emx2 (Bishop et al., 2000; Mallamaci et al., 2000)

and Pax6 (Bishop et al., 2000) in specifying the tangential,

positional identities of cortical progenitors. However,

much positive and compelling evidence for the action of

extrinsic mechanisms initially swayed the field, including

demonstrations that the cortex is initially a more or less

uniform structure, that many area-specific properties dif-

ferentiate in parallel spatially and temporally to the devel-

opment of TCA input, and that area patterning and func-

tion exhibits considerable plasticity upon modification of

sensory periphery or TCA input or performance of hetero-

topic transplantation (Chenn et al., 1997; O’Leary and Na-

kagawa, 2002; Sur and Rubenstein, 2005). We will provide

a few examples of the action of extrinsic influences in area

patterning before discussing roles for intrinsic genetic

mechanisms.

Cytoarchitecture and Exuberant Projection

Neurons

The properties that distinguish cortical areas gradually

emerge during development, with various area-specific

features becoming evident at different developmental

stages (O’Leary and Koester, 1993; O’Leary et al., 1994;

Chenn et al., 1997). The nascent CP, before it acquires

its mature functional abilities, lacks most of the anatomi-

cally based features that distinguish areas in the adult,

even after all CP neurons have been generated and layers

begin to differentiate within it. Across its tangential extent,

CP cytoarchitecture is uniform other than a smooth ante-

rior-posterior (A-P) and lateral to medial (L-M) decrease in

its thickness. Also absent are the restricted, area-specific

distributions of distinct types of projection neurons char-

acteristic of the functional specializations of different cor-

tical areas in adults. Instead, cortical projection neurons

have widespread distributions early on that include parts

of areas, and even entire areas, in which they are not found

in the adult; their restricted areal adult distributions come

about by the elimination of functionally inappropriate axon

segments and branches. This mechanism is used to

generate the characteristic areal distributions of layer 5

subcortical projection neurons, as well as callosal and in-

tracortical projecting neurons. Interestingly, though, layer

6 neurons in the primary cortical areas that project to the

principal thalamic nuclei appear to exhibit area-specific

distributions early on in their development (O’Leary and

Koester, 1993; O’Leary et al., 1994; Chenn et al., 1997).

Heterotopic transplant experiments show that area-

specific cytoarchitecture and axon/collateral elimination

by layer 5 projection neurons is plastic during develop-

ment. For example, transplants of embryonic occipital

cortex, which will differentiate into visual areas, into the

S1 barrelfield in parietal cortex develop cytoarchitecture

and the patterned expression of markers characteristic

of the S1 barrelfield (Schlaggar and O’Leary, 1991). Other



Neuron

Review
studies show that developing layer 5 neurons transplanted

from visual cortex to motor cortex permanently retain their

normally transient spinal axon, whereas layer 5 neurons

transplanted from motor cortex to visual cortex lose their

normally permanent spinal axon and retain their transient

axon collateral to the superior colliculus (Stanfield and

O’Leary, 1985; O’Leary and Stanfield, 1989). Thus, the

projections retained by the transplanted layer 5 neurons

are appropriate for the cortical area in which the trans-

planted neurons develop, not where they were born. The

elimination of callosal and intracortical axons is also plas-

tic and is perturbed by a variety of peripheral manipula-

tions of sensory input that alter either patterns of neural

activity or absolute levels of activity (O’Leary and Koester,

1993). These and other experimental manipulations reveal

tremendous plasticity in the development of the mature

areal distributions of projection neurons from initially

broad distributions, through mechanisms that are likely

to be at least in part independent of the intrinsic specifica-

tion of area identity.

Area-Specific TCA Input and Potential Roles

in Area Patterning

With the possible exception of layer 6 corticothalamic

neurons, cortical projection neurons initially exhibit ‘‘exu-

berant’’ areal distributions far more broad than those in

the adult. In contrast to this lack of areal specificity in

the early distribution of projection neurons, the area-

specific projections of TCAs from the principal sensory

thalamic nuclei is evident at the early stages in their devel-

opment, prior to the emergence of the sharp cytoarchitec-

tonic borders between areas that later become evident

(O’Leary et al., 1994). Progress has been made in defining

mechanisms of TCA pathfinding, particularly subcortically

from dorsal thalamus to the neocortex (Polleux, 2005), but

the molecular control of TCA targeting of specific areas

remains relatively vague. Similar to the well-defined mech-

anisms that control development of topographically or-

dered retinal projections in the visual system (McLaughlin

and O’Leary, 2005), area-specific TCA targeting is likely

primarily controlled intracortically by graded axon guid-

ance molecules (Dufour et al., 2003) and refined by neural

activity (Catalano and Shatz, 1998). SP neurons and their

axons have also been implicated in the development of

area-specific TCA targeting, but their role and its molecu-

lar basis are vague (Allendoerfer and Shatz, 1994; Molnar

and Blakemore, 1995).

Since TCAs are the sole source of modality-specific sen-

sory information to the neocortex, the functional speciali-

zations of the primary sensory areas are defined in large

part by, and dependent upon, TCA input. In addition, the

differentiation of many anatomical features that distinguish

cortical areas, including architecture and distributions of

output projection neurons, depend to a large extent upon

TCA input. Consistent with this role, the TCA projection ex-

hibits area specificity throughout its development, and the

gradual differentiation of areas within CP parallels the elab-

oration of the TCA projection within it (Chenn et al., 1997).

The plasticity in area-specific architecture and cortical out-
put projections exhibited by heterotopic transplants as de-

scribed above, as well as the plasticity in architecture and

projections induced by peripheral manipulations, demon-

strate that the CP exhibits considerable plasticity in the de-

velopment of area-specific features, and that diverse parts

of CP initially have similar potentials to develop features

unique to a specific area. Again, TCA input has been impli-

cated as a major influence controlling this plasticity in the

differentiation of area-specific features (Figure 1) (O’Leary

et al., 1992; O’Leary et al., 1994). In addition, the functional

plasticity exhibited by sensory cortical areas revealed by

rewiring experiments that alter the modality of sensory in-

put relayed by TCAs to the primary sensory areas further

underscores the importance of this input in determining

certain area-specific specializations and functions (Sur

and Rubenstein, 2005).

The role of TCAs in shaping cortical architecture is

not limited to these later events in the differentiating CP.

In vitro experiments using mouse tissue suggest that

TCAs release a diffusible mitogenic activity that promotes

the production of both glia and neurons by explants of the

cortical VZ (Dehay and Kennedy, 2007). If a similar mech-

anism operates in vivo, such an early influence of TCAs on

corticogenesis could contribute to the reported areal dif-

ferences in neuronal production in the SVZ in occipital

visual areas (V1 versus V2) in monkey, and could therefore

(as described above) contribute to the cytoarchitectural

differences between areas that become evident later in

development (Lukaszewicz et al., 2005; Dehay and

Kennedy, 2007).

Control of Area Identity by Genetic Mechanisms
Intrinsic to the Developing Cortex
The initial evidence of roles for intrinsic genetic mecha-

nisms in controlling arealization was indirect and based

upon the emergence of differential expression patterns

of numerous genes, such as TFs, cell adhesion molecules,

and axon guidance receptors and ligands, within cortical

progenitors in the VZ or within their progeny in the CP prior

to the development of TCA input (Figure 1) (Miyashita-Lin

et al., 1999; Nakagawa et al., 1999; Sestan et al., 2001).

These expression patterns, most of which are graded

across the A-P and M-L cortical axes, have been shown

to develop independent of TCA input by analyses of

mutant mice with targeted deletion of the TFs Gbx2 or

Mash-1, neither of which is expressed in the cortex, but

both of which are required for TCAs to reach cortex (Miya-

shita-Lin et al., 1999; Nakagawa et al., 1999). Subse-

quently, small differences have been reported in the

expression pattern of ephrin-A5 in Mash-1 mutants com-

pared with wild-type (Yun et al., 2003), but the major point

remains that mechanisms intrinsic to the cortex control

the embryonic development of most patterns of differen-

tial gene expression.

However, the most dramatic areal changes in gene ex-

pression occur postnatally. Many of these late emerging

expression patterns align with cortical areas or borders

between areas. An example is the transformation of the
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 255
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expression of the regulatory gene RORb from a graded

pattern across the embryonic CP into a disjunctive one

mainly limited to layer 4 of the primary sensory areas in

postnatal CP. This transformation spatially and temporally

closely parallels the postnatal development of patterned

TCA input from the principal sensory nuclei to the CP

(Nakagawa and O’Leary, 2003). Thus TCA input may

well influence or even drive the postnatal differentiation

of these more complex gene expression patterns, a pro-

cess that may be required for proper differentiation of cer-

tain area-specific features. If TCA input is found to drive

the postnatal patterning of RORb expression and RORb

influences the differentiation of areas, one could envision

a straightforward, multiple-stage scenario for the pro-

posed interplay between extrinsic and intrinsic mecha-

nisms in arealization. For example, as discussed in a later

section, TFs such as Emx2 and COUP-TFI provide an

intrinsic genetic framework that specifies the area-spe-

cific patterning of TCA input. The influences of TCA input

transform the graded expression of RORb to a localized

expression in layer 4 of the primary sensory areas. This

limited expression of RORb in turn regulates later events

in arealization required for the differentiation of the primary

sensory areas and the establishment of their unique prop-

erties that distinguish them from other areas.

Only in the past few years has direct evidence for the

intrinsic genetic control of arealization been reported. Cur-

rent findings indicate a regulatory hierarchy that begins at

the perimeter of the dorsal telencephalon, which includes

the nascent neocortex, with morphogens or signaling mol-

ecules secreted from patterning centers, which in turn es-

tablish within cortical progenitors the differential expres-

sion of TFs that determine the areal identity exhibited by

their neuronal progeny that form the CP (Figure 1). The

two major dorsal telencephalic patterning centers that

have been most directly implicated in area patterning

are the commissural plate (CoP), which expresses several

members of the fibroblast growth factor family (Fgfs), and

the cortical hem, which expresses bone morphogenetic

proteins (Bmps) and vertebrate orthologs of Drosophila

wingless (Wnts).

An additional patterning center expresses Sonic hedge-

hog (Shh) and is located in ventral telencephalon and the

hypothalamus of ventral diencephalon (Crossley et al.,

2001). Shh secreted by this center is implicated in regional

patterning of the forebrain, but only indirectly influences

cortical area patterning through its broader functions

(Grove et al., 1998; Aoto et al., 2002; Ohkubo et al.,

2002; Rallu et al., 2002; Kuschel et al., 2003). Finally, the

antihem is a putative patterning center identified by its ex-

pression of multiple signaling molecules, such as Tgfa,

Neuregulin1, Neuregulin3, Fgf7, and the Wnt antagonist

Sfrp2 (Assimacopoulos et al., 2003). The antihem is lo-

cated in the lateral margin of the cortex near the boundary

between dorsal and ventral telencephalon. The cortical

hem and antihem have been suggested to cooperate

with the anterior neural ridge (ANR)/CoP to establish iden-

tities along the A-P and M-L axes of the developing cortex.
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The TFs that are expressed by cortical progenitors and

have been directly implicated in arealization are presently

limited to COUP-TFI, Emx2, Pax6, and Sp8, but certainly

include others. In the following sections, we summarize

the genetic hierarchy of arealization, focusing on the

CoP and the cortical hem, and the TFs that control the

sizes and positioning of cortical areas by specifying or

repressing areal identities through their expression in

cortical progenitors. We first consider evidence of roles

for morphogens in area patterning and their regulation,

then roles for TFs that directly impart area identities to

cortical progenitors.

The Fgf Expression Domain Defines an Anterior
Patterning Center
The ANR, which is the anterior junction between neural

and nonneural ectoderm, later through morphogenesis

becomes the CoP, which is formed by fusion of the neural

plate folds at the anterior margin of the forebrain; this

structure has been identified as an anterior signaling cen-

ter for the control of arealization (Figure 1) (Crossley and

Martin, 1995; Shimamura and Rubenstein, 1997; Bachler

and Neubuser, 2001; Crossley et al., 2001). The ANR/

CoP is prominently defined by the discrete expression do-

mains of Fgf8, Fgf17, and Fgf18, 3 of the 22 members of

the vertebrate Fgf family that have diverse roles in multiple

events during organogenesis (Mason, 2007). Of these,

Fgf8 and to a lesser degree Fgf17 have been most studied

in arealization, and act by locally inducing members of the

ETS family of TFs and establishing the gradients of Emx2

and COUP-TFI within cortical progenitors by repressing

their expression anteriorly in a dosage-dependent fashion

(Garel et al., 2003; Grove and Fukuchi-Shimogori, 2003;

Storm et al., 2006; Cholfin and Rubenstein, 2007). Altering

levels of Fgf8 or Fgf17 has substantial effects on area

patterning, presumably through regulation of Emx2,

COUP-TFI, and other TFs expressed by cortical progeni-

tors (Figures 2A and 2B). Anterior overexpression of Fgf8

by in utero electroporation is sufficient to shift cortical

areas posteriorly; in contrast, a similar electroporation of

a soluble form of Fgfr3 that acts as an inhibitor of Fgf8

shifts areas anteriorly (Fukuchi-Shimogori and Grove,

2001) (Figure 2C). Interestingly, compared with Fgf8,

Fgf17 has unique, distinct roles in the patterning of dorsal

versus ventral frontal cortical areas (Cholfin and Ruben-

stein, 2007). Taken together, these results show that the

domain of Fgf8 and Fgf17 expression in the ANR/CoP

functions as an anterior patterning center, and in particular

controls frontal/motor cortical area fates.

Fgf8 expression in the ANR/CoP of mice is first detected

between E8.0 and E8.5 and is substantially diminished af-

ter E13.5 (Crossley and Martin, 1995; Sahara et al., 2007).

This expression of Fgf8 has been suggested to be regu-

lated by several mechanisms that control progressive

phases, including initiation and maintenance of ex-

pression, as well as restriction of its expression to its nor-

mally discrete domain in the ANR/CoP (Figure 3A). Despite

the importance of Fgf8 for cortical development, the



Neuron

Review
mechanism controlling the initiation of its expression in the

ANR remains obscure. Loss of function of the Hex gene,

expressed in the anterior visceral ectoderm (AVE) (Marti-

nez Barbera et al., 2000), or Hesx1, expressed in AVE

and anterior neural ectoderm (Dattani et al., 1998; Marti-

Figure 2. Roles for the CoP and Fgf8 in Cortical Area
Patterning
(A) Schematic views of Fgf8 action on area patterning. Fgf8 expressed
in ANR/CoP controls the gradients of expression of key TFs in cortical
progenitors such as Emx2 and Coup-TFI that have a low anterior and
high posterior expression gradient across dorsal telencephalon (dTel).
Fgf8 is thought to suppress the expression of both genes in the anterior
dTel (red line). The combined actions of graded TFs are thought to es-
tablish gene expression with sharp boarders, paralleling the formation
of anatomically and structurally defined areas. A, anterior; P, posterior.
(B) Fgf8 regulates gradients of Emx2 and Coup-TFI expression. Pos-
terior to anterior gradients of expression of Emx2 and Coup-TF1 are
shifted anteriorly in the dTel of E12/E12.5 Fgf8 hypomorphic
(Fgf8neo/neo) embryos. Whole-mount in situ hybridization on dissected
neural tubes of E12/E12.5 wild-type and Fgf8neo/neo embryos was
performed with the indicated probes. (Left) The high P-M to low A-L
gradient of Emx2 expression in the dTel is detected in wild-type telen-
cephalic vesicles on lateral and dorsal views. Lateral and dorsal views
of an Fgf8neo/neo embryo show the anterior shift in the anterior limit of
this gradient (compare arrowheads). (Right) The high P-L to low A-M
gradient of Coup-TFI expression is visible on lateral and dorsal views
of wild-type embryos. The anterior limit of high expression (white
arrowheads) is shifted anteriorly in Fgf8neo/neo embryos. Adapted
from Garel et al. (2003); reproduced with permission of the Company
of Biologists.
(C) Anterior electroporation of Fgf8 or sFGFR3 causes opposite shifts
of the S1 barrelfields. Tangential sections through layer 4 of flattened
P6 cortices processed for cytochrome oxidase (CO) histochemistry
are shown. Patches of high CO activity mark individual barrels in S1.
Anterior (a, or A), lateral (l), and posterior (P) are indicated. White
arrows mark the midpoint between anterior and posterior poles of
the neocortex. From Fukuchi-Shimogori and Grove (2001).
nez-Barbera and Beddington, 2001), severely impairs

Fgf8 expression and leads to phenotypes characterized

by a truncated forebrain, similar to those seen in Fgf8

hypomorphic mice, suggesting that these genes are in-

volved in the morphogenesis of the ANR and Fgf8 expres-

sion. Likewise, the otocephaly mutant also shows signifi-

cant reduction of Fgf8, although the genes affected in

this mutant have not been reported (Zoltewicz et al.,

1999). The Hex and Hesx1 homeobox TFs act as repres-

sors for their targets (Martinez-Barbera and Beddington,

2001), suggesting that they may act through intermediar-

ies to influence the initiation of Fgf8 expression (Figure 3A).

Interestingly, Fgf8 expression in the midbrain persists in

Hex and Hesx1 mutant mice, indicating that the expres-

sion of Fgf8 is regulated by distinct mechanisms in its

different expression domains, similar in concept to the

finding that the LIM homeodomain TF, Lmx1b, regulates

the initiation of Fgf8 expression in midbrain but not in the

ANR (Andoniadou et al., 2007).

Several lines of evidence indicate that Fgf8 expression

in forebrain is maintained by multiple mechanisms. One

mechanism involves the suppression of Bmp signaling,

which in turn represses Fgf8 expression (Figure 3A)

(Anderson et al., 2002; Ohkubo et al., 2002; Shimogori

et al., 2004). The Bmp inhibitors Noggin and Chordin are

expressed in the ANR and are required to maintain Fgf8

expression by inhibiting the activity of Bmps secreted

from surrounding nonneural ectoderm (Anderson et al.,

2002). Overexpression of Noggin is sufficient to induce ec-

topic Fgf8 in forebrain at E9.5 but not at later stages

(Shimogori et al., 2004), suggesting that Bmp signaling re-

stricts the domain of Fgf8 expression at E9.5 and earlier,

presumably to determine the border between the CoP

and the cortical hem/choroid plexus, which are positioned

just posterior to the CoP and express Bmps and Wnts

(Shimogori et al., 2004). In mice deficient for Shh, Fgf8 ex-

pression is initiated but is quickly downregulated by E9.0,

indicating that the Shh signaling pathway also participates

in maintaining Fgf8 expression (Ohkubo et al., 2002). Al-

though the mechanism is unknown, it is speculated that

Shh might suppress Bmp signaling by inducing a Bmp

inhibitor such as Gremlin that may act to derepress Fgf8

expression (Ohkubo et al., 2002; Panman et al., 2006).

Another mechanism for maintenance of Fgf8 expres-

sion is positive autoinduction by Fgf8 itself (Crossley

et al., 1996). In addition, a third mechanism is indicated

by recent evidence showing that Sp8, a member of the

buttonhead family of zinc finger TFs, is a direct transcrip-

tional activator of Fgf8 expression (Sahara et al., 2007) and

is required for its maintenance (Figure 3A) (Sahara et al.,

2007; Zembrzycki et al., 2007). These findings are consis-

tent with the early overlap in expression of Sp8 with the

Fgf8 domain in the CoP (Figure 3B) (Sahara et al., 2007).

In knockout mice of Sp8, the expression of Fgf8 is initiated

but is prematurely downregulated (Zembrzycki et al.,

2007); similarly, overexpression of a dominant-negative

form of Sp8 in the CoP suppresses Fgf8 expression

(Sahara et al., 2007). These data show that Sp8 is required
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Figure 3. Regulation of Fgf8 Expression
in Forebrain
(A) Fgf8 expression is regulated in multiple
fashions that account for its initiation, mainte-
nance, and restriction to the ANR/CoP. The
mechanisms of initiation of Fgf8 expression
are still obscure; however, Hex and Hesx1
are implicated to be upstream of this process
since Fgf8 expression is greatly diminished in
ANR in those mutant mice at E8.5, the stage
at which Fgf8 expression is initiated in ANR.
Subsequently, Fgf8 expression is maintained
by at least two mechanisms; one is via the
Shh pathway, though its signaling to maintain
Fgf8 in the forebrain is still unknown; and the
other is via Sp8, a reciprocal inducer of Fgf8.
Along with the signaling for positive mainte-
nance, Fgf8 expression is also negatively regu-
lated to restrict its expression domain in ANR/
CoP. Bmp signaling suppresses Fgf8 expres-
sion in the early stages of forebrain develop-
ment by unknown mechanisms. In parallel to
Bmp signaling, Emx2 acts as a repressor of
Fgf8 expression by direct binding to Sp8, per-
turbing its transcriptional activity. Whether

transcriptional activity of Emx2 is affected by binding of Sp8 has not been analyzed yet. +, positive interaction; �, negative interaction.
(B) Emx2 is expressed in cortical progenitors, but not in ANR/CoP, thus; it is likely that Sp8 activity is regulated in a domain-dependent manner. Sp8
forms a reciprocal induction loop with Fgf8 in the CoP, and is repressed by Emx2 in the cortex, thereby restricting Fgf8 expression to the CoP.
Modified from Sahara et al. (2007). Ctx, cortex; GE, ganglionic eminence; L, lateral; M, medial.
(C) Fgf8 and Fgf17 expression domains extend further laterally, dorsally, and posteriorly in the Emx2 mutant cortex at E10.5 compared with controls.
From Fukuchi-Shimogori and Grove (2003). Scale bar, 400 mm.
for the maintenance of Fgf8 expression in the ANR/CoP.

Further, the reciprocal induction observed between Sp8

and Fgf8 (Sahara et al., 2007) might be required for effec-

tive Fgf8 autoinduction.

In addition to being expressed in the ANR/CoP, Sp8 is

also expressed by cortical progenitors in a high-to-low

A-M to P-L gradient (Sahara et al., 2007; Zembrzycki

et al., 2007), paralleling the presumed diffusion gradient

of Fgf8 secreted by the ANR/CoP. The evidence de-

scribed above and the finding that ectopic expression of

Sp8 is sufficient to induce ectopic Fgf8 expression sug-

gest that the ability of Sp8 to activate Fgf8 expression is

suppressed in cortex adjacent to the ANR/CoP (Sahara

et al., 2007). Independent lines of evidence indicate that

this suppressor of Fgf8 expression in the cortex is the ho-

meodomain TF Emx2, which overlaps in expression with

Sp8 but not Fgf8 (Figure 3B). First, mice with a targeted

deletion of Emx2 have a broader expression domain of

Fgf8, as well as Fgf17, than wild-type does (Figure 3C)

(Fukuchi-Shimogori and Grove, 2003); second, in vitro as-

says show that Emx2 represses the ability of Sp8 to bind

regulatory elements of Fgf8 and induce its expression

(Sahara et al., 2007). Thus, Emx2 likely represses Fgf8

expression in vivo in the cortex and restricts it to the

ANR/CoP by suppressing the Sp8 transcriptional activa-

tion of Fgf8.

Roof Plate/Cortical Hem as a Dorsal/Posterior
Signaling Center for Area Patterning
In the spinal cord, the roof plate is a dorsal midline struc-

ture that acts as a prominent dorsal-ventral (D-V) pattern-

ing center to specify classes of dorsal neurons through
258 Neuron 56, October 25, 2007 ª2007 Elsevier Inc.
its secretion of several signaling molecules, such as

Bmps and Wnts (Lee et al., 2000a; Chizhikov and Millen,

2005). In the developing cortex, the roof plate comprises

the choroid plexus, which is positioned most dorsally in

the cortex, and the cortical hem, which lies at the medial

margin of the dorsal telencephalon (Figure 1). Choroid

plexus is a neurosecretory epithelium that expresses

multiple Bmps. The cortical hem is a neuroepithelium, ex-

tending to the dorsal midline from medial cortex, and

expresses multiple Bmps and Wnts (Furuta et al., 1997;

Grove et al., 1998). On the basis of these characteristics

and by analogy to the spinal cord, the telencephalic roof

plate is suggested to be a patterning center predominantly

involved in specifying more posterior-medial cortex.

It has been suggested that the different telencephalic

signaling centers interact during cortical development.

For example, ectopic Fgfs and Shh are able to inhibit the

expression of Bmps and Wnts (Shimogori et al., 2004;

Huang et al., 2007). Reduction of the level of Fgf8 leads

to anterior expansion of the Wnt8b expression domain

(Storm et al., 2006). In Shh mutant mice, the loss of Shh

leads to increased Bmp signaling (Ohkubo et al., 2002).

Mice deficient for Gli3, a zinc finger TF that mediates the

Shh signaling pathway, show an expansion of the anterior

Fgf8 expression domain and a loss of Bmp and Wnt

expression in the roof plate (Grove et al., 1998; Kuschel

et al., 2003). Moreover, in embryonic chick telencephalon,

focally applied Bmp4 can suppress the expression of Fgf8

and Shh, and the reduction of Bmp signaling by the ec-

topic expression of Noggin leads to an expansion of the

Fgf8 expression domain (Ohkubo et al., 2002). Thus, these

diverse signaling molecules expressed in the three major
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telencephalic patterning centers exhibit complex interac-

tions among themselves that likely influence their in vivo

patterning functions.

Genetic mechanisms controlling the formation of the

cortical roof plate and hem are becoming more clear.

Two LIM-homeodomain TFs, Lhx2 and Lhx5, have been

shown to be required for the determination and restriction

of the roof plate and cortical hem, respectively. Lhx5 is ex-

pressed in the cortical hem. The lack of Lhx5 leads to loss

of choroid plexus and cortical hem and defective hippo-

campal formation (Sheng et al., 1997; Zhao et al., 1999).

Lhx2 is expressed in the cortical VZ in a high-to-low P-M

to A-L gradient, and exhibits an abrupt decline in its ex-

pression through a repression by Bmp2 and Bmp4 ex-

pressed in the roof plate, which excludes Lhx2 expression

from the cortical hem (Monuki et al., 2001). The lack of

Lhx2 expression alters regional fates and allows the cho-

roid plexus and cortical hem to dramatically expand,

whereas in contrast, the neocortex is dramatically re-

duced in size (Porter et al., 1997; Bulchand et al., 2001;

Monuki et al., 2001). These findings suggest that estab-

lishing the boundary and fates between the cortical hem

and the adjacent cortical VZ requires the action of both

Lhx2 and Lhx5 in a complementary fashion.

Although the function of the roof plate in cortical area

patterning remains poorly defined, a role is strongly sug-

gested by the pattern and timing of expression of Bmps

and Wnts in the cortical hem and their receptors in the

cortex. The expression of Bmps in dorsomedial telenceph-

alon is detected as early as E9.5, just after neural tube clo-

sure. From E10.5, the expression domain of the Bmps

(Bmp2, Bmp4, Bmp5, and Bmp7) in dorsal telencephalon

is restricted to the dorsal midline (Furuta et al., 1997). Pro-

genitor cells in the dorsal telencephalon exhibit a response

to Bmps presumably through their expression of the Bmp

receptor Bmpr-1a, beginning at E8.0, and Bmpr-1b, at

E9.0 (Panchision et al., 2001). In developing cortex, the ex-

pression of Wnt3a is detected in the dorsal midline by

E10.5, and the expression of Wnt3a, Wnt5a, and Wnt2b

is upregulated in the hem at E11.5 (Grove et al., 1998).

Members of the Frizzled (mFz) family of Wnt receptors,

mFz-5 and mFz-8, are expressed in the cortical VZ and

excluded from the hem early in cortical development,

whereas others, mFz-9 and mFz-10, are expressed in the

hem. In addition, the Wnt inhibitors Sfrp1 and Sfrp3 are

expressed in A-L to P-M gradients within the dorsal telen-

cephalic VZ throughout corticogenesis (Kim et al., 2001).

Studies that alter Bmp and Wnt activities during cortico-

genesis indicate that they are critical for cortical develop-

ment. For example, in mice with a cortex-specific con-

ditional knockout of BmpR1a to block Bmp activity, the

choroid plexus fails to differentiate (Hebert et al., 2002).

On the contrary, expression of constitutively active

BmpR1a in dorsal telencephalic progenitors results in

a dorsalization of the cortex, with the choroid plexus ex-

panding at the expense of the cortex (Panchision et al.,

2001). In vitro studies show that Bmps regulate neural

apoptosis, proliferation, and gene expression in cortical
explants or dissociated cortical progenitors (Furuta

et al., 1997; Mabie et al., 1999). Reducing Bmp signaling

by electroporating a Noggin expression vector into chick

telencephalon increases the expression of Emx2 (Ohkubo

et al., 2002), which suggests a role for Bmps in cortical

patterning. Wnt-3a signaling is crucial for hippocampal

development; it acts locally to regulate the expansion of

the hippocampal primordium (Galceran et al., 2000; Lee

et al., 2000b). The expression of a constitutively active

form of b-catenin, a downstream factor in the canonical

Wnt signaling pathway, in developing cortex leads to de-

fects in the proliferation and differentiation of neural pro-

genitors (Backman et al., 2005; Chenn and Walsh, 2002).

In addition, b-catenin is involved in D-V patterning of the

telencephalon as a whole. Specifically, inactivation of

b-catenin in dorsal telencephalon at E8.5 results in down-

regulation of the dorsal telencephalic markers Emx1,

Emx2, and Ngn2, and an upregulation of the ventral

telencephalic markers Gsh2, Mash1, and Dlx2. However,

deletion of b-catenin at E11.5 has no evident effect on

D-V patterning, indicating an early critical period for these

patterning influences of b-catenin/Wnt signaling (Back-

man et al., 2005). In addition, Bmps and Wnts have been

implicated in the graded expression of Emx2 in dorsal tel-

encephalon (Theil et al., 2002). In summary, although none

of these studies addresses roles for Bmps and Wnts in

cortical area patterning directly, this large body of evi-

dence implies such a role; it clearly indicates a significant

role for canonical Wnt signaling in the proliferation and dif-

ferentiation of cortical neurons, and a broader role for

Bmps and Wnts in regionalization of the telencephalon

(Chenn and Walsh, 2002; Backman et al., 2005).

Roles for the roof plate and cortical hem in cortical de-

velopment have been further investigated by their genetic

ablation. Regulatory elements of the roof plate-specific

Gdf7 gene and the cortical hem-specific Wnt3a gene

have been used to express the diptheria toxin A chain

(DTA) to ablate cells in a tissue-specific fashion; these ap-

proaches result in DTA-mediated ablation of the targeted

cells around E10 (Monuki et al., 2001; Currle et al., 2005;

Yoshida et al., 2006). Ablation of the roof plate causes re-

duction of Bmp activity in the developing cortex and leads

to a reduced cortex size and apparent defects in cortical

patterning, characterized by a flattening of the expression

gradients of Emx2 and Lhx2 (Monuki et al., 2001; Cheng

et al., 2006). Surprisingly, though, genetic ablation of the

cortical hem has little effect on cortical development

(Yoshida et al., 2006). A possible explanation for the

absence of patterning defects in the hem-ablated telen-

cephalon is that the cortical hem is involved in cortical pat-

terning prior to its ablation.

Intrinsic Control of Area Identity by Differential
Expression of TFs in Cortical Progenitors
As described above, morphogens and signaling mole-

cules secreted by patterning centers have a prominent

role in establishing the graded expression of TFs in pro-

genitors in the cortical VZ. These TFs meet the basic
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criteria required for candidate genes that specify area

identities: regulatory genes differentially expressed

across the A-P and M-L cortical axes by progenitors in

the VZ, SVZ, or both. These properties suggest that these

TFs also function in a differential manner across the corti-

cal axes, which is required to impart area identities, but in

addition to differential expression, this property could be

achieved by the expression of cofactors or other mecha-

nisms that differentially influence TF function. Function-

ally, genes that regulate arealization in principle could

have a range of effects, from conferring the complete set

of properties that comprise the area identity of a cortical

neuron, to conferring a subset of these properties, to reg-

ulating the expression of axon guidance molecules that

control the area-specific targeting of TCAs.

Scores of TFs meet the basic criteria for regulation of

area patterning, but to date only four have been reported

to function in this manner: Emx2, Pax6, COUP-TFI, and

Sp8 (Figure 6). Emx2 is a homeodomain TF related to Dro-

sophila empty spiracles (ems); Pax6, a paired box domain

TF; COUP-TFI, an orphan nuclear receptor; and Sp8,

a zinc finger TF related to Drosophila buttonhead. Within

the cortex, the expression of each of these TFs, except

COUP-TFI, is almost exclusively limited to progenitors in

the embryonic VZ; COUP-TFI is expressed by both pro-

genitors and CP neurons. Emx2 is expressed in a high

P-M to low A-L gradient (Simeone et al., 1992a, 1992b;

Bishop et al., 2000). Pax6 is expressed in an opposing

pattern to Emx2 along both cortical axes, a low P-M to

high A-L gradient (Bishop et al., 2000). COUP-TFI has

a high P-L to low A-M expression gradient (Liu et al.,

2000); thus, it is expressed along the A-P axis in the

same gradient as Emx2, but in an opposing gradient

along the M-L axis. Sp8 is expressed in a high A-M to

low P-L gradient (Sahara et al., 2007); thus, it is expressed

along the A-P axis in the same gradient as Pax6, but in an

opposing gradient along the M-L axis. All but Sp8 are ex-

pressed in progenitors throughout embryonic cortical

neurogenesis; Sp8 is expressed only early in corticogene-

sis (Sahara et al., 2007). Thus, these four TFs have expres-

sion patterns that allow the unique encoding of position

along the cortical axes, and therefore in principal area

identity.

We want to emphasize that each of these TFs has roles

in addition to controlling arealization. For example, Pax6

(Warren et al., 1999) and Emx2 (Heins et al., 2001; but

see Shinozaki et al., 2002; Bishop et al., 2003 for opposing

in vivo data) have been implicated in control of cell prolif-

eration in cortex, Pax6 regulates D-V regional patterning

of the telencephalon and maintains the dorsal telence-

phalic fate of cortical progenitors (Stoykova et al., 2000;

Yun et al., 2001; Kroll and O’Leary, 2005), and as de-

scribed in a preceding section, Sp8 is a direct transcrip-

tional activator of Fgf8 in the CoP (Sahara et al., 2007).

However, here we focus on their roles in arealization.

As summarized in Figure 6, loss-of-function studies

have been done in mice for each of these four genes,

and gain-of-function studies have been reported for all
260 Neuron 56, October 25, 2007 ª2007 Elsevier Inc.
but COUP-TFI. Below we summarize the reported func-

tions for each in arealization. Of these four TFs, roles in

area patterning have been most extensively studied for

Emx2, which we will begin with when describing them.

Emx2

Emx2 expression is highest in progenitors that generate

posterior-medial areas of neocortex, such as V1, and low-

est in progenitors that generate anterior-lateral areas,

such as S1 and motor cortex (Simeone et al., 1992a,

1992b). If Emx2 controls arealization, it should preferen-

tially impart posterior-medial area identities, a prediction

confirmed by both loss-of-function and gain-of-function

analyses in mice. The initial studies, and the first to show

a role for any TF in area patterning, were loss-of-function

studies performed on Emx2 constitutive knockout mice

(Bishop et al., 2000; Mallamaci et al., 2000). Subsequent

to these first reports, more detailed analyses of Emx2

knockouts confirmed the findings (Bishop et al., 2002;

Muzio et al., 2002; Muzio and Mallamaci, 2003; Li et al.,

2006). Surprisingly, though, Emx1, a TF very closely re-

lated to Emx2 with a similar graded expression in the VZ,

and in addition, in the CP, does not appear to have a sig-

nificant role in area patterning (Bishop et al., 2002; Muzio

and Mallamaci, 2003).

Because Emx2 knockout mice die at birth, well before

cortical areas differentiate, the studies of them were limited

to analyses of the patterning of genes differentially

expressed in cortex and of reciprocal area-specific con-

nections between dorsal thalamus and cortex. Although

the findings matched predictions for Emx2 function, they

eventually became controversial because of defects in

TCA pathfinding (Lopez-Bendito et al., 2002), a potential

region-specific loss of cortical tissue (Muzio et al., 2002)

in Emx2 null mice, and a report concluding that Emx2

acts indirectly in arealization by repressing Fgf8 expression

in the CoP (Fukuchi-Shimogori and Grove,2003). However,

these caveats were circumvented in a subsequent study

that showed definite roles for Emx2 in controlling arealiza-

tion (Hamasaki et al., 2004). This study was based on gain-

of-function analyses of nestin-Emx2 transgenic mice,

which use nestin promoter elements to drive elevated

levels of Emx2 expression that are limited to progenitors,

and loss-of-function analyses of heterozygous Emx2 con-

stitutive knockout mice (Hamasaki et al., 2004).

Both cortical size and TCA pathfinding are normal in

nestin-Emx2 mice and Emx2+/� mice, and Fgf8 expres-

sion in nestin-Emx2 mice is indistinguishable from that in

wild-type. In addition, because these mice survive until

adulthood, the study allowed the first direct analyses of

cortical areas using various techniques that delimit their

borders, addressing definitively the influence of Emx2 on

the sizes and positioning of cortical areas (Hamasaki

et al., 2004). In nestin-Emx2 mice, the primary sensory

and frontal/motor cortical areas have disproportionate

changes in their sizes and shifts in position compared

with those of wild-type (Figure 4). V1, a posterior-medial

area, is significantly increased in size, whereas anterior

areas, S1 and frontal/motor, are significantly reduced in
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Figure 4. Disproportionate Changes in
Sizes of Primary Areas and Shifts in Their
Locations Controlled by Emx2 in
a Concentration-Dependent Manner
Serotonin immunostaining on tangential sec-
tions of flattened cortex of P7 Emx2 hetero-
zygous knockout (Emx2+/�, [A]), wild-type (B),
heterozygous nestin-Emx2 transgenic (Ne-
Emx2 het, [C]), and homozygous nestin-Emx2
transgenic (Ne-Emx2 homo, [D]) mice. Levels
of Emx2 transcripts increase progressively in
the genotypes from (A) to (D), with the lowest
level in the Emx2+/�mice and the highest levels
in the homozygous nestin-Emx2 transgenic
mice. As levels of Emx2 increase, V1 expands,

S1 is reduced in size and shifts anteriorly, and the domain remaining for frontal/motor areas (F/M) is reduced. For each genotype, the level of Emx2 in
embryonic cortex determined by real-time PCR (Emx2; Leingartner et al., 2007), and the size of V1 (V1; Hamasaki et al., 2004), relative to that of wild-
type (set at 100%), are indicated below each photo. The A-P axis is approximately 8.3 mm. The C3 barrel is marked with an asterisk (*), and the hind-
paw representation in S1 is marked with a white ^, to provide references for the anterior shift of the body representation in S1. Figure is modified from
Hamasaki et al. (2004).
size; all areas shift anteriorly, and S1 and A1 shift laterally

as well. Significant changes are also found in the size and

positioning of V1 and A1 in heterozygous nestin-Emx2

mice intermediate to wild-type and homozygous nestin-

Emx2 mice, whereas anterior areas, S1 and frontal/motor,

do not exhibit significant changes in heterozygous nestin-

Emx2 mice. Complementing these gain-of-function stud-

ies, Emx2+/�mice, which have reduced Emx2 expression,

exhibit a significant reduction in the size of V1 and its

anterior border shifts posteriorly, while S1 and frontal/

motor areas are increased in size and shifted posteriorly

(Hamasaki et al., 2004).

These analyses not only directly delineated cortical

areas, but showed that gene markers and TCA input ex-

hibited changes in parallel to the area patterning changes.

Thus, Emx2 controls area identities of cortical progenitors

and their progeny, as well as positional information that in

turn controls the expression of guidance molecules, ex-

pressed presumably by SP neurons and possibly CP neu-

rons, that establish area-specific TCA projections. A role

for Emx2 in controlling TCA guidance has been shown in

a compelling fashion by viral-mediated overexpression

of Emx2 in SP and deep CP (Leingartner et al., 2003).

TCAs from the dLGN normally project to V1, the cortical

area that is generated by progenitors with the highest level

of endogenous Emx2. However, in virally infected brains,

these TCAs from the dLGN aberrantly turn within the

IZ/SP and extend into the CP when they first encounter

domains of Emx2 overexpression in parietal (S1) cortex,

apparently in response to aberrant positional information

specified by the ectopic, high levels of Emx2 that mimic

those normally found in V1 (Leingartner et al., 2003).

In summary, genetic manipulations that change the

levels of Emx2 expression in cortical progenitors result in

disproportionate changes in the sizes of the primary sen-

sory and motor cortical areas, but have no effect on overall

cortical size (Hamasaki et al., 2004). These findings show

that Emx2 operates by a concentration-dependent mech-

anism in cortical progenitors to specify disproportionately

the sizes and positioning of the primary cortical areas, and

that higher levels of Emx2 preferentially impart posterior-
medial area identities, such as those associated with V1;

additionally, as discussed in a later section, these findings

led to the ‘‘Cooperative Concentration Model’’ proposed

to define the action of TFs that determine area-specific

properties in cortical progenitors (Hamasaki et al., 2004).

Genetic rescue studies have validated that Emx2 con-

trols arealization and that the levels of Emx2 expression

are a critical parameter (Leingartner et al., 2007). These

studies were done by crossing the nestin-Emx2 mice,

which have about a 50% increase in Emx2 expression in

cortical progenitors, with Emx2+/�mice, which have about

a 50% reduction in Emx2 expression. In the progeny ob-

tained from this cross, both Emx2 expression in cortical

progenitors and the size and positioning of cortical areas

are restored to those of wild-type.

COUP-TFI

The initial analysis of a role for COUP-TFI in area pattern-

ing made use of constitutive null mice, most of which die

within a few days after birth, again limiting analyses

(Zhou et al., 2001). These mice exhibit substantial changes

in patterns of gene markers, with most markers reported

to loose their differential expression along the cortical

axes and instead to exhibit broad expression. In addition,

TCAs are reported to exhibit aberrant targeting, and layer

4 loses the high density of neurons characteristic of the

primary sensory areas. However, these findings and their

interpretations are complicated by the robust expression

of COUP-TFI within forebrain structures, particularly the

principal sensory nuclei in dorsal thalamus. Indeed, in

COUP-TFI constitutive null mice, the majority of TCAs

fail to reach the cortex, which compromises an analysis

of defects in the targeting of TCAs and changes in layer

4, the principal target layer of TCAs (Zhou et al., 1999).

Nonetheless, findings from the COUP-TFI constitutive

null mice suggest a role for COUP-TFI in arealization.

Recent analyses of conditional COUP-TFI knockout

mice overcome the complications of the constitutive

loss of COUP-TFI and demonstrate a dramatic role for

COUP-TFI in area patterning (Armentano et al., 2007).

The conditional allele of COUP-TFI was deleted in these

mice by crossing with Emx1-Cre mice, resulting in
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 261
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Figure 5. Expansion of the Frontal/Motor Areas and
Posterior Compression of Sensory Areas in COUP-
TFI-Deficient Cortex
(A and B) Serotonin (5-HT) immunostaining on tangential sections
through layer 4 of flattened cortices of P7 control (COUP-TFIfl/+) and
conditional mutant (fl/fl; Emx1-Cre) mice. Anterior is to the top, and
medial is to the right. (A) Serotonin staining reveals primary sensory
areas, including the primary somatosensory (S1), visual (V1), and audi-
tory (A1) areas. V1 is posterior-medial to S1 and A1 is posterior-lateral
to S1. Frontal cortex (F) is located anterior to S1. (B) In COUP-TFI fl/fl;
Emx1-Cre conditional mutant brains, the primary sensory areas are
much smaller than in controls and are compressed to ectopic positions
at the posterior pole of the cortical hemisphere. The barrelfield of S1
retains its characteristic patterning but is substantially reduced in
size and caudally shifted, while a reduced V1 is located medial to,
and a reduced A1 lateral to, the miniature S1 barrelfield. (C and D)
In situ hybridization for Cad8 on whole mounts of P7 wild-type
(+/+; Emx1-Cre) and homozygous conditional mutant (COUP-TFI fl/fl;
Emx1-Cre) brains uniquely marks the frontal/motor areas (F/M). The
F/M massively expands following selective deletion of COUP-TFI
from cortex. (E–H) Serotonin (5-HT) immunostaining and MDGA1 in
situ hybridization are done on serial sagittal sections of P7 control
(COUP-TFI fl/+) and conditional mutant (fl/fl; Emx1-Cre) cortices. Ante-
rior is to the left, dorsal is to the top. (E and F) Serotonin immunostain-
ing reveals layer 4 of S1 and V1. In the conditional mutant cortex, both
S1 and V1 are reduced in size and are ectopically positioned at the
posterior pole of the cortical hemisphere (F). (G and H) The S1-specific
expression of MDGA1 in layers 4 and 6 confirms the reduced size and
posterior shift of S1, and confirms that these changes occur in parallel
across cortical layers in mutant cortex. The majority of the cortex in the
conditional mutants, including all of the neocortex anterior to the
reduced, caudally shifted primary sensory areas, exhibits levels and
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a selective elimination of COUP-TFI expression in the cor-

tex at E10 and later. Cortical deletion of COUP-TFI results

in a massive expansion of frontal areas, including motor

areas, and occupation of most of parietal and occipital

cortex, which in wild-type mice are occupied by somato-

sensory and visual areas, respectively (Figure 5). This fron-

tal area expansion is paralleled by a substantial reduction

in the sizes of the three primary sensory areas, which be-

come compressed to the caudal pole of the cortical hemi-

sphere, aligned along its M-L axis. These areal changes

are accompanied by changes in area-specific markers,

cytoarchitecture, and TCA input to retain area-specific

patterns, but they are in parallel to the ectopically posi-

tioned areas, and changes in outputs are made to match

the expansion of motor areas. Thus, COUP-TFI is required

to balance the patterning of neocortex into frontal/motor

areas and sensory areas, predominantly by repressing the

identities of frontal/motor cortical areas within its expres-

sion domain in parietal and occipital cortex, which allows

the appropriate specification of the sensory cortical areas.

The continued presence of the primary sensory areas,

particularly V1, is likely due to the retained function of

Emx2. However, the finding that heterozygous conditional

knockout mice exhibit an intermediate phenotype indi-

cates that COUP-TFI also has a role in specifying the iden-

tities of sensory areas. Although Emx2 and COUP-TFI

both exhibit a low to high expression gradient along the

A-P axis, they differ substantially in function: Emx2 prefer-

entially specifies posterior area identities in posterior

cortex (Hamasaki et al., 2004), whereas COUP-TFI pre-

dominantly represses anterior area identities in posterior

cortex (Armentano et al., 2007). This difference in function

is perhaps best illustrated by the effect of changes in the

expression of these TFs on the size of S1 versus V1.

Diminishing the expression of COUP-TFI has a similar ef-

fect on both V1 and S1 (they are both reduced in size), and

an opposing effect on frontal/motor areas (i.e., they are in-

creased in size) (Armentano et al., 2007), whereas altering

the expression of Emx2 has opposing effects on V1 and

S1 (changes in Emx2 levels that increase V1 size decrease

S1 size), and a similar effect on frontal/motor areas and S1

(both are decreased in size) (Hamasaki et al., 2004).

Pax6

Putative roles for Pax6 in area patterning are presently in

flux. The initial studies that implicated Pax6 in area pat-

terning depended upon marker analyses of small eye

(sey) mutant mice, which are deficient for functional

Pax6 protein and die at birth (before cortical areas differ-

entiate), have major lamination defects and a cortex re-

duced by a third, and entirely lack TCA input. Nonetheless,

the gene marker analyses implicated Pax6 in specifying

anterior area identities associated with motor areas, con-

sistent with its highest expression in progenitors that give

rise to anterior areas (Bishop et al., 2000, 2002; Muzio

patterns of serotonin staining and expression of MDGA1 that are char-
acteristic of wild-type frontal/motor cortex (F/M). Scale bars, 1 mm.
Figure is modified from Armentano et al. (2007).
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et al., 2002; Li et al., 2006). However, a recent gain-

of-function study of Pax6 that used a YAC transgenic

approach to overexpress Pax6 several-fold in cortical

progenitors reports no changes in area patterning other

than a small decrease in S1 size (Manuel et al., 2007).

Although this gain-of-function study fails to reveal

a prominent role for Pax6 in area patterning, the dramatic

changes in gene marker expression observed in Pax6 (sey)

mutants (Bishop et al., 2000, 2002; Li et al., 2006) appear

to exceed changes that could be explained solely by the

reported preferential loss of rostral cortical tissue in these

mutants (Muzio et al., 2002). An appealing explanation for

this discrepancy is that another gene or set of genes nor-

mally represses the ability of Pax6 to impart frontal/motor

area identities in the cortical fields that give rise to sensory

areas and could conceivably have a similar action even in

the face of Pax6 overexpression. For example, COUP-TFI,

which is expressed robustly by progenitors in parietal and

occipital cortex that generate the primary sensory areas,

and exhibits a steep decline in expression in frontal cortex

(Liu et al., 2000), could have this function if, above a thresh-

old level of its expression, COUP-TFI can repress Pax6’s

ability to impart frontal/motor area identities to sensory

area progenitors.

Sp8

As described in a preceding section, Sp8 is transiently ex-

pressed in the ANR/CoPcoincident with the expressiondo-

main of Fgf8 and regulates Fgf8 expression (Sahara et al.,

2007). Two recent studies have reported roles for Sp8 in

arealization. One study employed in utero electroporation

of various constructs for gain-of-function and loss-of-func-

tion analyses of Sp8 function in arealization (Sahara et al.,

2007), and the other generated a conditional knockout of

Sp8 and crossed it with a BF1 (Foxg1)-Cre line to delete

Sp8 from the telencephalon, including Sp8 expressed in

both the ANR/CoP and progenitors in the cortical VZ

(Zembrzycki et al., 2007). Because Sp8 and Fgf8 recipro-

cally induce one another, and because Fgf8 itself has

potent effects on arealization by controlling the graded

expression of Emx2, COUP-TFI, and likely other TFs, it

is difficult to sort out from these studies the specific role

of Sp8 expression in cortical progenitors in arealization.

Nonetheless, analyses of the conditional Sp8 knockout

mice at late embryonic ages show an anterior shift

of cortical markers, suggesting that Sp8 preferentially

specifies identities associated with frontal/motor areas

(Zembrzycki et al., 2007). Consistent with this finding, an

anterior electroporation of a dominant-negative form of

Sp8 in dorsal telencephalon in early embryonic mice (E11)

results in an anterior shift of cortical areas, defined postna-

tally using markers that directly delineate primary areas

(Sahara et al., 2007). Additional work is required to address

the complexities and specific actions of Sp8 in arealization

and distinguish them from those exerted by Fgf8 or Fgf17.

Interactions between TFs in Controlling Intrinsic

Genetic Mechanisms of Area Patterning

Other TFs are likely involved as primary regulators of area

patterning and cooperate with the four described above. In
addition, the four described here have inductive or repres-

sive effects upon one another that affect their function and

their level of expression (Figure 6B). For example, Sp8 is

a direct transcriptional activator of Fgf8, and Sp8 induction

of Fgf8 is repressed by Emx2 (Sahara et al., 2007), which

itself binds Sp8 (Zembrzycki et al., 2007). This provides

a mechanism to limit Fgf8 expression to the CoP, and ac-

counts for the finding of expanded domains of Fgf8 and

Fgf17 in Emx2 mutants (Figure 3) (Fukuchi-Shimogori

and Grove, 2003). In addition, many of these TFs influence

the expression of one another in other ways. For example,

Emx2 and COUP-TFI appear to repress Pax6 (Muzio et al.,

2002; Hamasaki et al., 2004; Armentano et al., 2007), and

Pax6 appears to repress Emx2 (Muzio et al., 2002). Further,

as described in a preceding section, Fgf8 influences the

expression of many of these TFs. In summary, the TFs

that control arealization also regulate one another as well

as at least a subset of the morphogens (e.g., Fgf8) that

establish their graded expression by progenitors in the cor-

tical VZ/SVZ through reciprocal induction or repression

loops. This mechanism can modify levels of expression

and slopes of expression gradients.

Candidate Targets of TFs That Control

Cortical Arealization

Among the critical issues for future studies are defining the

targets of TFs that control arealization and how these

targets function to generate the many properties that de-

termine the anatomical and functional specializations of

an area. A series of recent screens based on RNAs derived

from embryonic tissue have been performed to define

candidate targets of Emx2 and Pax6 (Arai et al., 2005;

Gangemi et al., 2006; Li et al., 2006; Holm et al., 2007).

Only one of these screens focused on roles of these

TFs in area patterning (Li et al., 2006), but all provide lists

of candidate targets for Emx2 or Pax6; these are therefore

potentially involved in cortical arealization, as well as

functions (including proliferation, neuronal differentiation,

migration, axon guidance, and regional patterning of the

telencephalon) relevant to other prominent phenotypes

exhibited by Emx2 and Pax6 (sey) mutants. Li et al. (2006)

performed a Representational Display Analysis (RDA)

comparing Emx2 null cortex to wild-type, and vice versa,

whereas the other three reports are microarray screens

that compare neurospheres from Emx2 null with wild-type

cortical progenitors (Gangemi et al., 2006), Pax6 (sey)

mutant and wild-type mouse dorsal and ventral telenceph-

alon in multiple combinations (Holm et al., 2007), and Pax6

(sey) mutant rat cortex with wild-type (Arai et al., 2005).

Odz4/Ten-M4 is an intriguing example of a gene identi-

fied uniquely using RDA due to its decreased expression

in embryonic Emx2 null cortex compared with that of wild-

type, and subsequently verified using in situ hybridization

(Li et al., 2006). Odz4 is one of four members of a verte-

brate gene family (referred to as the Ten-M family in

mouse) homologous to the Drosophila pair-rule patterning

gene, Odd Oz (Odz), which encodes a transmembrane

protein involved in segmental patterning in Drosophila

(Levine et al., 1994) and has structural domains similar
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 263
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Figure 6. Summary of Intrinsic Genetic Mechanisms of Area Patterning and Mutant Phenotypes
(A) Graded expression of Emx2, Pax6, Coup-TFI, and Sp8 along anterior-posterior and lateral-medial axes. Key TFs for cortical area patterning show
distinct graded expression patterns along anterior-posterior (A, P) and lateral-medial (L, M) axes. Emx2 is expressed in a high P-M to low A-L gradient.
Pax6 expression pattern is opposite to that of Emx2, with a high A-L to low P-M gradient. Coup-TFI has a high P-L to low A-M gradient. Sp8 is
expressed in a high A-M to low P-L gradient. While the expression of Emx2, Pax6, and Coup-TFI is sustained in the VZ, Sp8 expression is quickly
downregulated around the onset of cortical neurogenesis.
(B) In the anterior signaling center, Fgf8 establishes the low anterior-graded expression of the TFs Emx2 and COUP-TFI by repression, and promotes
the high anterior gradient of Sp8 expression. Fgf8 expression is also regulated positively by direct transcriptional activation by Sp8 through its binding
to Fgf8 regulatory elements, and indirectly by Emx2, which represses the ability of Sp8 to directly induce Fgf8, as described in Figure 2. The asterisk
marking the activation of Fgf8 by Sp8 indicates the only interaction that has been shown to be due to direct binding and transcriptional activation
(Sahara et al., 2007). Putative posterior signaling molecules Bmps and Wnts, expressed in the cortical hem, positively regulate the high caudal gra-
dient of Emx2 expression. Genetic interactions between TFs also participate in the establishment of their graded expression. For example, Emx2 and
Pax6 mutually suppress each other’s expression, Coup-TFI suppresses Pax6 expression and enhances Emx2 expression, and Sp8 suppresses Emx2
expression. Those changes to the expression patterns were identified in the knockout mice; thus, these interactions do not necessarily imply direct
control of one TF on another. For instance, Emx2 suppression by Sp8 might be due to an enhancement of Fgf8 expression, which in turn acts neg-
atively on Emx2 expression. +, positive interaction; �, negative interaction.
(C) Summary of all reports of loss-of-function or gain-of-function mice mutant for TFs that regulate area patterning. Reducing Emx2 levels in the cortex
of the heterozygote mutant mice results in posterior shifts of areas with shrinkage of V1, while overexpression of Emx2 under the control of the nestin
promoter shifts areas anteriorly. The small eye mutant without functional Pax6 shows anterior area shifts as judged by the gene expression patterns of
cortical area marker genes, but details of area patterning in postnatal stages of mice lacking Pax6 has not been reported thus far. Unlike the Emx2
transgenic mice, YAC transgenic mice of Pax6 do not show area changes other than a slight, but significant, reduction in the size of S1 (asterisk). Loss
of COUP-TFI in cortical progenitors transforms the fate of primary sensory areas into frontal/motor areas; thus, COUP-TFI represses frontal/motor
fates in sensory area domains. The analysis of Sp8 conditional knockout mice shows anterior shifts of gene markers, a similar phenotype as that
seen in Fgf8 hypomorphic mice. The effects of Sp8 on area patterning when it is specifically deleted in cortical progenitors have not been reported.
See text for details and references.
to tenascin. In embryonic mice, Odz4 has an expression

pattern that parallels the high-to-low P-M to A-L graded

expression of Emx2, but rather than being expressed in

the VZ, Odz4 is expressed in the CP throughout embry-

onic development. Odz2 and Odz3 have similar gradients

of expression as Odz4 in the CP, whereas Odz1 has an

opposing expression gradient (Li et al., 2006). Postnatally,

these graded expression patterns refine into more

restricted patterns coincident with the differentiation of

cortical areas, with Odz2-4 having patterns that predom-

inantly relate to the posterior-medial positioned visual
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areas, and Odz1, patterns that relate to the more anterior

sensorimotor areas. The Odz genes also have distinct

laminar expression patterns: Odz2, Odz3, and Odz4

have their highest expression in layer 5, and Odz1, in layer

4 (Li et al., 2006). Each of the Odz family member exhibits

an anterior shift in their cortical expression patterns in

Emx2 mutants and a posterior shift in Pax6 (sey) mutants,

consistent with the opposing area patterning functions of

Emx2 and Pax6 and potential roles for the Odz genes

in arealization as targets of Emx2 and Pax6 (Li et al.,

2006).
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Defining Area Identities
A defining property of area patterning of the adult cortex is

the abrupt transition in anatomical and functional charac-

teristics as one moves from one area to another, marked

by sharply defined borders. In addition, many genes ex-

pressed in the CP have sharply bordered patterns of

expression that often relate to borders of cortical areas,

especially as areas themselves emerge and become de-

fined (Figure 1). An important process of arealization dur-

ing development is translating the graded expression of

TFs expressed by cortical progenitors in the VZ/SVZ and

early on by their neuronal progeny in the CP into these

abrupt, bordered patterns of expression and other proper-

ties that relate to and define areas. Little if anything is

known about these mechanisms in the developing cortex,

but studies in other systems are suggestive. Perhaps

the most definitive examples from a mechanistic perspec-

tive come from studies of Drosophila embryos and their

development of the sharply patterned expression of

even-skipped gene expression, as well as expression of

targets of the regulatory protein Dorsal. The graded distri-

bution of Dorsal across the embryo generates, through

concentration-dependent differences in binding efficacy

to promoter and repressor elements, expression patterns

of downstream genes with sharp borders that align with

the boundaries of different embryonic tissues and related

patterns of gene expression (Rusch and Levine, 1996).

The expression of the even-skipped gene, limited to

multiple, sharp stripes perpendicular to the A-P axis of

the embryo, emerges through the combined action of mul-

tiple activators and repressors of its transcription; even-

skipped is expressed where expression of repressors is

subthreshold and that of activators is suprathreshold

(Rusch and Levine, 1996; Small et al., 1996).

Similar mechanisms appear to operate in the develop-

ing vertebrate brain, for example during the differentiation

of rhombomeres in the hindbrain (Kiecker and Lumsden,

2005) and establishment of unique progenitor domains

in the ventral spinal cord (Jessell, 2000; Shirasaki and

Pfaff, 2002). For example, in the spinal cord, Shh secreted

by the notocord and floorplate represses or induces the

expression of different classes of TFs in the VZ of ventral

spinal cord, which initially are expressed in gradients

over the D-V axis, similar to the A-P and M-L graded ex-

pression of TFs that control area patterning in the cortex.

However, in contrast to cortex, in ventral spinal cord the

graded expression of these TFs is transformed through

mutual repression into sharply bordered expression pat-

terns in the VZ that result in domains of genetically distinct

progenitors defined by their expression of distinct subsets

of TFs. The distinct domains give rise to different classes

of spinal neurons.

Although TFs that control area patterning exhibit mutual

repression in cortex (Figure 6B), at no time during neuro-

genesis are sharply bordered patterns of TFs observed

in the cortical VZ; instead, each TF retains a graded pat-

tern across the cortical VZ. Even in the CP, the expression

of TFs and other gene families is initially graded before
many of them acquire expression patterns with abrupt

borders. In the cortex, TFs that control arealization do ap-

pear to cooperate to generate area patterning, but these

TFs define unique area identities by operating through

concentration-dependent mechanisms rather than by

establishing distinct domains of progenitors expressing

unique sets of TFs. This concept, termed the Cooperative

Concentration Model, was developed largely on the basis

of studies of the function of Emx2 in arealization (Hama-

saki et al., 2004; Leingartner et al., 2007), but where

available, the evidence indicates that other TFs involved

in arealization work in a similar manner (for example

COUP-TFI; Armentano et al., 2007). Overall, the area iden-

tities of progenitors in the embryonic cortex are deter-

mined by the cooperative interaction of multiple TFs that

they express, with a critical difference being the level of

expression of each TF.

This discussion leads directly to the major issue of the

extent to which areas are genetically distinct in the adult

cortex. The available evidence indicates that in terms of

gene expression, a neocortical area is not defined by the

expression of a gene or set of genes restricted to that

area. Instead, neocortical areas are defined by unique pat-

terns of expression of whole sets of genes; each gene that

is a member of any given unique set might also be a mem-

ber of other unique sets that genetically define other areas

through their inclusion or exclusion of expression.

Making the term ‘‘area identity’’ even more difficult to

define is that each layer has a unique profile of gene ex-

pression. Indeed, with a few exceptions, each gene differ-

entially expressed in the neocortex and expressed in more

than one layer has different expression patterns in each

layer. An example of this feature is the expression profile

of MDGA1, which encodes a protein that is a cell adhesion

molecule of the immunoglobin superfamily (Litwack et al.,

2004). MDGA1 is expressed in layers 2 and 3 throughout

the neocortex, and exclusively within S1, is also ex-

pressed in layers 4 and 6 (Takeuchi et al., 2007). Thus,

MDGA1 has both layer-specific and area-specific pat-

terns of expression, and although it uniquely defines a

single area, S1, its expression is not limited to that area.

In conclusion, the term ‘‘area identity’’ in this genetic

sense is an amorphous concept—although neurons of

an area cooperate to generate that area’s unique func-

tional attributes, they are not defined as a population by

a genetic tag unique to that area.

Conclusion
The mechanisms that control arealization of the neocortex

have received considerable attention over the past two

decades. During this period the pendulum has swung

from models favoring predominant roles for extrinsically

mediated influences, including sensory and TCA input,

on controlling arealization to models favoring mechanisms

based on intrinsic genetic influences. Several TFs, mor-

phogens, and signaling molecules have been defined to

have roles in arealization, and headway is being made in

understanding their interactions. Yet the field is nascent
Neuron 56, October 25, 2007 ª2007 Elsevier Inc. 265
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and relatively little is known. Much work needs to be done

to better characterize roles in arealization for the TFs pres-

ently identified and define additional players near the top

of the genetic hierarchy, and to determine their targets

and mode of action. In addition, roles of extrinsic mecha-

nisms and TCAs in arealization, which presently are vague

and only defined at a phenomenological level, need to be

better understood in part because they may well be a sig-

nificant source of cortical plasticity. These efforts will be

critical to understand how a set of TFs expressed at vary-

ing levels in cortical progenitors becomes translated into

the precisely patterned, specialized anatomical and func-

tional areas that characterize the adult cortex. Further,

these efforts are important as the cortex is the source of

our individuality.
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