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Abstract

This paper aims to study the propagation of surface wave in two initially stressed heterogeneous magnetoelastic transversely
isotropic media lying over a transversely isotropic half-space under the action of gravity. Heterogeneities of both the layers are
caused due to exponential variation in elastic parameters. Dispersion relation is obtained in closed form by using Whittaker’s
asymptotic expansion. Magnetoelastic coupling parameters, heterogeneity, horizontal compressive initial stress and gravity
parameters have remarkable effect on the phase velocity of surface wave. The obtained dispersion relation is found to be in well
agreement with the classical Love-wave equation. Comparative study and graphical illustration has been made to exhibit the
outcomes.
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1. Introduction

The crust is heterogeneous, which makes the study of wave propagation much practical considering the
heterogeneous layers. There are different types of vertical heterogeneity persist in crustal layers in the form of
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exponential function, linear function etc. The study of wave propagation in layered elastic media with different
boundaries helps to understand and predict the seismic behaviour at the different margins of earth, which makes it
applicable in the field of geophysics, civil, mechanical, and other engineering branches. Many researchers had
widely studied the theory of Love wave /shear wave propagation in a medium where the velocity, rigidity and
density are functions of depth. Kar [1] worked on the propagation of Love-type waves in a non-homogeneous
internal stratum of finite thickness lying between two semi-infinite isotropic media. Love waves in different
heterogeneous layered media were studied by Gogna [2]. Chattopadhyay [3] discussed the propagation of SH-waves
in a sandwiched heterogeneous layer lying between two semi-infinite homogeneous elastic media where the
heterogeneity in the sandwiched layer was taken in the form of linearly varying function of depth in the rigidity and
density was kept constant. Due to the presence of many physical factors, a large amount of initial stress evolves in a
medium which have a pronounced influence on the propagation of waves as shown by Biot [4]. Chattopadhyay and
Singh [5] have discussed the propagation of a crack due to magnetoelastic shear waves in a self-reinforced medium.
In this paper we have discussed the propagation of shear waves in two initially stressed non-homogeneous
magnetoelastic transversely isotropic media. The both media are lying over a transversely isotropic half-space which
is under gravity. The dispersion equation is obtained in closed form.

2. Formulation and solution of the problem

We consider two heterogeneous magnetoelastic transversely isotropic media (M1 and M2) of thickness H1 and H2.
The layers are under horizontal initial stresses P1 and P2 overlying a semi-infinite transversely isotropic medium
under Gravity. The x-axis is taken in the direction of wave propagation, z-axis as vertically downwards and origin
has taken at the interface of layers and half-space. The rigidity and density of both the layers are taken in the form of
exponential variation with heterogeneities parameter anda b in transversely isotropic media.

The rigidity and density for transversely isotropic half-space under gravity are considered as

3 3 3 3 3, , andL N P gzρ ρ (Fig.1). If ,j ju v and jw are the displacement components in ,x y and z directions

respectively, then for shear wave propagating along the x- direction and causing displacement in the y- direction
only, we consider the displacement components as

0, 0, , , and 0,j j j ju w v v x z t y where 1, 2, 3.j

The only non-vanishing equation of motion for the propagation of shear wave in initially stressed heterogeneous
magnetoelastic transversely isotropic medium is
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iρ are the densities of the media, iN and iL can be identified as the shear elastic modulus in the transverse and

longitudinal direction of the transversely isotropic media ( for all i =1, 2, 3). jv is the displacement components

along y directions for all j=1, 2, 3.
i

eμ {for all i=1, 2, 3} are the magnetic permeability for media (M1, M2 and M3 )

respectively. 0H be the induced magnetic (primary) field.

2z H Initial Stressed Heterogeneous Magnetoelastic Transversely

Isotropic Medium (M1)

1z H
Initial Stressed Heterogeneous Magnetoelastic Transversely

Isotropic Medium (M2)

0z x
Transversely Isotropic gravitational half-space (M3)

z

Fig. 1 Geometry of the problem

2.1. The equation of motion for medium (M1)

Putting 1i j in eq. (1) the equation of motion for the medium (M1) can be written as
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The heterogeneity parameters for this medium (M1) are considered as
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where a is the heterogeneity parameter having dimension inverse of length and
0 0 0 0 0

1 1 1 1 1, , , , eN L Pρ μ are

constants of medium M1. With the help of Eq. (4), the Eq. (3) becomes



1198   Nirmala Kumari and Amares Chattopadhyay  /  Procedia Engineering   144  ( 2016 )  1195 – 1204 

2 2 2 2
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and 0 0
1 1 1Lβ ρ is the shear wave velocity of medium M1.

Assuming

1 1, , ik x ctv x z t V z e (6)

With the help of eqns. (5) and (6), we get the displacement components of medium (M1) as
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2.2. The equation of motion for medium (M2)

Putting 2i j in Eq. (1), the equation of motion for medium (M2) becomes
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The heterogeneity parameters in exponential variation for the intermediate layer (M2) are considered as
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where b is the heterogeneity parameter of medium M2 and
0 0 0 0 0

2 2 2 2 2, , , , eN L Pρ μ are constants.

In view of Eq. (9), Eq. (8) can be written as
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and 0 0
2 2 2Lβ ρ is the shear wave velocity of intermediate layer M2.

Using 2 2, , ik x ctv x z t V z e in Eq. (10) we get the displacement components of medium M2 as
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2.3. The equation of motion for half-space (M3)

The equation of motion for the transversely isotropic half space (M3) can be written as
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where 3N , 3L , 3ρ , 3v , g and c are the shear elastic modulus in transverse and longitudinal directions, the density of

the medium, displacement component, acceleration due to gravity and common wave velocity of the half-space
(M3).

Using 3 3, , i k x ctv x z t V z e in the above eq. (12), we have
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Considering 2
1 1 1 1 1 12 , 2z k b a b z s c k bσ and using the transformation 3 1 1V z z a b zψ the

above Eq. (13) takes the form
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Eq. (14) is the form of Whittaker’s equation and its solution can be written as
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1 3 ,0 1 3 ,0 1s sAW B Wψ σ σ σ , (15)

where ,0 1 ,0 1ands sW Wσ σ are Whittaker’s functions of first and second kind of order s and 0.

In view of condition 1 0 as zψ σ the appropriate solution of eq. (15) becomes

1 3 ,0 1 .sAWψ σ σ (16)

Hence the solution for the displacement component of the half space reduces to
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where 1 3 3 1, 2a L b gρ , 2 2
1 1 3 31c c a N L and 1G g ka is the Universal gravitational constant

(Biot’s gravity parameter). The asymptotic expansion (Whittaker and Watson [6]) of Whittaker’s function for large

argument and retaining up to the second term ,0 4 2sW G kz , may be approximated as

2

2
,0

0.5
4 2 ~ 2 4 1 .

2 4
skz G

s

s
W G kz e kz G

kz G
(18)

3. Boundary conditions

For the shear wave propagation, the following boundary conditions must be satisfied:
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Using the displacement components 1 , ,v x z t , 2 , ,v x z t and 3 , ,v x z t from eqns. (7), (11) and (17) in the above

five boundary conditions of eq. (19), we get
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where A1, B1, A2, B2 and A3 are arbitrary constants. Eliminating arbitrary constants A1, B1, A2, B2 and A3 from Eq.
(20) to (24), we find the dispersion equation as
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With the help of Whittaker’s asymptotic expansion (18), Eq. (27) reduces to
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Equation (26) is the dispersion equation for shear wave in the heterogeneous magnetoelastic transversely isotropic
media under initial stresses lying over a transversely isotropic half-space under gravity.

4. Numerical results and discussions

We consider the following data of elastic coefficients of equivalent transversely isotropic models of the Upper
Mantle (olivine model and petrofabric model) from Anderson [7]:

Fig. 2 Variation in dimensionless phase velocity 1c β against dimensionless wave number 1kH for different values of transversely isotropic

magnetoelastic coupling parameter 1
Ht when both heterogeneous layers (M1 and M2) are under initial stress and half space (M3) is under the

action of gravity.
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Fig. 3 Variation in dimensionless phase velocity 1c β against dimensionless wave number 1kH for different values of transversely isotropic

magnetoelastic coupling parameter 2
Ht when both heterogeneous layers (M1 and M2) are under initial stress and half space (M3) is under the

action of gravity.

Fig. 4 Variation in dimensionless phase velocity 1c β against
dimensionless wave number 1kH for different values of
heterogeneity parameter 1aH when both magnetoelastic
transversely isotropic layers (M1 and M2) are under initial
stress and half space (M3) is under the action of gravity.

Fig. 5 Variation in dimensionless phase velocity 1c β against
dimensionless wave number 1kH for different values of
heterogeneity parameter 1bH when both magnetoelastic
transversely isotropic layers (M1 and M2) are under initial
stress and half space (M3) is under the action of gravity.
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5. Conclusions

The present paper deals with the propagation of shear waves in two initially stressed heterogeneous
magnetoelastic transversely isotropic medium overlying a transversely isotropic half-space under the action of
gravity has been studied. Closed form expression for dispersion equation in terms of various affecting parameters
viz. heterogeneity parameter, transversely isotropic magnetoelastic coupling parameter, horizontal compressive
initial stress of the layers and universal gravitational constant of the half-space has been established. The
magnetoelastic coupling parameters and heterogeneity parameters of the layers (M1 and M2) give the significant
effect on the phase velocity of shear waves. The following outcomes can be accomplished through this study:

The wave number affects phase velocity substantially. More precisely, the phase velocity of dispersion curves
decreases with the increase of wave number.
As heterogeneity grows in the uppermost layer it increases the phase velocity of shear wave. Moreover the
heterogeneity grows in the sandwich layer give the adverse effect on the phase velocity of shear wave.
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